

SoC Debug
Interface

Author: Igor Mohor
IgorM@opencores.org

Rev. 2.0

February 1, 2004

Open Cores SoC Debug Interface 2/1/2004

Copyright (C) 2001 - 2004 OPENCORES.ORG and Authors.

This document is free; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

http://www.opencores.org/ Rev 2.0 Page 2 of 30

Open Cores SoC Debug Interface 2/1/2004

Revision History
Rev. Date Author Description
0.1 02/02/01 Igor Mohor First Draft
0.2 05/04/01 IM Trace port added
0.3 16/04/01 IM WP and BP number changed, trace modified
0.4 01/05/01 IM Title changed, DEBUG instruction added, scan

chains changed, IO ports changed
0.5 05/05/01 IM TSEL and QSEL register changed
0.6 06/05/01 IM Ports connected to the OpenRISC changed
0.7 14/05/01 IM MODER register changed, trace scan chain

changed; SSEL register added
0.8 18/05/01 IM RESET bit and signal added; STALLR changed to

RISCOP
0.9 23/05/01 IM RISC changed to OpenRISC; WISHBONE

interface added, SPR and memory access added
0.10 01/06/01 IM Meaning of Instruction status and Load/store

status changed in all registers; more details added
to Appendix A

0.11 10/09/01 IM Register and OpenRISC scan chain operation
changed

1.0 19/09/01 IM Some registers deleted
1.1 15/10/01 IM WISHBONE interface added; RISC Stall signal is

set by breakpoint and reset by writing 0 to
RISCOP register

1.2 03/12/01 IM Chain length changed so additional CRC checking
can be performed

1.3 21/01/02 Jeanne
Wiegelmann

Document revised.

1.4 07/05/02 IM Register MONCNTL added.
1.5 10/10/02 IM WISHBONE Scan Chain changed to show state of

the access.
1.6 06/11/02 IM TRST_PAD_I changed from active low signal to

active low signal.
1.7 23/09/03 Simon Srot Mutliple CPU support added, WB 16-bit and 8-bit

access possible through WBCNTL register use.
2.0 01/02/04 IM New version of debug interface. Document name

http://www.opencores.org/ Rev 2.0 Page 3 of 30

Open Cores SoC Debug Interface 2/1/2004

Rev. Date Author Description
changed, Document split into two documents, one
for TAP and one for debug.

http://www.opencores.org/ Rev 2.0 Page 4 of 30

Open Cores SoC Debug Interface 2/1/2004

Contents
1... 7

INTRODUCTION... 7

2... 8

IO PORTS.. 8
2.1 TAP PORTS ... 8
2.2 CPU PORTS .. 9
2.3 WISHBONE PORTS ... 9

3... 11

REGISTERS.. 11
3.1 CPU R TERS LIST ... 11 EGIS
3.2 CPU OPERATION REGISTER .. 12
3.3 CPU SELECT R GISTER .. 12 E

4... 14

OPERATION .. 14
4.1 C SELECTION .. 14 HAIN
4.2 WISHBONE SUB-MODULE .. 15
4.2.1 WISHBONE Read operation ... 16
4.2.2 WISHBONE Write operation .. 17
4.2.3 WISHBONE Status operation.. 19
4.2.4 Data and select signals .. 20
4.3 CPU SUB- LE ... 2 MODU
4.3.1 CPU Read and CPU Register Read operation.. 3
4.3.2 CPU or CPU Register Write operation ... 4
4.3.3 Stalling CPU(s) .. 6
4.3.4 Resetting CPUs .. 6
4.3.5 Selecting different CPUs... 6

5... 8

ARCHITECTURE.. 8

http://www.opencores.org/ Rev 2.0 Page 5 of 30

Open Cores SoC Debug Interface 2/1/2004

5.1 DEBUG INTERFACE ... 10
5.2 CRC SUB-MODULE ... 10
5.3 WISHBONE SUB-MODULE .. 10

http://www.opencores.org/ Rev 2.0 Page 6 of 30

Open Cores SoC Debug Interface 2/1/2004

1
Introduction

The Development Interface is used for debugging purposes and is as such an interface
between the processor(s), peripheral cores, and any commercial debugger/emulator or BS
testing device. The external debugger or BS tester connects to the core via a fully IEEE
1149.1 compatible JTAG TAP port that is not part of this core. TAP is available at the
opencores, too.

http://www.opencores.org/ Rev 2.0 Page 7 of 30

Open Cores SoC Debug Interface 2/1/2004

2
IO Ports

2.1 TAP Ports
Debug interface connects to the TAP controller with the following signals:

Port

W
id

th

 D
ire

ct
io

n

Description

tck_i 1 input Test clock input
tdi_i 1 input Test data input
tdo_o 1 output Test data output
shift_dr_i 1 input TAP controller state “Shift DR”
pause_dr_i 1 input TAP controller state “Pause DR”
update_dr_i 1 input TAP controller state “Update DR”
debug_select_i 1 input Instruction DEBUG is activated

Table 1: TAP Ports

http://www.opencores.org/ Rev 2.0 Page 8 of 30

Open Cores SoC Debug Interface 2/1/2004

2.2 CPU Ports

Port

 W
id

th

 D
ire

ct
io

n
Description

cpu_clk_i 1 input CPU clock signal.
cpu_addr_o 32 output CPU address
cpu_data_i 32 input CPU data input (data from CPU)
cpu_data_o 32 output CPU data output (data to CPU)
cpu_bp_i 1 input CPU breakpoint
cpu_stall_o 1 output CPU stall (selected CPU is stalled)
cpu_stall_all_o 1 output CPU stall all (all unselected CPUs are stalled)
cpu_stb_o 1 output CPU strobe
cpu_sel_o 8 output CPU select signals (one hot), select the CPU

cpu_we_o 1 output CPU write enable signal indicates a write cycle when
asserted high (read cycle when low).

cpu_ack_i 1 input CPU acknowledge (signals end of cycle)
cpu_rst_o 1 output CPU reset output (resets CPU)

Table 2: CPU Ports

2.3 WISHBONE Ports

Port

 W
id

th

 D
ire

ct
io

n

Description

wb_clk_i 1 input WISHBONE clock
wb_rst_i 1 input WISHBONE reset
wb_ack_i 1 input WISHBONE acknowledge indicates a normal cycle

http://www.opencores.org/ Rev 2.0 Page 9 of 30

Open Cores SoC Debug Interface 2/1/2004

Port

 W
id

th

 D
ire

ct
io

n

Description

termination
wb_adr_o 32 output WISHBONE address output

wb_cyc_o 1 output WISHBONE cycle encapsulates a valid transfer
cycle.

wb_dat_i 32 input WISHBONE data input (data from WISHBONE)
wb_dat_o 32 output WISHBONE data output (data to WISHBONE)

wb_err_i 1 input WISHBONE error acknowledge indicates an
abnormal cycle termination

wb_sel_o 4 output WISHBONE select indicates which bytes are valid
on the data bus.

wb_stb_o 1 output WISHBONE strobe indicates a valid transfer.

wb_we_o 1 output WISHBONE write enable indicates a write cycle
when asserted high (read cycle when low).

wb_cab_o 1 output WISHBONE consecutive address burst indicates a
burst cycle.

wb_cti_o 3 output WISHBONE cycle type identifier indicates type of
cycle (single, burst, end of burst)

wb_bte_o 2 output WISHBONE burst type extension

Table 3: WISHBONE Ports

http://www.opencores.org/ Rev 2.0 Page 10 of 30

Open Cores SoC Debug Interface 2/1/2004

3
Registers

This section specifies all registers in the Debug Interface. There are currently two sub-
modules in the debug interface, WISHBONE and CPU.

WISHBONE sub-module doesn’t have internal registers.

CPU sub-module does have internal registers and they are described in the following
section.

3.1 CPU Registers List

Name

 A
dd

re
ss

 W
id

th

 A
cc

es
s

Description

CPU_OP 0x0 8 R/W CPU Operation Register
CPU_SEL 0x1 8 R/W CPU Select Register

Table 4: CPU Register List

http://www.opencores.org/ Rev 2.0 Page 11 of 30

Open Cores SoC Debug Interface 2/1/2004

3.2 CPU Operation Register

Bit #

A
cc

es
s Description

7:3 Reserved
2 R/W CPUSTALLALL – Stall all unselected CPUs

0 = normal operation
1 = Stall all unselected CPUs

1 R/W RESET – Reset CPU
0 = normal
1 = reset

0 R/W CPUSTALL – CPU Stall
0 = normal operation
1 = Stall CPU. CPU can also set this bit by inserting the cpu_bp_i
signal.

Table 5: CPU_OP Register

Reset Value:

 CPU_OP: 00h

3.3 CPU Select Register

Bit #

 A
cc

es
s

Description

7:0 R/W CPUSEL – Select one CPU
00000001b = Selects CPU 0 (cpu_sel_o [0] is active)
00000010b = Selects CPU 1 (cpu_sel_o [1] is active)
00000100b = Selects CPU 2 (cpu_sel_o [2] is active)

http://www.opencores.org/ Rev 2.0 Page 12 of 30

Open Cores SoC Debug Interface 2/1/2004

Bit #
 A

cc
es

s
Description

00001000b = Selects CPU 3 (cpu_sel_o [3] is active)
00010000b = Selects CPU 4 (cpu_sel_o [4] is active)
00100000b = Selects CPU 5 (cpu_sel_o [5] is active)
01000000b = Selects CPU 6 (cpu_sel_o [6] is active)
10000000b = Selects CPU 7 (cpu_sel_o [7] is active)
00000000b = NO CPU selected (cpu_sel_o [7:0] not active)

Table 6: CPU_SEL Register

Reset Value:

 CPU_SEL: 00h

http://www.opencores.org/ Rev 2.0 Page 13 of 30

Open Cores SoC Debug Interface 2/1/2004

4
Operation

This section describes the operation of the Debug Interface and its sub-modules.

4.1 Chain Selection
The debug interface is just an interface between the sub-module that is target specific and
the TAP controller. Currently two sub-modules are connected to the debug interface,
WISHBONE sub-module and CPU sub-module. Up to 8 sub-modules can be connected
to the debug interface.

First thing to do is to select the sub-module. This is done with the chain select instruction.
Following needs to be done prior to the chain select operation:

• instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1
Test Access Port documentation for more information)

Then the “chain select” instruction needs to be shifted-in through the TAP data chain:

• 1-bit with value 1

• 3-bit chain ID

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

http://www.opencores.org/ Rev 2.0 Page 14 of 30

Open Cores SoC Debug Interface 2/1/2004

o 1 if incoming CRC is OK, else 0

o 1 if command was “chain select”, else 0

o 1 if non-existing chain was selected, else 0

o always 1

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.2 WISHBONE Sub-module
There are three types of instruction in the WISHBONE sub-module:

• “Set address/length/type” instruction

• “Go” instruction

• “Read status” instruction

Before some data can be read from or write to the WISHBONE, the following needs to
be done:

• instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1
Test Access Port documentation for more information)

• WISHBONE sub-module needs to be selected (refer to section
 on page 14 for more details)

4.1 Chain
Selection

All WISHBONE operations (except status read) consist of two consequent instructions.
First instruction sets the address, type of instruction and length of data that is read or
written. Second instruction is a “GO” instruction that actually does what the first
instruction requests. Following section describes how read, write or status operations are
performed.

http://www.opencores.org/ Rev 2.0 Page 15 of 30

Open Cores SoC Debug Interface 2/1/2004

4.2.1 WISHBONE Read operation

After the debug is enabled and WISHBONE selected (see description on page 15), two
instructions need to be executed.

First instruction that sets the address, type of operation and length is performed by
shifting the following data through the data scan chain:

• 1-bit with value 0

• 3-bit instruction (READ8, READ16, READ32, depending on the cycle type (32-
bit, 16-bit or 8-bit))

• 32-bit address

• 16-bit length (describes data length in bytes)

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s of 0

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

Second instruction is a “GO” instruction and performs the read operation on the
WISHBONE bus. Address, cycle type and data length are specified with the first
instruction. Data is latched to the internal buffer. The “GO” instruction would look like
this:

• 1-bit with value 0

• 3-bit instruction GO

• 32-bit CRC

http://www.opencores.org/ Rev 2.0 Page 16 of 30

Open Cores SoC Debug Interface 2/1/2004

After this the following is shifted out:

• data length x 8 bits of data

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 1 if WISHBONE cycle didn’t finish (still in progress), else 0. This is
important only for the first data byte

o 1 if under run occurred (data couldn’t be read fast enough), else 0

o 1 if WISHBONE error occurred

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.2.2 WISHBONE Write operation

After the debug is enabled and WISHBONE selected (see description on page 15), two
instructions need to be executed.

First instruction that sets the address, type of operation and length is performed by
shifting the following data through the data scan chain:

• 1-bit with value 0

• 3-bit instruction (WRITE8, WRITE16, WRITE32, depending on the cycle type
(32-bit, 16-bit or 8-bit))

• 32-bit address

• 16-bit length (describes data length in bytes)

http://www.opencores.org/ Rev 2.0 Page 17 of 30

Open Cores SoC Debug Interface 2/1/2004

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s of 0

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

Second instruction is a “GO” instruction and performs the write operation on the
WISHBONE bus. Address, cycle type and data length are specified with the first
instruction. Data that needs to be written to the WISHBONE bus is shifted in with the
“GO” instruction. In this case the “GO” instruction looks like this:

• 1-bit with value 0

• 3-bit instruction GO

• data length x 8 bits of data

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 1 if WISHBONE cycle didn’t finish (still in progress), else 0. This is
important only for the first data byte

o 1 if over run occurred (data couldn’t be write fast enough), else 0

o 1 if WISHBONE error occurred

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

http://www.opencores.org/ Rev 2.0 Page 18 of 30

Open Cores SoC Debug Interface 2/1/2004

All the data is shifted in/out with the MSB bit shifted first.

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.2.3 WISHBONE Status operation

After the debug is enabled and WISHBONE selected (see description on page 15), two
instructions need to be executed.

Status operation consists of only one instruction that looks like this::

• 1-bit with value 0

• 3-bit instruction STATUS

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 1 if WISHBONE cycle didn’t finish (still in progress), else 0. This is
important only for the first data byte

o 1 if over run (under run) occurred (data couldn’t be write (read) fast
enough), else 0

o 1 if WISHBONE error occurred

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

http://www.opencores.org/ Rev 2.0 Page 19 of 30

Open Cores SoC Debug Interface 2/1/2004

Errors are always latched and hold until the status operation is performed (i.e. If
WISHBONE error occurs, WISHBONE error bit remains set until the status operation is
performed). After the status operation, status bits are automatically cleared to zero.

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.2.4 Data and select signals

Data in the WISHBONE sub-module is organized in the big endian byte ordering.
Following section describes the data and select signals depending on the address and
type of operation (32-bit, 16-bit and 8-bit).

32-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1111b

 wb_dat _x[31:0] are used

16-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1100b

 wb_dat_x[31:16] are used

16-bit access (wb_adr_o[1:0] = 10b):

 wb_sel_o[3:0] = 0011b

 wb_dat_x[15:0] are used

8-bit access (wb_adr_o[1:0] = 00b):

 wb_sel_o[3:0] = 1000b

 wb_dat_x[31:24] are used

8-bit access (wb_adr_o[1:0] = 01b):

 wb_sel_o[3:0] = 0100b

 wb_dat_x[23:16] are used

8-bit access (wb_adr_o[1:0] = 10b):

 wb_sel_o[3:0] = 0010b

 wb_dat_x[15:8] are used

8-bit access (wb_adr_o[1:0] = 11b):

 wb_sel_o[3:0] = 0001b

 wb_dat_x[7:0] are used

http://www.opencores.org/ Rev 2.0 Page 20 of 30

Open Cores SoC Debug Interface 2/1/2004

4.3 CPU Sub-module
CPU sub-module consists of internal registers and the CPU interface.

It can make accesses to both internal CPU registers and the CPU interface.

Internal registers are used for:

• selecting one of the connected CPUs

• resetting the CPU(s)

• stalling the selecting CPU

• stalling all unselected CPUs

Before the CPU can be debugged, it must be selected. Selection is made through the write
operation to the CPU register (See section on
page 4 for more details).

4.3.2 CPU or CPU Register Write operation

CPU interface is an interface to the CPU debug facilities (that are part of the CPU).

Before some data can be read from or write to the CPU (registers or interface), the
following needs to be done:

• instruction DEBUG needs to be activated in the TAP (refer to the IEEE 1149.1
Test Access Port documentation for more information)

• CPU sub-module needs to be selected (refer to section on
page 14 for more details)

4.1 Chain Selection

There are two types of instruction in the CPU sub-module:

• “Set address/length/type” instruction

• “Go” instruction

CPU operation (read, write, register read or register write) consist of two consequent
instructions. First instruction sets the address, type of instruction and length of data that is
read or written. Second instruction is a “GO” instruction that actually does what the first
instruction requests. Following section describes how read or write operations are
performed.

http://www.opencores.org/ Rev 2.0 Page 2 of 30

Open Cores SoC Debug Interface 2/1/2004

4.3.1 CPU Read and CPU Register Read operation

After the debug is enabled and CPU sub-module selected (see description on page 15),
two instructions need to be executed.

First instruction that sets the address and type of operation is performed by shifting the
following data through the data scan chain:

• 1-bit with value 0

• 3-bit instruction (CPU_READ8, CPU_READ32 or CPU_READ_REG)
depending on the cycle type (32-bit or 8-bit access to the CPU or 8-bit access to
the CPU register))

• 32-bit address

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s 010b

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

Second instruction is a “GO” instruction and performs the read operation to the CPU
interface or CPU registers. Address and cycle type are specified with the first instruction.
Data is latched to the internal buffer. The “GO” instruction would look like this:

• 1-bit with value 0

• 3-bit instruction GO

• 32-bit CRC

http://www.opencores.org/ Rev 2.0 Page 3 of 30

Open Cores SoC Debug Interface 2/1/2004

After this the following is shifted out:

• 8 or 32 bits of data (CPU_READ32 returns 32-bits, CPU_READ8 and
CPU_READ_REGreturn 8-bit data)

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s 010b

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

See section on page 11 for description of the CPU registers. 3.1 CPU Registers List

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.3.2 CPU or CPU Register Write operation

After the debug is enabled and CPU selected (see description on page 15), two
instructions need to be executed.

First instruction that sets the address and the type of operation is performed by shifting
the following data through the data scan chain:

• 1-bit with value 0

• 3-bit instruction (CPU_WRITE8, CPU_WRITE32 or CPU_WRITE_REG)
depending on the cycle type (32-bit or 8-bit access to the CPU or 8-bit access to
the CPU register))

• 32-bit address

• 32-bit CRC

http://www.opencores.org/ Rev 2.0 Page 4 of 30

Open Cores SoC Debug Interface 2/1/2004

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s of 010b

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

Second instruction is a “GO” instruction and performs the write operation to the CPU
interface or CPU registers. Address and cycle type are specified with the first instruction.
Data that needs to be written to the is shifted in with the “GO” instruction. In this case the
“GO” instruction looks like this:

• 1-bit with value 0

• 3-bit instruction GO

• 8 or 32 bits of data

• 8 or 32 bits of data (CPU_WRITE32 needs 32-bits, CPU_WRITE8 and
CPU_WRITE_REG need 8-bit data)

• 32-bit CRC

After this the following is shifted out:

• 4-bit status

o 1 if incoming CRC is OK, else 0

o 3 bit-s of 010b

• 32-bit CRC that is related with the outgoing data

Data that is shifted out before the status is not important (all zeros).

All the data is shifted in/out with the MSB bit shifted first.

http://www.opencores.org/ Rev 2.0 Page 5 of 30

Open Cores SoC Debug Interface 2/1/2004

See sections on page 10 and on page 10 for
more details about the CRC.

5.1 Debug Interface 5.2 CRC sub-module

4.3.3 Stalling CPU(s)

The selected CPU can be stalled in two ways:

• By deliberately setting bit CPUSTALL in the CPU_OP register to 1 (see section
 on page 12 for more details). Clearing this bit again

restarts the CPU.
3.2 CPU Operation Register

• An input breakpoint signal (cpu_bp_i) automatically stops the CPU and sets bit 0
of the CPU_OP register to 1. Clearing this bit again restarts the CPU.

When CPUSTALLALL bit is set in the CPU_OP register, all unselected CPUs are
stalled.

For more information about the breakpoint generation refer to the CPU manual (i.e.
OpenRISC 1000 System Architecture Manual).

4.3.4 Resetting CPUs

The Debug Interface puts the CPU to reset by setting the RESET bit in the CPU_OP
register to 1. Clearing this bit to 0 deactivates the reset signal.

4.3.5 Selecting different CPUs

cpu_sel_o and cpu_stall_all_o signals have been added to the Debug Interface to support
more than one CPU. It is meant, that this signals are used to enable muxing of all the
signals going from/to CPU and Debug Interface (cpu_bp_i, cpu_data_i, cpu_data_o,
cpu_addr_o, cpu_stall_o, cpu_ack_i). The muxing of signals is not part of the Debug
Interface and is the responsibility of the system integrator.

http://www.opencores.org/ Rev 2.0 Page 6 of 30

Open Cores SoC Debug Interface 2/1/2004

cpu_sel_o signals are controlled from CPU_SEL register and cpu_stall_all_o signal is
controlled from CPU_OP register.

Normally, if just one CPU is connected to the Debug Interface this signals are not
necessary and can be ignored.

http://www.opencores.org/ Rev 2.0 Page 7 of 30

Open Cores SoC Debug Interface 2/1/2004

5
Architecture

The SoC Debug Interface architecture is based on IEEE Std. 1149.1 Standard Test Access
Port and Boundary Scan Architecture. Other signals are added to provide additional
flexibility.

The interface consists of several parts (blocks):

• Logic that selects one of the connected scan chains (from sub-modules). Currently
two sub-modules are available, CPU and WISHBONE.

• CRC sub-module that checks incoming data.

• CRC sub-module that calculates the CRC for the outgoing data.

• WISHBONE sub-module

• CPU sub-module

•

As seen on the following figure, debug interface is just one part of the complete
debugging system. For more information about the TAP controller, go to the opencores
web site. There is a complete IP core with test bench and documentation available.

If there are more than 1 CPU in the system, then additional external logic is needed
(marked as MUX logic in the figure on page 9). The function
of this logic is:

Figure 1: Complete system

• Multiplexes data that comes from CPUs to data that goes to the debug interface.

• Defines stall signals that are connected to the CPUs from cpu_stall_o,
cpu_stall_all_o and cpu_sel signals.

http://www.opencores.org/ Rev 2.0 Page 8 of 30

Open Cores SoC Debug Interface 2/1/2004

http://www.opencores.org/

CPU

+

CPU Development
Interface

 TRSTn

Logic

Logic

MUX

FSM

C
R

C

Reg.

MUX

FSM

Optional sub-modules

WISHB. sub-module

CPU sub-module

M
U

X

ID

FSM

TAP Controller

MUX

MUX logic

CPU 1 CPU n

CPU

+

CPU Development
Interface

Debug Interface

TMS

TCK

TDO

TDI

Debug Scan Chain

B
ou

nd
ar

y
Sc

an
 C

ha
in

M
B

IS
T

Sc
an

 C
ha

in

Figure 1: Complete system

 Rev 2.0 Page 9 of 30

Open Cores SoC Debug Interface 2/1/2004

5.1 Debug Interface

5.1 Debug Interface

Debug Interface is an interface between the TAP controller and the sub-modules that are
target specific (CPU, WISHBONE...). It receives data from the TAP whenever the
DEBUG instruction is active (see IEEE 1149.1 Test Access Port documentation).

Data can hold two kinds of instructions:

• Chain select instruction

• Sub-module instruction

Chain select instruction is used for selecting/enabling the sub-module.

Sub-module instructions are sub-module specific. Each sub-module can use different
instructions. Because of this, it is very easy to add additional sub-modules.

All the data (in both directions) is protected with the 32-bit CRC (see section
 on page 10 for more information). Both CRC engines (one for incoming data

and one for outgoing data) are located in the debug interface. None of the sub-modules
have its own CRC engine.

5.2 CRC
sub-module

5.2 CRC sub-module
There are two CRC sub-modules in the debug interface. One is checking the incoming
data, while the other is calculating the CRC from the outgoing data.

The following polynomial is used for 32-bit CRC calculation:

1 + x1 + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32

1-bit data input is used for CRC calculation. The MSB bit of data is shifted in/out first.
The CRC is also received/send with MSB first.

There is more information about the CRC available in the section on
page 10).

5.3 WISHBONE sub-module
Is capable of doing the 8-bit, 16-bit and 32-bit WISHBONE accesses. All accesses are
single accesses since the data flow through the TAP (JTAG) is slow and there is no need
for bursts. Wishbone clock frequency must be higher than the TCK frequency. The length

http://www.opencores.org/ Rev 2.0 Page 10 of 30

Open Cores SoC Debug Interface 2/1/2004

http://www.opencores.org/ Rev 2.0 Page 11 of 30

of the WISHBONE scan chain depends on the instruction (and their combination). See
section on page 15 for more information about the chain
length.

4.2 WISHBONE Sub-module

	SoC Debug Interface
	Author: Igor Mohor
	IgorM@opencores.org
	1. Introduction
	2. IO Ports
	2.1 TAP Ports
	2.2 CPU Ports
	2.3 WISHBONE Ports

	3. Registers
	3.1 CPU Registers List
	3.2 CPU Operation Register
	3.3 CPU Select Register

	4. Operation
	4.1 Chain Selection
	4.2 WISHBONE Sub-module
	4.2.1 WISHBONE Read operation
	4.2.2 WISHBONE Write operation
	4.2.3 WISHBONE Status operation
	4.2.4 Data and select signals

	4.3 CPU Sub-module
	4.3.1 CPU Read and CPU Register Read operation
	4.3.2 CPU or CPU Register Write operation
	4.3.3 Stalling CPU(s)
	4.3.4 Resetting CPUs
	4.3.5 Selecting different CPUs

	5. Architecture
	5.1 Debug Interface
	5.2 CRC sub-module
	5.3 WISHBONE sub-module

