
Gisselquist
Technology, LLC

DOUBLE CLOCKED FFT

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

June 2, 2015

Gisselquist Technology, LLC Specification 2015/06/02

Copyright (C) 2015, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see ¡http://www.gnu.org/licenses/¿ for a copy.

www.opencores.com Rev. 0.2 ii

Gisselquist Technology, LLC Specification 2015/06/02

Revision History
Rev. Date Author Description

0.2 6/2/2015 Gisselquist Superficial formatting changes
0.1 3/3/2015 Gisselquist First Draft

www.opencores.com Rev. 0.2 iii

Gisselquist Technology, LLC Specification 2015/06/02

Contents

Page

1 Introduction . 1

2 Generation . 2

3 Architecture . 4

4 Operation . 8

5 Registers . 9

6 Clocks . 10

7 IO Ports . 11

www.opencores.com Rev. 0.2 iv

Gisselquist Technology, LLC Specification 2015/06/02

Figures

Figure Page

3.1. (I)FFT Black Box Diagram . 5
3.2. Internal FFT Structure . 6
3.3. A Single FFT Stage, with Butterfly . 7

www.opencores.com Rev. 0.2 v

Gisselquist Technology, LLC Specification 2015/06/02

Tables

Table Page

7.1. List of IO ports . 11

www.opencores.com Rev. 0.2 vi

Gisselquist Technology, LLC Specification 2015/06/02

Preface

This FFT comes from my attempts to design and implement a signal processing algorithm inside a
generic FPGA, but only on a limited budget. As such, I don’t yet have the FPGA board I wish to
place this algorithm onto, neither do I have any expensive modeling or simulation capabilities. I’m
using Verilator for my modeling and simulation needs. This makes using a vendor supplied IP core,
such as an FFT, difficult if not impossible to use.

My problem was made worse when I learned that the published maximum clock speed for a device
wasn’t necessarily the maximum clock speed that I could achieve. My design needed to process the
incoming signal at 500 MHz to be commercially viable. 500 MHz is not necessarily a clock speed that
can be easily achieved. 250 MHz, on the other hand, is much more within the realm of possibility.
Achieving a 500 MHz performance with a 250 MHz clock, however, requires an FFT that accepts
two samples per clock.

This, then, was and is the genesis of this project.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.2 vii

Gisselquist Technology, LLC Specification 2015/06/02

1.

Introduction

The Double Clocked FFT project contains all of the software necessary to create the IP to generate
an arbitrary sized FFT that will clock two samples in at each clock cycle, and after some pipeline
delay it will clock two samples out at every clock cycle.

The FFT generated by this approach is very configurable. By simple adjustment of a command
line parameter, the FFT may be made to be a forward FFT or an inverse FFT. The number of bits
processed, kept, and maintained by this FFT are also configurable. Even the number of bits used
for the twiddle factors, or whether or not to bit reverse the outputs, are all configurable parts to
this FFT core.

These features make the Double Clocked FFT very different and unique among the other cores
available on opencores.com.

For those who wish to get started right away, please download the package, change into the sw

directory and run make. There is no need to run a configure script, fftgen is completely portable
C++. Then, once built, go ahead and run fftgen without any arguments. This will cause fftgen

to print a usage statement to the screen. Review the usage statement, and run fftgen a second
time with the arguments you need.

www.opencores.com Rev. 0.2 1

Gisselquist Technology, LLC Specification 2015/06/02

2.

Generation

Creating a double clocked FFT core is as simple as running the program fftgen. The program will
then create a series of Verilog files, as well as .hex files suitable for use with a $readmemh, and place
them into an ./fft-core/ directory that fftgen will create. Creating the core you want takes a
touch of configuring. Therefore, the following lists the arguments that can be given to fftgen to
adjust the core that it builds:

-f size This specifies the size of the FFT core that fftgen will build. The size must be a power of
two. The transform is given, within a scale factor, to,

X [k] =

N−1
∑

n=0

x [n] e−j2π k

N
n

-1 This specifies that the FFT will be an inverse FFT. Specifically, it will calculate,

x [n] =
N−1
∑

k=0

X [k] ej2π
k

N
n

-0 This specifies building a forward FFT. However, since this is the default, this option never
necessary.

-s This causes the core to skip the final bit reversal stage. The outputs of the FFT will then
come out in bit reversed order.

This option is useful in those cases where someone wishes to multiply the coefficients coming
out of an FFT by some product, and then to inverse FFT the results. If the coefficients are
also applied in bit–reversed order, then both the FFT and IFFT may skip their bit reversals.

Be aware, however, doing this requires the bit reversed forward transform be followed by a
bitreversed decimation in time approach to the inverse transform. This software does not (yet)
provide that capability. As such, the utility just isn’t there yet.

-S Include the final bit reversal stage. As this is also the default, specifying the option should
not be necessary.

-d DIR Specifies the DIRectory to place the produced Verilog files. By default, this will be in the
‘./fft-core/’ directory, but it can be moved to any other directory as necessary.

www.opencores.com Rev. 0.2 2

Gisselquist Technology, LLC Specification 2015/06/02

-n bits Sets the number of input bits per sample. Given this setting, each of the two samples clocked
in at every clock cycle will have this many bits for their real portion, and again this many bits
for their imaginary portion. Thus, the data input to the FFT will be four times this many
bits per clock.

-m bits This sets the maximum bit width of the output. By default, the FFT will gain bits as they
accumulate within the FFT. Bits are accumulated at roughly one bit for every two stages.
However, if this value is set, bits are only accumulated up to this maximum width. After this
width, further accumulations are truncated.

-c bits The number of bits in each twiddle coefficient is given by the number of bits input to that stage
plus this extra number of bits per coefficient. By increasing the number of bits per coefficient
above that of the input samples, truncation error is kept to the original error found within the
original samples.

-x bits Internally accumulated roundoff error can be a difficult problem to solve. By using this option,
you guarantee that the FFT runs with an additional bits bits, and only truncates down to
the necessary width at the end in order to minimize rounding errors along the way.

-p nmpy This sets the number of hardware multiplies that the FFT will consume. By default, the
FFT does not use any hardware multiplies. However, this can be expensive on the rest of the
logic used by the device. You can avoid this problem by allowing the FFT to use hardware
multiplies using this option. By default, the multiplies will be used in the latter stages, so that
they will be applied where the bit width is the greatest.

www.opencores.com Rev. 0.2 3

Gisselquist Technology, LLC Specification 2015/06/02

3.

Architecture

As a component of another system the structure of this system is a simple black box such as the
one shown in Fig. 3.1. The interface is simple: strobe the reset line, and every clock thereafter set
the clock enable line when data is valid on the left and right input ports. Likewise for the outputs,
when the o sync line goes high the first data sample is available. Ever after that, one data sample
will be available every clock cycle that the i ce line is high.

Internal to the FFT, things are a touch more complex. Fig. 3.2 attempts to show some of this
structure. As you can see from the figure, the FFT itself is composed of a series of stages. These
stages are split from the beginning into an even stage and an odd stage. Further, they are numbered
according to the size of the FFT they represent. Therefore the first stage is numbered N and
represents the first stage of an N point FFT. The second stage is labeled N/2, then N/, and so on
down to N = 8. The four sample stage and the two sample stages are different, however. These two
stages, representing three blocks on Fig. 3.2, can be accomplished without any multiplies. Therefore
they have been accomplished separately. Likewise all of the stages, save the double stage at the
bottom, operate on one data sample per clock. Only the last stage, prior to the bit reversal stage,
takes two data samples per clock as input, and outputs two data samples per clock. Finally, the bit
reversal stage acts as the last piece of the structure.

Internal to each of the FFT stages is a butterfly and a complex multiply, as shown in Fig. 3.3.
These FFT stages are really no different than any other decimation in frequency FFT, save only
that the coefficients are alternated between the two stages. That is, the even stages get all the even
coefficients, and the odd stages get all of the odd coefficients. Internally, each stage spends the first
N/4 clocks storing its inputs into memory, and then the next N/4 clocks pairing a stored input with
a single external input, so that both values become inputs to the butterfly. Likewise, the butterfly
coefficient is read from a small ROM table.

One trick to making the FFT stage work successfully is synchronization. Since the shift and add
multiplies create a delay of (roughly) one clock cycle per bit of input, there is a significant pipeline
delay from the input to the output of the butterfly routine. To match this delay, the FFT stage
places a synchronization pulse into the butterfly. When this synchronization pulse comes out of
the butterfly, the values of the butterfly then match the first sample out of the stage. The next
synchronization problem comes from the fact that the butterflies operate on two samples at a time,
whereas the FFT stage operates on a single sample at a time. This means that half the time the
butterfly output will be invalid. To keep things aligned, and to avoid the invalid data half, a counter
is started by the synchronization pulse coming out of the butterfly in order to keep track. Using this
counter and once the butterfly produces the first sync pulse, the next N/4 clock cycles will produce
valid butterfly outputs. For these clock cycles, the left or first output is sent immediately to the
next FFT stage, whereas the right or second output is saved into memory. Once these cycles are

www.opencores.com Rev. 0.2 4

Gisselquist Technology, LLC Specification 2015/06/02

(I)FFT Core

i clk

i rst

i ce

i left 2Ni

i right 2Ni

o sync

o left2No

o right2No

Figure 3.1: (I)FFT Black Box Diagram

complete, the butterfly outputs will be invalid for the next N/4 clock cycles. During these invalid
clock cycles, the FFT stage outputs data that had been stored in memory. In this fashion, data is
always valid coming out of each FFT stage once the initial synchronization pulse goes high.

The complex multiply itself, formed internal to the butterfly routine, is formed from three very
simple shift and add multiplies, whose output is then transformed into a single complex output,
although there is a command line option to use hardware multiplies instead. To avoid overflow, the
complex coefficients, zn, for these multiplies are given by,

zn = cn + jsn, where (3.1)

cn =

⌊

2C−2 cos
(

2π
n

N

)

+
1

2

⌋

, (3.2)

sn =

⌊

2C−2 sin
(

2π
n

N

)

+
1

2

⌋

, and (3.3)

C is the number of bits allocated to the coefficient.
For those wishing to understand this operation further and in more depth, I would commend

them to the literature on how a decimation in frequency FFT is constructed.

www.opencores.com Rev. 0.2 5

Gisselquist Technology, LLC Specification 2015/06/02

i left i right

Left

Evens, N

Sync Data

Evens, N/2

Sync Data

Evens, 8

Sync Data

Sync Data

...
...

Qtrstage (Even)

Sync
Data

Right

Odds, N

SyncData

Odds, N/2

SyncData

Odds, 8

SyncData

...
...

SyncData

Qtrstage (Odd)

Data

NC

Double Stage

Sync RightLeft

Bit Reversal

Sync RightLeft

o sync o righto left

Figure 3.2: Internal FFT Structure

www.opencores.com Rev. 0.2 6

Gisselquist Technology, LLC Specification 2015/06/02

i data

+⊕

Delay, and
shift by C−2

−⊕

⊗

DIF Butterfly

Coefficient memory

o data

Figure 3.3: A Single FFT Stage, with Butterfly

www.opencores.com Rev. 0.2 7

Gisselquist Technology, LLC Specification 2015/06/02

4.

Operation

The core is actually really easy to use:

1. Provide a system clock to the core every clock cycle.

2. Set the i rst line high for at least one clock cycle before you intend to use the core.

3. From the time of reset until the first sample pair is available on the IO ports, i rst may be
kept low, but the clock enable line i ce must also be kept low.

4. On the clock containing the first sample pair, i left and i right, set i ce high.

5. Ever after, any time a valid pair of samples is available to the input of the FFT, place the first
sample of the pair on the i left line, the second on the i right line, and set i ce high.

6. At the first valid output, the FFT core will set o sync line high in addition to the output
values o left (the first of two), and o right (the second of the two).

7. Ever after, whenever i ce is high, the FFT core will clock two samples in and two samples out.
On any valid first pair of samples coming out of the transform, o sync will be high. Otherwise
o sync will remain low.

There are no special modes or states associated with this core. If you wish it to stop or pause,
just turn off i ce. If you wish to flush the core, just send zeros into the core.

www.opencores.com Rev. 0.2 8

Gisselquist Technology, LLC Specification 2015/06/02

5.

Registers

Once built, the FFT routine has no capability for runtime configuration or reconfiguration. There-
fore, this implementation maintains no user configurable or readable registers.

This is a great advantage in many ways, simply because it greatly simplifies the interface over
other cores that are available out there.

www.opencores.com Rev. 0.2 9

Gisselquist Technology, LLC Specification 2015/06/02

6.

Clocks

The FFT routines built by this core use one clock only. The speed of this clock will depend upon
the speed your hardware is capable of. If your data rate is slower than your clock speed, just hold
off on the i ce line as necessary so that every clock with the i ce line high is a valid sample.

www.opencores.com Rev. 0.2 10

Gisselquist Technology, LLC Specification 2015/06/02

7.

IO Ports

The FFT core presents a small set of IO ports to its external interface. These ports are listed in
Table. 7.1.

Port Width Direction Description

i clk 1 Input The global clock driving the FFT.
i rst 1 Input An active high synchronous reset.
i ce 1 Input Clock Enable. Set this high to clock data in and out.
i left 2Ni Input The first of two input complex input samples. Bits

[(2Ni − 1):Ni] of this value are the real portion, whereas
bits [(Ni − 1):0] represent the imaginary portion. Both
portions are in signed twos complement integer format.
The number of bits, Ni, is configurable.

i right 2Ni Input The second of two input complex input samples. The
format is the same as i left above.

o left 2No Output The first of two input complex output samples. The
format is the same, save only that No bits are used for
each twos complement portion instead of Ni.

o right 2No Output The second of two input complex output samples. The
format is the same as for o left above.

o sync 1 Output Signals the first output sample pair of any transform,
zero otherwise.

Table 7.1: List of IO ports

www.opencores.com Rev. 0.2 11

