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Chapter 1

Digital Signal Processing

In this chapter, the fundamentals of digital signal processing necessary for

the understanding of the following chapters will be reviewed and the proper-
ties of various digital filters will be discussed. For further details the reader
is referred to the literature [1, 2, 3, 4, 5, 6, 7].

In the following a one-dimensional problem is assumed. The incoming
analog signal is represented as a function of a single variable, usually the

time t, f(t).
The most important system for digital signal processing is the linear time-

invariant system (LTI), because this system is characterized by its impulse
response, the output of the LTI system for any input can be derived from
the knowledge of the impulse responses.

1.1 Discrete Linear Time-Invariant Systems

A discrete system is represented by the transformation of the input sequence
x[n] into the output sequence y[n]:

x[n] → y[n]

δ[n] → h[n] ,

and the last equation defines the response the single impulse, the impulse

response h[n], of the system. The superposition property defines the linear
system. If y[n] is the response of a system to an input x[n], then a system
is called linear if the response of the system to a superposition of two sig-

nals equals the superposition of the superposition of the responses to the
individual input components:

x1[n] → y1[n]

7



8 CHAPTER 1. DIGITAL SIGNAL PROCESSING

x2[n] → y2[n]

c1x1[n] + c2x2[n] → c1y1[n] + c2y2[n]

The time-invariant system is defined by the property that the output is

delayed by the same amount of time as the input signal:

x[n + d] → y[n + d] ,

which means, that the system is invariant under translation operations. If
the input sequence is expressed as

x[n] =
∑

k

x[k] δ[n − k]

the response of the LTI system is determined by the convolution of the input
sequence with the impulse response

y[n] =
∑

k

x[k] h[n − k]

= x[k] ∗ h[n − k].

If two systems are connected in series then the overall impulse response is the
convolution [8] of the individual impulse responses hs[n] = h1[n] ∗ h2[n] =
h2[n] ∗ h1[n]. The inverse system hi is defined by δ[n] = h[n] ∗ hi[n] =

hi[n] ∗ h[n] meaning that the overall response to an input sequence x[n] is
the input sequence itself.

1.2 Analog-Digital (ADC) Conversion

The first step of digital signal processing is the conversion of the analog data

f(t) into the digital domain, where the continuous signal f(t) is represented
by a finite set of discrete values f[n]. The function will be represented by

a grid of finite time increments ∆t and finite amplitude1 steps ∆A = 2−n

with ∆t = T = 1
fs

the inverse of the sampling frequency and n the number
of bits of the ADC: f(t) → f(m∆t) = f(mT ) =: fm with t ∈ R and m ∈
Z. Thus the sampling process consists of two parts: the quantization of the
signal amplitude and the discretization of the time increments.

1The amplitude is normalized to 1.
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1.3 Quantization

The quantization process introduces an error because of the limited number

of amplitudes available for the representation of the input signal. For an
ideal ADC with a constant and fixed step size ∆A the variance σ of the

rounding error (A − a), with A the true amplitude and a the measured
ADC value, due to the quantization process is

σ2 =
1

∆A

∫ A+∆A/2

A−∆A/2
(A − a)2da =

1

3
(
∆A

2
)2 =

∆A2

12
, (1.1)

and thus the average deviation is only from the true amplitude is only 1/
√

3

of the maximal rounding error. In order to reduce the error introduced by
the quantization process a technique called dithering [9, ?] can be employed.

To increase the accuracy of a measured quantity (e.g. the pulse height of a
detector signal) the results of multiple measurements of the same quantity
are averaged to form the final result. The output of a digitizer, however,

will be always the same digital value if the analog input signal is noiseless
and prevent any gain in information. In the presence of noise adding to the

analog signal the output of the digitizer will span more than one channel.
In this case averaging the results of multiple conversions results in a deter-

mination of the analog input value with an accuracy higher than that given
by the quantization steps size. By averaging N measurements the standard
deviation of the mean value is given by:

σ<a> ≈ 1√
N

σa , (1.2)

which shows that N has to be chose large enough to (over-)compensated the
additional noise added by the dithering process. This property (also called
bit gain) and its importance for γ energy determination will be discussed

again in chapter 1.6.4 when the noise reduction capabilities of pulse shaping
networks will be determined in presence of two noise sources.

A more advance technique is the subtractive dithering, where a DAC
in front of the ADC is used to add a noise pattern to the signal which is

subsequently subtracted after the A/D conversions from the ADC output.
A similar technique is known as the sliding scale method for Wilkinson-type

ADCs, which are used in standard nuclear spectroscopy setups.
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1.4 Discretisation: Periodic Sampling

The sampling process is represented by the multiplication of the analog
signal f(t) with the Shah function [10], which is a sum of delta functions
δ(t − tn) [11], where tn = n∆t

fs(t) = f(t) s(t) = f(t)
∑

n
δ(t − tn) , (1.3)

with s(t) =
∑

n δ(t − tn) the sampling function and the discrete representa-
tion fs of the input signal f(t) is achieved through an integration

fs =
∑

n

∫
f(t) δ(t − tn) dt =

∑

n
f(tn) =

∑

n
f(n∆t) (1.4)

with f(tn) =
∫
f(t) δ(t − tn) dt the sample of f(t) at tn. Since the Fourier

transformation of a multiplication yields a folding operation and the trans-
formation of the Shah function is also a Shah function2, the corresponding
equation for the Fourier transformation of fs, F (ω), is

Fs(ω) =
1

2π
(F (ω) ∗ ωs

∞∑

m=−∞
δ(ω − 2πm

∆t
)) (1.5)

=
ωs

2π

∫
F (ω′)

∞∑

m=−∞
δ(ω − mωs − ω′) dω′ (1.6)

=
ωs

2π

∞∑

m=−∞
F (ω − mωs) (1.7)

with ωs = 2π
∆t = 2πfs and F (ω) the Fourier transformation of f(t). The

individual components of Fs(ω) are shifted by multiples of ωs and Fs(ω)

is a superposition of periodic repeating copies of the original frequency
spectrum F (ω). The frequency ambiguity, if F (ω) covers a wide (infinite)

frequency range, is called aliasing. Aliasing can only be prevented if the
frequency range of F (ω) is restricted to < ωs

2 , i.e. F (ω) = 0 if |ω| ≥ ωs

2 . This

expression is called Nyquist criterion, the corresponding frequency ωn = π
∆t

the Nyquist frequency. For the sampling of low-pass signals the sampling
theorem states that the frequency of the conversion process must be twice

as high as the highest frequency in the analog data. In order to fulfill
the Nyquist criterion, typical ADC systems use an analog low-pass anti-

aliasing filter prior to the A/D conversion, such that F ′(ω) = F (ω) LP (ω)

2s(t) =
∑

n δ(t − nT ) → S(ω) = ωs

∑
k δ(ω − kωs)



1.4. DISCRETISATION: PERIODIC SAMPLING 11

where LP (ω) is the low-pass filter employed to fulfill the Nyquist criterion:

LP (ω) = 0 for ω ≥ ωs

2 . Such a signal can be perfectly reconstructed from
the sampled data points because there’s no ambiguity. This is called the

sampling theorem and the process of reconstructing the continuous signal
from the sampled data points, called Witthaker reconstruction, is presented
in chapter 1.8.2.

1.4.1 Finite Duration of the Sampling Process

The finite duration of the sampling process can be described by replacing

the sum of delta functions with a sum of rectangular impulses of finite width
W and height Ts

W :

s(t) =






Ts/W , nTs − W
2 ≤ t ≤ nTs + W

2 , n ∈ Z

0 , otherwise
(1.8)

The frequency response is that of the perfect sampling with an additional
envelope of the form sin(x)

x
. For this we expand the sampling function s(t)

into a Fourier series:

s(t) =
∞∑

m=−∞
cm exp(iωsmt) (1.9)

and determine the coefficients cm of the expansion by

cm =
1

Ts

∫ Ts/2

Ts/2
s(t) exp(−iωsmt) dt (1.10)

=
1

Ts

∫ W/2

W/2

T

W
exp(−iωsmt) dt (1.11)

=
2

ωsmW
sin

(
ωsmW

2

)

(1.12)

Then as before the sampling process is described by

fs(t) = f(t) s(t) (1.13)

=
∞∑

m=−∞

2

ωsmW
sin

(
ωsmW

2

)

f(t) exp(iωsmt). (1.14)

(1.15)

With the translation property of the fourier transformation the transfer
function is given by

Fs(ω) =
∞∑

m=−∞

2

ωmW
sin

(
ωmW

2

)

F (ω − mωs). (1.16)
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For k = ∆t this leads to Fs(ω) = F (ω), only the term for m=0 remains and

any aliasing is automatically prevented.

1.5 The Flash ADC Architecture

A typical DSP system consists of a sensor/detector connected to an Analog
to Digital Converter (ADC or A/D Converter), whose output is connected
to a Digital Signal Processor (DSP). There exist a vast amount different

ADC architectures, as an example the architecture of a typical flash ADC
is shown in the Fig. 1.1.

The reference voltage is divided down to ground potential using a series of

resistors. A comparator compares the input voltage with the corresponding
fraction of the reference voltage. If the input voltage is above this thresh-

old of the comparator, the comparator sets its output and the subsequent
encoder converts this into the digital ADC word. The output code is a

result of the parallel comparison. For a n-bit ADC, 2n − 1 comparators are
necessary. The precision and stability of the comparator thresholds and the
reference voltage determine the quality of the A/D conversion result.

For fast high resolution converters a pipelined scheme is preferred. This
converter type consists of several ADCs with less accuracy, i.e. less bits,
that are arranged such that the following stage achieves a further refinement

of the previous conversion result. Therefore a single ADC stage consists of
an ADC and a DAC as shown in Fig. 1.1. An ADC is used for A/D con-

version and the DAC translates the ADC result into analog data again, i.e.
is responsible for the D/A conversion. The difference between the input

voltage and the DAC voltage, the residual voltage, is transferred to the
following stage which in turn performs the same operations but with the

residual voltage only. In order to use identical stages, usually an amplifi-
cation stage is added in between the pipeline stages. The digital outputs
of the individual ADC stages are combined to form the final ADC word as

shown in Fig. 1.1.

An advantage of the pipelined flash ADC is the reduced amount of com-
parators needed. For example a two stage pipelined 12 bit ADC needs only

26−1+26−1 = 27−2 comparators compared to 212−1 of the non-pipelined
version. However, the first ADC stage still has to have the full precision.

For a two stage ADC with 6 bits per stage this means that if the threshold
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Stage 1Vin Stage 2 Stage 3

Combination of partial results and Digital Correction Logic

partial

result
partial

result

partial

result

Residual

Voltage

Residual

Voltage

Digital Output Code

(a) Pipelined flash ADC with error correction.

Figure 1.1: Single ADC stage of a pipeline flash ADC

of a comparator of the first ADC deviates by 1
64 LSB3 from the proper value

then the ADC will show a missing code, i.e. the corresponding ADC result
cannot be achieved, because the residual voltage exceeds the input range

of following stage, which will therefore have a constant conversion result.
Therefore pipelined flash ADCs implement a scheme called error correction

to prevent missing ADC codes. Typically this works by increasing the input
range of the following stage, e.g. by 1 bit, such that the residuum of the

preceding stage never exceeds the input range. Now, the additional codes
of the ADC can be used to detect and subsequently correct the errors of

previous stage.

1.6 Digital Filter

Two types of digital filters will be presented in the following: the infinite
impulse response (IIR) and the finite impulse response (FIR) filter. The

difference between both filters is the use of feedback for the IIR filters,
causing an infinite impulse response. Both types of filters were used and
are therefore described in more detail.

3Least Significant Bit
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1.6.1 Transfer Function

The properties of digital filters are usually displayed by plotting the mag-
nitude M(ω) = |H(ω)| and phase response Φ(ω) = tan−1( ℑ(H(ω)

ℜ(H(ω))
) of the,

usually complex, transfer function H(ω) = Y (ω)
X(ω), which is defined as the

ratio between output and input spectrum. With the shift theorem of the
Fourier transformation4, it is apparent that any transfer function H(ω) that

can be expressed as H(ω) = Ĥ(ω) exp(iωtd) = Ĥ(ω) exp(iΦ(ω)) with Ĥ(ω)
a real function of the frequency ω has a linear phase and acts as a constant

delay in the time domain. The magnitude response |H(ω)| is not affected
by the linear phase term. A zero delay is achieved for real transfer func-

tions only. The group delay D(ω) is defined as D(ω) = ∂
∂ωΦ(ω) and for the

above example a group delay of D(ω) = td is obtained. The phase delay

P (ω) = Φ(ω)
ω

= td is equal to the group delay in case of a linear phase. Since

pulse shape analysis is about the extraction of timing information from the
digitized detector signal, linear phase filters are preferred, because otherwise

the pulse shape is distorted.

1.6.2 IIR filter

Infinite impulse response (IIR) filters are defined by the use of feedback,

meaning that the output not only depends on the previous inputs but also
on the previous filter outputs. Du to this remembrance of past outputs
it is possible that the output of an IIR filter stays non-zero even if all the

following input samples are all zero, resulting in an infinite impulse response.
The equation describing a general IIR filter is

y[n] =
M∑

m=0

amx[n − m] +
M∑

m=1

bmy[n − m] (1.17)

The general expression for the frequency response H(ω) of IIR filters is

H(ω) =

∑N
k=0 akz

−k

1 −∑N
k=1 bkz−k

(1.18)

=

∑N
k=0 ak exp(−ikω)

1 −∑N
k=1 bk exp(−ikω)

(1.19)

=

∑N
k=0 ak cos(kω) − i

∑N
k=0 ak sin(kω)

1 −∑N
k=1 bk cos(kω) − i

∑N
k=1 bk sin(kω)

, (1.20)

4f(t − td) → F (ω) exp(iωtd)
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where the first equation correspond to the z-transform. A zero phase re-

sponse can be achieved with IIR filter by filtering the data twice, first in
forward direction and then in backward direction. This time-reversal causes

a zero phase as can be directly seen from the shift property of the Fourier
transformation

f(t − d) → H1(ω) = Ĥ1 exp(−iωd) (1.21)

f(t + d) → H2(ω) = Ĥ2 exp(iωd) (1.22)

H(ω) = H1(ω)H2(ω) (1.23)

= Ĥ1Ĥ2 (1.24)

Exponential Averaging

An example for an IIR filter is the exponential averaging (EA) filter. The

EA filter is a simple IIR filter with a low-pass behavior, used e.g. for noise
reduction in the following aplications. The mathematical equation for this

IIR filter is
y[n] = αx[n] + (1 − α)y[n − 1] , (1.25)

with α the relaxation constant, a constant weighting factor that controls the
amount of feedback. It can be seen from the filter equation 1.25 that only

one storage element is needed to hold the previous filter output sample.
Furthermore the algorithm requires only one multiplications if arranged

such that y[n] = α(x[n] − y[n − 1]) + y[n − 1].
If α is one then the input is not attenuated and previous filter output is

ignored. With decreasing α the input gets more and more attenuated and
the influence of previous filter output increases, resulting in an increased

smoothing and slower step response. The effect of different α on the impulse
and step response is plotted in Fig. 1.3.

The noise variance reduction of the exponential averaging is given by [4]

output noise variance

input noise variance
=

α

2 − α
. (1.26)

From equation 1.18 the transfer function of the exponential averaging is
obtained by setting N = 0, M = 1, a0 = α and b1 = 1 − α

H(ω)exp =
α

1 − (1 − α) cos(ω) + i(1 − α) sin(ω)
. (1.27)

The magnitude response as well as the phase response are plotted in Fig.

1.2.
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(a) Magnitude response of the exponential averag-
ing.
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(b) Phase response of the exponential averaging.

Figure 1.2: Magnitude and phase response of the exponential averaging.
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(a) Impulse response of the exponential averaging.
From the impulse response it is clearly visible why
the filter is called exponential averaging.
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(b) Step response of the exponential averaging.

Figure 1.3: Impulse response of the exponential averaging. From the impulse response it is
clearly visible why the filter is called exponential averaging.
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1.6.3 FIR filter

On contrary to the IIR filter, Finite Impulse Response (FIR) filters are
always stable5 because of the lack of any feedback. The general expression

for FIR filters is

y[n] =
N∑

k=0

ckx[n − k] . (1.28)

The output sequence y[n] of a FIR filter is equal to the convolution of the
input sequence with the filter’s impulse response, which is given by the

filter coefficients, and therefore the frequency response of the FIR filter is
given by the Discrete Fourier Transform (DFT) of the impulse response

(coefficients):

H(ω) =
N∑

k=0

ck exp(−ikω) =
N∑

k=0

ck cos(kω) − i
N∑

k=0

ck sin(kω). (1.29)

A linear phase response of FIR filters can easily be achieved, by writing

equation 1.28 in a symmetrical way y[n] =
∑N

2

k=−N
2

ckx[n + k] such that

ck = c−k.

The Ideal Low Pass Filter

The ideal low-pass filter is an example for a FIR filter with zero phase shift.
It has a rectangular transfer function

H(ω) =






1 , |ω| < ωc)

0 , |ω| ≥ ωc)
(1.30)

and the coefficients c[n](impulse response h[n]) of the FIR filter are given
by the Fourier transformation of the transfer function

c[n] = h[n] =
1

2π

∫ ∞

−∞
H(ω) exp(iωn) dω (1.31)

=
1

2π

∫ ωc

−ωc

exp(iωn) dω (1.32)

=
sin(ωcn)

πn
, (1.33)

5If the response to a bound input sequence |x[n]| ≤ Bx < ∞ is also bound for all n, i.e. |y[n]| ≤ By < ∞,
the system is called stable.
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Figure 1.4: Transfer functions of the ideal low-pass filter for different filter length N .

with ωc = the cut-off frequency. In case the ideal low-pass filter is im-
plemented as a digital filter the cut-off frequency is defined relative to the

sampling frequency ωc = 2π fc

fs
. For a digital filter, only a finite number

of 2N + 1 coefficients can be used for the implementation. Therefore the

transfer function is only an approximation of the ideal low-pass transfer
function as can be seen from the discrete Fourier transformation of the FIR
implementation of the low-pass

HN(ω) =
N∑

n=−N

sin(ωcn)

πn
exp(−iωn) . (1.34)

HN(ω) is plotted in figure 1.4 for N = 9 and N = 19.

Moving Average

A moving average (MA) filter is a very simple to realize in hardware after

digitization and at the same time an effective low-pass filter. Therefore this
filter is presented as a second example of a FIR filter. The MA filter adds

L = 2N + 1 samples with a constant weight

c[n] =






1
2N+1 , |n| ≤ N

0 , |n| > N
(1.35)

y[n] =
∞∑

i=−∞
c[i] x[n + i] (1.36)

=
1

2N + 1

N∑

i=−N

x[n + i] . (1.37)
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(b) Magnitude response

Figure 1.5: Transfer function and magnitude response of the moving averaging operation for
two different filter lengths N .

The transfer function can be determined from Fourier transformation of the
filter coefficients

H(ω) =
∫ ∞

−∞
c(t) exp(−iωt) dt (1.38)

=
1

2N∆t

∫ N∆t

−N∆t
exp(−iωt) dt (1.39)

=
1

2TN

∫ TN

−TN

exp(−iωt) dt (1.40)

=
sin(ω TN)

ω TN
(1.41)

which is plotted in figure 1.56 for N = 3 and N = 10. Whereas the ideal

low-pass has a box-like transfer function, the MA has a box-like behavior
in the time-domain. The transfer function of the MA shows an oscillating

behavior, i.e. the attenuation does not constantly increase with frequency.
However, if the signal power is concentrated mainly in the lower frequency

range or the signal was oversampled, then the MA filter is the preferred
low-pass filter because of its simple structure. The MA operation can also

be expressed as a recursive filter y[n] = y[n−1]+ 1
m(x[n]−x[n−m]), which

is the preferred equation for the implementation. The length of the MA
filter can be adjusted by changing the parameter m.

6With the DFT the transfer function is H(ω) = 1
2N+1

∑N
−N exp(−iωt) =

1
2N+1

exp(iωN)−exp(−iω(N+1)))
1−exp(−iω) = 1

2N+1
sin(ω(2N+1)/2)

sin(ω/2)



20 CHAPTER 1. DIGITAL SIGNAL PROCESSING

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Impulse Response

(a) Impulse response.

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Step Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Step Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Step Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Step Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 485  490  495  500  505  510  515

A
m

pl
itu

de

Time

Step Response

(b) Step response.

Figure 1.6: Impulse and step response of the moving averaging filter.

Binomial Filter

As a third example of a low-pass FIR filter, the binomial filter will be

discussed. The binomial filter is created by repeated convolution of a two
point MA filter y[n] = 1

2
(x[n] + x[n − 1]) with itself BF = MA2 ∗ MA2 ∗

. . . ∗ MA2. For example the convolution of a step function with itself leads
to a triangular shape and therefore the resulting binomial filter is y[n] =

MA2 ∗ MA2 = 1
4(x[n + 1] + 2x[n] + x[n − 1]). Generally, if this process is

repeated n times then the transfer function is that of the two point MA

to the n-th power, i.e. H(ω) =
(

cos(ω/2)
2

)n
. On contrary to the MA filter,

the binomial filter shows no oscillating behavior and is therefore better low-
pass filter than the MA filter. However, the filter coefficients have to stored

and the filter requires multiplications with fractional precision, whereas in
case of the MA filter the multiplication can be replaced by a simple shift

operation of the filter length L is chosen in powers of two, i.e L = 2m.

Least-Squares Smoothing - Trend Analysis

The performance of the previous FIR filters was judged using the transfer
function. Now, a FIR filter will be derived on the basis of the principle of
least-squares7, stating that the best approximation a[n] of the data sequence

x[n] is that one minimizing the squares of the deviations of the data sequence
from their estimate

∑M
n=0(x[n]− a[n])2. The detector signal can be modeled

as the sum of two contributions, the detector current signal and the noise.

7Mathematicians believe its a physical principle while physicists believe its a mathematical principle.
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The noise dominates the signal at high frequencies and in order to extract

the signal trend the filter should remove the high-frequency noise. The
smoothing of the data based on the principle of least squares is therefore

also regarded as trend analysis [?].

The detector signal y[k] is modeled as the sum of the detector and noise

contribution y[k] = t[k]+n[k], with t[k] the signal trend and n[k] the noise.
The FIR filter

t[k] =
M∑

r=−M

ar y[k + r] , (1.42)

to extract the signal trend t[n] should be symmetric and have a gain of one
and therefore the coefficients ar have to fulfill the following conditions

M∑

r=−M

ar = 1 (1.43)

ar = a−r . (1.44)

The filter coefficients are determined using the following procedure [?]. The

signal y[k] = t[k] + n[k] ≈ p[k] + n[k] is represented as the sum of a poly-
nomial p[k], which is used to approximated the signal trend, and the noise

n[k]. In the following the input data sequence will be represented in the
form of a (transposed) vector yT = (y[−M ], y[−M + 1], ..., y[0], y[M ]), i.e.
y is the data vector for the desired FIR filter of length 2M + 1. The poly-

nomial p of degree n is represented as p[k] = b[0] + b[1]k + b[2]k2 + ...b[n]kn

with bT = (b[0], b[1], ..., b[n]) the coefficients of the polynomial. This leads

to 2M + 1 equations for p

p[−M ] = b0 + b1(−M) + b2(−M)2 + ... + bn(−M)n (1.45)
... (1.46)

p[0] = b0 + b10 + b20
2 + ... + bn0

n (1.47)
... (1.48)

p[M ] = b0 + b1M + b2M
2 + ... + bnM

n (1.49)
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that can be expressed as y = Fb + n with

F =





1 −M (−M)2 . . . (−M)n

...
...

...
...

...

1 0 0 0 0
...

...
...

...
...

1 M M2 . . . Mn





, (1.50)

a (2M + 1)x(M + 1) matrix.
The unknown coefficients b can be determined from the least-squares

principle by requiring that the desired coefficients b̂ minimize the squares
of the deviation of the polynomial from the data points (y− p)T (y− p) =

(y − Fb̂)T (y − Fb̂). The result is [?] b̂ = (FTF)−1Fy. The coefficients
ar of the filter can be obtained with the additional requirement that p[0]

models the signal at t = 0: y[0] = p[0] + z[0] with p[0] = eT
1 b̂ = b̂[0]

with eT
1 =

(
1 0 . . . 0

)
. The polynomial p[0] can now be expressed

as p[0] = eT
1 b̂ = eT

1 (FTF)−1F y. If the order of the polynomial and the
window size is constant, then the Matrix F is constant, thus allowing the
replacement p[0] = aTy with aT the filter coefficients aT = eT

1 (FTF)−1F =(
a[−M ] . . . a[0] . . . a[M ]

)
.

For a linear signal trend the FIR filter obtained with the principle of

least squares equals a MA filter. This means that the MA filter is the best
filter to approximate a noisy data sequence that features either constant or

shows a linear rising or falling signal trend.
For a quadratic polynomial p and a window size M = 3 the corresponding

filter coefficients are ar = 1
21

(
−2 3 6 7 6 3 −2

)
.

1.6.4 Trapezoidal Shaping

The properties of the trapezoidal shaping were derived in [12, 13] and are
summarized in the following. An extensive overview over the field of signal

processing with semiconductor detectors is given in [14]. The noise analysis
will be carried out in the time domain [15] and for the derivation two sources

of noise were assumed neglecting other noise sources like 1
f noise. The only

kinds of noise in this model are voltage8 and current9 noise. The first
8Voltage noise is often referred to as delta or series noise.
9Current noise is often referred to as step noise or parallel noise.
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noise source in the model is a current sources in parallel to the detector, the

signal source. The sum of these two contributions is integrated on the input
capacity, i.e. detector and preamplifier capacity. In this setup the signal

to noise ratio is independent of the input capacity ( qs

qn
= is/C

in/C ). The second
noise source is connected in series to the signal after the input capacity and
is therefore modeled as voltage noise generator with (constant) amplitudes

independent of C which leads to a signal-to-noise (SNR) ratio proportional
to 1

C
.

Another assumption of the model is that the measurement takes place

at a fixed time Tps after signal start. In order to determine the cumulative
effect of all noise steps prior to the time when the peak value is sampled the
so-called step-noise residual function R(t), which represents the effect of a

single noise step that has happened −t before peak capture, is used. The
total mean square step and delta noise indices are then defined as

〈N2
s 〉 =

1

S2

∫
(R(t))2 dt (1.51)

〈N2
∆〉 =

1

S2

∫
(R′(t))2 dt , (1.52)

with S the signal amplitude. For the example of a trapezoidal shaper with

a rise and fall time of T1 and T2, a gap time of TF and amplitude of S = 1
the corresponding noise indices are

〈N2
s 〉 =

∫ T2

0

(
t

T2

)2

dt +
∫ TF

0
(1)2 dt +

∫ T1

0

(
t

T1

)2

dt (1.53)

= TF +
T1 + T2

3
(1.54)

〈N2
∆〉 =

∫ T2

0

(
1

T2

)2

dt +
∫ T1

0

(
1

T1

)2

dt (1.55)

=
1

T1
+

1

T2
. (1.56)

The previous equations show that the step noise contribution increases in

proportion to the length of the filter rise and gap time whereas the delta
noise index is inverse proportional to the filter rise time. Therefore the delta

noise contribution can be reduced by increasing the peaking time of the
trapezoidal shaper. Furthermore, equation 1.56 suggests that symmetrical

pulse shapes yield better noise indices for a fixed total filter length.
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Another important feature of the trapezoidal shaping is the insensitivity

to rise time variations of the detector signal due to the flat top, eliminating
the so-called ballistic deficit [16] which is limiting the energy resolution for

high energy γ rays. This will be explained in section ??.
Furthermore the trapezoidal shaper is ideally suited for high rate appli-

cations because of the finite with of the pulse shape, which is two times

the peaking time plus the gap time. The gaussian shaper used in standard
analog electronics shows a slow return to the baseline after an event which

disturbes the baseline determination and limits the performance at high
event rates.

1.7 Numerical Differentiation

Numerical differentiation is an important operation for PSA because not
only the charge signal contains information about the interaction position,

but also the current signal and even the derivative of the current signal.
For example, the radial interaction position information for the MINIBALL
detector is extracted from the second derivative of the digitized charge pulse.

In general differentiation leads to an decreased signal to noise ration
(SNR). The signal amplitude decreases whereas especially the high fre-

quency noise is almost unaffected.
The transfer function is obtained by applying the differentiation to an

single frequency signal exp(iωt) and divide the result by the input signal

H(ω) =
d
dt exp(iωt)

exp(iωt)
= iω (1.57)

The transfer function is proportional to the frequency, demonstrating the
high-pass behavior of the differentiation operation.

1.7.1 Differentiability of bandwidth limited Signals

A bandwidth limited signal can be represented in the time domain by [17]

x(t) =
1

2π

∫ ωc

−ωc

X(ω) exp(iωt) dω. (1.58)

The nth differentiation of x(t)

dn

dtn
x(t) =

1

2π

∫ ωc

−ωc

X(ω)(iω)n exp(iωt) dω. (1.59)
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features an additional term (iω)n which could prevent the integral from

convergence, but because of the bandwidth limitation, the integral always
converges and therefore differentiation of bandwidth limited signals is pos-

sible.

1.7.2 Differentiation Equations

The most simple approach to numerical differentiation leads to differences
of the forward, backward or central type

d[n]b = x[n] − x[n − 1] (1.60)

d[n]f = x[n + 1] − x[n] (1.61)

d[n]c =
1

2
(x[n + 1] − x[n − 1]) (1.62)

=
1

2
(d[n]f + d[n]b) . (1.63)

The advantage of the differentiation of central type, is that the filter is sym-

metric and therefore has a linear phase. The differentiation of forward and
central type are non-causal, in the sense that the output of the differentia-

tion filter depends on future samples. The corresponding transfer functions
can be determined by applying the differentiation equations onto a single

frequency signal exp(iωt)

Hb[ω] = 2i sin

(
ω

2

)

exp

(

−i
ω

2

)

(1.64)

Hf [ω] = 2i sin

(
ω

2

)

exp

(

i
ω

2

)

(1.65)

Hc[ω] = i sin(ω) . (1.66)

The transfer functions are both complex and magnitude and phase response
are plotted in Fig. 1.7. The differentiation is a good approximation for the

true transfer function for small frequencies ω , but high frequencies are
attenuated compared to the transfer function of the differentiation.

Similarly the transfer function for the second derivative

sd[n] = x[n + 1] − 2x[n] + x[n − 1] (1.67)

is determined to

Hsd[ω] = 2(1 − cos(ω)) , (1.68)
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which is also a good approximation only at low frequencies10, while high fre-

quencies are also attenuated compared to the true transfer function H(ω) =
−ω2 which can be seen from figure 1.10.

An alternative approach to numerical differentiation [3] is to start from
the desired transfer function of the differentiation H(ω) = iω and design

a matching FIR filter with the desired transfer function. Assuming a FIR
filter of the form

y[m] =
N∑

n=−N

c[n] x[m − n] (1.69)

with c[n] the coefficients that have to be determined for the desired transfer

function from the coefficient equation

c[n] =
1

2π

∫ ∞

−∞
H[ω] exp(inω) dω . (1.70)

For the transfer function of the differentiation this leads to the following
expression for the coefficients:

c[n] =
1

2π

∫ ωs/2

−ωs/2
(iω) exp(inω) dω (1.71)

=
1

2π



ωs
cos(nωs/2)

n
− 2

sin(nω2/2)

n2



 (1.72)

=
cos(nπ)

n
− sin(nπ)

πn2
, (1.73)

where ωs = 2π was used. This leads to the following coefficients

c[0] = 0 (1.74)

c[n] =
(−1)n

n
for n 6= 0. (1.75)

The corresponding filter equations are:

c3[n] = x[n + 1] − x[n − 1]

c7[n] =

(
1

3
x[n + 3] − 1

2
x[n + 2]

)

+ x[n + 1] − x[n − 1]

+

(
1

2
x[n − 2] − 1

2
x[n − 3]

)

10Hsd[ω] ≈ 2(1 − (1 − ω2/2 + . . .))



1.7. NUMERICAL DIFFERENTIATION 27

c11[n] =

(
1

5
x[n + 5] − 1

4
x[n + 4]

)

+

(
1

3
x[n + 3] − 1

2
x[n + 2]

)

+ x[n + 1] − x[n − 1]

+

(
1

2
x[n − 2] − 1

2
x[n − 3]

)

+

(
1

4
x[n − 4] − 1

5
x[n − 5]

)

.

As an example, the transfer function of the differentiation filter with N = 11
is plotted in figure 1.9 together with the ideal transfer function of the differ-
entiation to demonstrate the approximation of the true transfer function.

More complex differentiation formulas are obtained by differentiating
lagrangian interpolation formulas [6]

dl5[n] =
1

12
(−x[n + 2] + 8x[n + 1] − 8x[n − 1] + x[n − 2]) +

h4

30
f 4(λ)

dl7[n] =
1

60
(x[n + 3] − 9x[n + 2] + 45x[n + 1]

− 45x[n − 1] + 9x[n − 2] − x[n − 3]) +
h6

160
f vii(λ) ,

where dl5[n] and dl7[n] are obtained from five and seven point interpolation

formulas respectively. The last term is the error, which decreases with
decreasing step size, i.e with increasing sampling frequency11. The transfer

functions are

Hl5(ω) =
1

12
(16i sin(ω) − 2i sin(2ω))

Hl7(ω) =
1

30
(45i sin(ω) − 9i sin(2ω) + i sin(3ω)) ,

which are plotted in figure 1.11.

A better differentiation formula for bandwidth limited signals should be
obtained by a smooth interpolation, i.e. an interpolation without discon-

tinuities12. This should especially be true if the derivatives of the interpo-
lated data sequences are of importance. Therefore a differentiation formula
ds based on a spline interpolation [6] of fourth order using 7 data points

ds7[n] =
1

168
(3x[n + 3] − 26x[n + 2] + 127x[n + 1]

− 127x[n− 1] + 26x[n− 2] − 3x[n − 3]) ,

11The error for the dc[n] differentiation formula is h2

6 f ′′′(λ).
12The smoothness of the spline interpolation is shown in [5] in comparison to a polynomial interpolation.
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Figure 1.7: Magnitude and phase response of the numerical differentiation of forward (green),
backward (bue) and central (red) type together with that of the ideal differentiation
(black).

Figure 1.8: Current Signals obtained from a charge pulse by differentiation with various digital
filters.

and the corresponding transfer function

Hs7(ω) =
1

84
(127i sin(ω) − 26i sin(2ω) + 3i sin(3ω)) , (1.76)

are mentioned here.

1.8 Digital Resampling: Decimation and Interpola-

tion

Digital resampling[1, 4, 17, 18, 19] is the process of changing the sampling
rate after A/D conversion. The process of decreasing the sampling rate is

called decimation and the process of increasing the sampling rate is called
interpolation.

In order to understand the effect of an digital increase of the sampling
rate, it is best to consider a two channel DSP system with 40 MHz ADCs
fed by a common clock. Single frequency sine waves are assumed to be

used as input signals. The purpose of the experiment is the determination
of the phase shift or delay between the two sine waves for DSP channels.

If 50 MHz sine waves are used the experiments will fail because the signal
will be removed by the Nyquist filter. If 5 MHz sines waves are used the

sine wave will be sampled with an oversampling ratio of 4. The phase shift
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Figure 1.9: Transfer function of the differentiation filter for different N , N = 3 (red), N = 7
(green) and N = 11 (blue), compared to that of the ideal differentiation (black).
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Figure 1.10: Transfer function of the numerical second derivative (red) compared to that of the
ideal differentiation (green).
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Figure 1.11: Transfer function of numerical differentiation formulas based on lagrangan, dl5[n]
(red) and dl7[n] (green), and spline,ds7[n] (blue), interpolation in comparison to
the ideal differentiation (black).
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Figure 1.12: Original and decimated detector signal.

will be determine by measuring the time difference when the signal crosses
a certain threshold (or use the detection of the zero crossing) between the

two channels. If the signal is resampled to 160 MHz, i.e. the signal is
oversampled by a factor of 16, then the phase difference between the two

channels can be determined with a four time higher precision, because the
time difference between the samples decreased by a factor of four.

The main purpose of digital resampling is the simplification of the further
digital signal processing.

1.8.1 Decimation

The process of downsampling an ADC output sequence x[n] = x(nT ) works

by simply sampling the original output sequence at a new rate MT :

xd[n] = x[nM ] . (1.77)

However, if the bandwidth of the original data exploits the full range allowed
by the Nyquist theorem, then the new data sequence will be subjected to

aliasing, because now the original frequency band will overlap with the mir-
ror signals at multiples of the new sampling frequency ωd

s = ωs

M . Therefore a
system is needed that consists not only of a resampler but also of a low-pass

filter applied to the original data sequence that ensures that aliasing is pre-
vented for the new data sequence, i.e H(ω) = 0 for ω > ωd with ωd

c = ωc

M
the

Nyquist frequency of the decimated signal. Such a system, a low-pass filter
followed by a downsampler, is called decimator. The reason for aliasing can

be seen from the Fourier transformation of the downsampling processes by
replacing the frequencies in equation 1.7 with the down sampled frequencies

Fk(ω) =
ωs

2Mπ

∞∑

k=−∞
F ((

ω

M
) − k(

ωs

M
)) (1.78)

=
ωd

c

π

∞∑

k=−∞
F (

ω

M
− kωd

s). (1.79)

Again, the resulting spectrum features copies of the original signal, which is
scaled in frequency by the factor M, with a period of ωd

s = ωs

M . A decimation

unit will be presented a section ??.
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1.8.2 Upsampling

Similarly to the decimation process which is used for data rate reduc-
tion, a process for increasing the data rate of the ADC can be developed.

The process of upsampling should yield a sequence xi[n] of data points
xi[n] = x(nTi)

13 with the new sampling interval Ti = To

L from the original

data sequence xo[n] = x(nTo) with To the original sampling interval. The
implementation consists of a sample rate expander which implements the

zero-padding operation

xe[n] =
∞∑

k=−∞
x[k]δn,kL . (1.80)

As before, the resampling process produces copies of the original signal at

multiples of the new sampling frequency while at the same time the fre-
quency is scaled by the factor L as can be seen by replacing the original

sampling frequency ωs with the new sampling frequency ωi
s = Lωs in equa-

tion 1.7

F i(ω) =
Lωs

2π

∞∑

k=−∞
F (Lω − kLωs)) (1.81)

=
ωi

c

π

∞∑

k=−∞
F (Lω − kωi

s) , (1.82)

with ωi
c = ωi

s/2 the corresponding Nyquist frequency.

Therefore the expander is followed by an (ideal) low-pass filter14 set to

the original Nyquist frequency ωc = ωi
s

2L to remove the additional copies
from the frequency spectrum. In the time-domain the low-pass filter works

as an interpolator, i.e. the zeros that were added in between the original
data points will be modified such that the Nyquist condition is fulfilled.

However, an ideal low-pass filter cannot be realized and therefore an ideal
interpolation cannot be achieved. With the impulse response of the ideal
low-pass 1.33 and 1.80 it can be seen that the interpolation condition is

fulfilled

xi[n] =
∞∑

k=−∞
x[k]

sin(π(n − kL)/L)

π(n − kL)/L
(1.83)

13x(nT ) is the value of the continuous function x(t) at time t = nT , while x[n] is the value of the discrete
data set x[k] at time k = n.

14The low-pass filter needs a gain of L.
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Figure 1.13: Upsampled sequence of data from a HPGe detector. The original sampling rate
was increased by a factor of four.

=






x[n
L
] , for n = 0,±L,±2L, . . .

∑∞
k=−∞ x[k] sin(π(n−kL)/L)

π(n−kL)/L , otherwise .
(1.84)

Equation 1.83 is also called the cardinal interpolation function or Whittaker

reconstruction formula and it is the most common form of recovering a
function from a sequence a data points.

In order to understand the concept of upsampling, i.e. zero-padding and
low-pass filtering, it is best to consider a modification of equation 1.80

xe[n] =
{

x[n] , n ≥ kL < n + 1 , (1.85)

i.e. instead of inserting zeros the original sample values are repeated until a
new sample is available. This process is called zero-order or nearest neighbor
interpolation. The nearest neighbor interpolation can also be expressed a

combination of an zero-padding operation plus a moving average of gain L,
i.e. x[n] =

∑L
k=0 −1x[k]. Similarly, any interpolation operation can be split

into zero-padding plus subsequent filtering with the transfer function of the
interpolation.

The ideal interpolation process can also be understood as zero-padding
in the frequency domain. Here, the pass band of the transfer function is

increased to match the new sampling frequency. The content of the transfer
function for frequencies in between the original cut-off frequency ωo

c and

the new cut-of frequency ωi
c = Lωo

c is set to zero, which is equivalent to
the application of the ideal low-pass filter with the cut-off frequency of the
original data set.

Linear Interpolation

Linear interpolation is the second simplest form of interpolation. It can be

expressed as

y(x) = y[n] + x(y[n + 1] − y[n]) (1.86)

= y[n](1 − x) + y[n + 1]x (1.87)
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with n < x < n + 1. The transfer function can be derived by applying the

symmetrical form of the linear interpolation

y(x) =
y
[
n − 1

2

]
+ y

[
n + 1

2

]

2
+ x

(

y

[

n +
1

2

]

− y

[

n − 1

2

])

, (1.88)

with n − 1
2 < x < n + 1

2 onto a single frequency signal f(ω, n) = exp(iωn):

H(ω) =
exp

(
iω

(
n − 1

2

))
− exp

(
iω

(
n + 1

2

))

2 exp (iωn)
(1.89)

+ x
exp(iω(n − 1

2) + exp(iω(n + 1
2)

exp(iω(n)
(1.90)

=
exp

(
− iω

2

)
− exp

(
iω
2

)

2
+ x

(

exp

(

−iω

2

)

+ exp

(
iω

2

))

(1.91)

= cos

(
ω

2

)

+ 2xi sin

(
ω

2

)

. (1.92)

The magnitude and phase response of the linear interpolation are plotted
for different x in figure 1.14. The imaginary part of the transfer function

causes a phase shift. At x = 0 the transfer function is real (phase re-
sponse is zero), but compared to the transfer function of the ideal low-pass

the higher frequencies are suppressed leading to an incorrect interpolation
results. Furthermore the transfer function is not zero above the cut-off fre-

quency, possibly causing aliasing. However, if the data is oversampled, then
the damping at higher frequencies is less severe and the linear interpolation
would be more useful.

Linear interpolation can also be understood as a convolution of the input
signal x(n) with triangular pulse L(t) = 1− t

T
, which is itself a convolution of

two rectangular functions (compare with the trapezoidal shaping in section
1.6.4 ). Therefore the overall transfer function for the linear interpolation

is the quadratic sinc function
(

sin(ω)
ω

)2
.

1.8.3 Quadratic Interpolation

The lagrangian equation for polynomial interpolation [20, 17, ?] is used

by the PSA DSP code and is therefore presented here. The lagrangian
interpolation of the function value y[x] at the position x

y[x] =
N∑

k=0

lk(x) y[k] (1.93)
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Figure 1.14: Magnitude and phase response of the linear interpolation. The overall transfer
function is plotted in black together with the transfer function for four different x
settings: x = 0.375 (red), x = 0.25 (green), x = 0.125 (blue) and x = 0 (purple).

with the coefficients defined by

lk(x) =
(x − 0) . . . (x − (k − 1))(x− (k + 1)) . . . (x − N ])

(k − 0) . . . (k − (k − 1))(k − (k + 1)) . . . (k − N)
, (1.94)

which can also be written as

lk(x) =
N∏

n=0,n 6=k

x − n

k − n
. (1.95)

This leads to the expression lk(j) = δkj for the sample points and the

coefficients lk(x) which are presented in table 1.1 for an interpolation of
first (N=1), second order (N=2) and third order (N=3). In order to derive

the transfer function of the quadratic interpolation, the interpolation will
be expressed as an symmetric filter and therefore x has to be replace by

x + 1 in the coefficient table

y[x] =
1

2
x(x− 1) y[n− 1]− (x + 1)(x− 1) y[n] +

1

2
x(x + 1) y[n + 1] , (1.96)

leading to the following transfer function

H(ω) = (1 − x2) + x2 cos(ω) + x i sin(ω) , (1.97)

which is plotted in figure 1.15 for different values of x.
For PSA an inverse interpolation is necessary, because the position x of

the minimum has to be determined from the interpolating polynomial. This
is accomplished with the additional requirement that

d

dt
y[x] =

d

dt

N∑

k=0

lk(x) y[k] ≡ 0 . (1.98)
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Figure 1.15: Magnitude and phase response of the quadratic interpolation for four different
values of x: x = 0.5 (purple), x = 0.375 (red), x = 0.25 (green) and x = 0.125
(blue).

Order n=0 n=1 n=2 n=3

1 1-x x 0 0

2 1

2
(x − 1)(x − 2) -x(x-2) 1

2
x(x − 1) 0

3 −1

6
(x − 1)(x − 2)(x − 3) 1

2
x(x − 2)(x − 3) −1

2
x(x − 1)(x − 3) −1

6
x(x − 1)(x − 2)

Table 1.1: Coefficients for the Lagrange interpolation.
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Appendix A

Useful Filter Equations

1. IIR (Recursive) Filter:

y[n] =
M∑

m=0

amx[n − m] + bmy[n − m]

(a) Single Pole High Pass Filter

a0 =
1 + x

2

a1 = −1 + x

2
b1 = x

with x = exp(−1
d

) = exp(−2πfc) and all other coefficients are zero

such that y[n] = a0x[n] + a1x[n − 1] + b1y[n − 1].

(b) Single Pole Low Pass Filter

a0 = (1 − x)

b1 = x

with x = exp(−1
d ) = exp(−2πfc) and all other coefficients are zero

such that y[n] = a0x[n] + b1y[n − 1].

(c) 4 Stage Single Pole Low Pass Filter

a0 = (1 − x)4

b1 = 4x

37
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b2 = −6x2

b3 = 4x

b4 = −x4

with x = exp(−1
d ) = exp(−2πfc) and all other coefficients are zero

such that y[n] = a0x[n]+b1y[n−1]+b2y[n−2]+b3y[n−3]+b4y[n−4].

(d) Bessel Filter with fc = 1
2fs

• 1st Order Bessel Filter:

y[n] = x[n] + x[n − 1] − y[n − 1]

• 2nd Order Bessel Filter:

y[n] = x[n] + 2x[n − 1] + x[n − 2]

− 2y[n − 1] − y[n − 2]

• 3rd Order Bessel Filter:

y[n] = x[n] + 3x[n − 1] + 3x[n − 2] + x[n − 3]

− 3y[n − 1] − 3y[n − 2] − y[n − 3]

• 4th Order Bessel Filter:

y[n] = x[n] + 4x[n − 1] + 6x[n − 2] + 4x[n − 3] + x[n − 4]

− 4y[n − 1] − 6y[n − 2] − 4y[n − 3] − y[n − 4]

2. FIR Filter

(a) Moving Average

y[n] =
M∑

m=−M

1

2M + 1
x[n + m]

(b) Gaussian Filter

• Binomial Distribution with P = 1/2: 3 Points

y[n] =
1

4
x[n − 1] +

1

2
x[n] +

1

4
x[n + 1]
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• Binomial Distribution with P = 1/2: 5 Points

y[n] =
1

16
x[n− 2] +

1

4
x[n− 1] +

3

8
x[n] +

1

4
x[n + 1] +

1

16
x[n + 2]

(c) Low Pass FIR Filter

c[n] = (2fc)
sin(2πfcn)

(2πfcn)

y[n] =
M∑

m=−M

c[m]y[n − m]

with fc = fc

fs
the relative cut-off frequency.

(d) Least Squares Smoothing: 1st Order, 3 data points,

y[n − 1] =
1

6
(5y[n − 1] + 2y[n] − y[n + 1])

y[n] =
1

3
(y[n − 1] + y[n] + y[n + 1])

y[n + 1] =
1

6
(−y[n − 1] + 2y[n] + 5y[n + 1])

(e) Least Squares Smoothing: 1st Order, 5 Data Points,

y[n − 2] =
1

5
(3y[n − 2] + 2y[n − 1] + y[n] + y[n + 1])

y[n − 1] =
1

10
(4y[n − 2] + 3y[n − 1] + 2y[n] + y[n + 1])

y[n] =
1

5
(y[n − 2] + y[n − 1] + y[n] + y[n + 1] + y[n + 1])

y[n + 1] =
1

10
(4y[n + 2] + 3y[n + 1] + 2y[n] + y[n − 1])

y[n + 2] =
1

5
(3y[n + 2] + 2y[n + 1] + y[n] + y[n − 1])

(f) Least Squares Smoothing: 3rd Order, 5 Data Points,

y[n − 2] =
1

70
(69y[n − 2] + 4y[n − 1] − 6y[n] + 4y[n + 1] − y[n + 2])
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y[n − 1] =
1

35
(2y[n − 2] + 27y[n − 1] + 12y[n] − 8y[n + 1] + 2y[n + 2])

y[n] =
1

35
(−3y[n − 2] + 12y[n − 1] + 17y[n] + 12y[n + 1] − 3y[n + 2])

y[n + 1] =
1

35
(2y[n + 2] + 27y[n + 1] + 12y[n] − 8[n − 1] + 2[n − 2])

y[n + 2] =
1

70
(69y[n + 2] + 4y[n + 1] − 6y[n] + 4y[n − 1] − y[n − 2])

(g) Least Squares Smoothing: 3rd Order, 7 Data Points,

y[n − 3] =
1

42
(39 y[n − 3] +8y[n − 2] − 4y[n − 1] − 4y[n]

− 2y[n + 3] +4y[n + 2] + y[n + 1])

y[n − 2] =
1

42
(8 y[n − 3] +19y[n − 2] + 16y[n − 1] + 6y[n]

+4 y[n + 3] −7y[n + 2] − 4y[n + 1])

y[n − 1] =
1

42
(−4 y[n − 3] +16y[n − 2] + 19y[n − 1] + 12y[n]

+ y[n + 3] −4y[n + 2] + 2y[n + 1])

y[n] =
1

21
(−2 y[n − 3] +3y[n − 2] + 6y[n − 1] + 7y[n]

−2 y[n + 3] +3y[n + 2] + 6y[n + 1])

y[n + 1] =
1

42
(−4 y[n + 3] +16y[n + 2] + 19y[n + 1] + 12y[n]

+ y[n − 3] −4y[n − 2] + 2y[n − 1])

y[n + 2] =
1

42
(8 y[n + 3] +19y[n + 2] + 16y[n + 1] + 6y[n]

+4 y[n − 3] −7y[n − 2] − 4y[n − 1])

y[n + 3] =
1

42
(39 y[n + 3] +8y[n + 2] − 4y[n + 1] − 4y[n]

−2 y[n − 3] +4y[n − 2] + y[n − 1])

(h) Least Squares Smoothing: 5th Order, 7 Data Points,

y[n − 3] =
1

924
(923 y[n − 3] −6y[n − 2] − 15y[n − 1] + 20y[n]

− y[n + 3] +6y[n + 2] − 15y[n + 1])
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y[n − 2] =
1

154
( y[n − 3] +148y[n − 2] + 15y[n − 1] − 20y[n]

+ y[n + 3] −6y[n + 2] + 15y[n + 1])

y[n − 1] =
1

308
(−5 y[n − 3] +30y[n − 2] + 233y[n − 1] + 100y[n]

−5 y[n + 3] +30y[n + 2] − 75y[n + 1])

y[n] =
1

231
(5 y[n − 3] −30y[n − 2] + 75y[n − 1] + 131y[n]

+5 y[n + 3] −30y[n + 2] + 75y[n + 1])

y[n + 1] =
1

308
(−5 y[n + 3] +30y[n + 2] + 233y[n + 1] + 100y[n]

−5 y[n − 3] +30y[n − 2] − 75y[n − 1])

y[n + 2] =
1

154
( y[n + 3] +148y[n + 2] + 15y[n + 1] − 20y[n]

+ y[n − 3] −6y[n − 2] + 15y[n − 1])

y[n + 3] =
1

924
(923 y[n + 3] −6y[n + 2] − 15y[n + 1] + 20y[n]

− y[n − 3] +6y[n − 2] − 15y[n − 1])

3. Interpolation with FIR Filters

(a) Linear Interplation

y(x) = y[n] + x(y[n + 1] − y[n])

with n < x < n + 1.

4. Equations for Numerical Differentiation

(a) 2 Points

y[n] = x[n] − x[n − 1]

y[n] = x[n + 1] − x[n]

(b) 3 Points

y[n] =
1

2
(x[n + 1] − x[n − 1])
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(c) 5 Points

y[n] =
1

12
x[n + 2]) +

8

12
x[n + 1] − 8

12
x[n − 1] − 1

12
x[n − 2]

(d) 7 Points

y[n] =
1

60
x[n+3]+

9

60
x[n+2])+

45

60
x[n+1]−45

60
x[n−1]− 9

60
x[n−2]− 1

60
x[n−3]

(e) 9 Points

y[n] =
3

810
x[n + 4] +

32

810
x[n + 3] +

168

810
x[n + 2]) +

672

810
x[n + 1]

−672

810
x[n − 1] − 168

810
x[n − 2] − 32

810
x[n − 3] − 3

810
x[n − 4]

(f) Spline, 2nd Order, 5 Points

y[n] =
1

12
x[n + 2]) +

8

12
x[n + 1] − 8

12
x[n − 1] +

1

12
x[n − 2]

(g) Spline, 4th Order, 7 Points

y[n] =
3

168
x[n+3]− 26

168
x[n+2])+

127

168
x[n−1]−127

168
x[n−1]+

26

168
x[n−2]− 3

168
x[n

(h) 7 Point Filter

y[n] =
1

3
x[n+3]+

1

2
x[n+2])+x[n+1]−x[n−1]+

1

2
x[n−2]−1

3
x[n−3]

(i) 11 Point Filter

y[n] =
1

5
x[n + 5] − 1

4
x[n + 4] +

1

3
x[n + 3]

−1

2
x[n + 2]) + x[n + 1] − x[n − 1] +

1

2
x[n − 2]

−1

3
x[n − 3] +

1

4
x[n − 4] − 1

5
x[n − 5]

5. Methods for Finding Extreme Values

(a) Bevington Method

e[n] =
x[n + 1] − x[n − 1]

x[n + 1] − 2x[n] + x[n − 1]
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(b) Using Quadratic Interpolation

e[n] =
1
2x[n + 1](2n − 1) − x[n](2n) + 1

2x[n − 1](2n + 1)

x[n + 1] − 2x[n] + x[n − 1]
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