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Abstract

This document is the specification of the Dirac video decoder and stream syntax.

Dirac is a video compression system utilising wavelet transforms and motion compensation.

It is designed to be simple, flexible, yet highly effective. It can operate across a wide range

of resolutions and application domains, including: internet and mobile streaming, delivery of

standard-definition and high-definition television, digital television and cinema production and

distribution, and low-power devices and embedded applications.

The system offers several key features:

• lossy and lossless coding using a common tool set

• both intra-frame and motion-prediction coding

• gradual quality loss with increasing compression
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1 Introduction

1.1 Purpose

Dirac was developed to address the growing complexity and cost of current video compression tech-

nologies, which provide greater compression efficiency at the expense of implementing a very large

number of tools. Dirac is a powerful and flexible compression system, yet uses only a small number

of core tools. A key element of its flexibility is its use of the wavelet multi-resolution transform for

compressing pictures and motion-compensated residuals, which allows Dirac to be used across a very

wide range of resolutions without enlarging the toolset.

Dirac began as an Open Source software project, and reference implementations of the decoder and

encoder are available at http://sourceforge.net/projects/dirac.

1.2 Scope

This document specifies normative decoder operations (“semantics”) and stream syntax. The stream

syntax is primarily specified by means of pseudocode, the conventions of which are described in Section

2.3. The decoder semantics are specified by means of a mixture of pseudocode and conventional

mathematical symbolism.

A number of other elements are also included for informative purposes. The specification is not an

implementation guide, and in the interests of clarity many of the operations are specified in a way

that would not be efficient to implement. However, we have attempted to indicate where this is

so, and to suggest ways in which an efficient implementation may be achieved, but these are by no

means exhaustive. An optimised Open Source software Dirac encoder and decoder system, named

Schrödinger, is available at http://sourceforge.net/projects/schrodinger, and may be studied to aid

implementation.

In addition, we are well aware that many users of this document may wish to make both encoders and

decoders. There are many sources of information on how to design efficient compression algorithms, for

example for entropy coding, motion estimation, frame-dropping, rate control, motion estimation and

rate-distortion optimisation. This document does not attempt to address these issues in detail, but to

provide supplementary information where appropriate to allow those reasonably “skilled in the art”

to develop a Dirac encoder rapidly and accurately, and approach design compromises knowledgably.

1.3 Status

This is version 0.10.0 of the Dirac specification. The document includes a full description of the core

Dirac stream syntax and decoder operations. It does not yet contain a specification of profiles and

levels supported by Dirac, or the compatible extensions required to support the Dirac Pro toolset.

These shall be added shortly.

1.4 Document structure

This document specifies the Dirac decoder and stream structure in terms of a layered model:

1. Stream data access

2. Parsing and interpretation of the Dirac stream

3. Picture decoding operations

Stream data access consists of the operations used to extract data values (of boolean and integer type)

from a raw Dirac bitstream. These include data that has been encoded “literally” (i.e. according to
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conventional bit-wise representations), variable-length codes, and data entropy coded using arithmetic

encoding. Stream data access methods are used both by parsing and decoding operations.

Parsing and interpretation defines the structure of Dirac streams, and defines intermediate decoder

data structures in which extracted data is stored, which encapsulate both meta-data used to control

picture decoding processes (for example, motion compensation block sizes and overlaps, picture di-

mensions and so forth) and the blocks of (arithmetically coded) data used as input to these processes.

Picture decoding operations produce decoded pictures from these populated data structures by ap-

plying specified functions to them. They are not necessary for navigating the stream or reading any

of the stream data, but only for outputting pictures.

Note in particular that the distinction between parsing and picture decoding is not exactly that

between syntax and semantics: complex semantics are required for correct parsing of the stream as

well as for decoding pictures.

It is perhaps unusual in a specification to separate these layers quite so distinctly, and our purpose

in doing so is to provide much greater clarity. For implementors, we hope that the decoupling of

the stream structure from the (computationally intensive) picture decoding processes will (we hope)

avoid imposing implicit design decisions merely through the style of the specification. Many other

users of the specification will not be interested in the precise format of stream elements but in how

the underlying algorithm works - or vice-versa. It should be possible to construct a Dirac parsing

engine, for example for frame skipping in video playback applications, extremely simply and without

requiring comprehension of the entire specification.

This layered structure is reflected in the structure of the specification, which, after defining conventions

used in the specification is divided into three corresponding parts: stream data access, defining

functions for data types; accessing and parsing the Dirac bitstream and populating data structures

(including the wavelet coefficients and motion data); and high-level decoder operations and picture

output, specifically the inverse wavelet transform and motion compensation.

In addition to these parts, appendices deal with standard settings, parameter presets and levels and

profiles.
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2 The conventions used in the specification

2.1 State machine decoder representation

This specification uses a state-machine model to express parsing and decoding operations. The state

of the decoder/parser is stored in the global variable state, and individual variable values are accessed

by means of named tokens, e.g. state[var name] (i.e. they are maps as defined in Section 2.3.2). All

the individual variables are therefore also globally accessible from all decoder functions.

A default state variable, default state is also defined, which is initialised on accessing the stream.

State values revert to the default state values on beginning to parse each picture, as described in

Section 5.

The parsing and decoding operations are specified in terms of modifying the decoder state. Decoder

state variables may not directly correspond to elements of the stream, but are calculated from them

taking into account the decoder state as a whole. For example, a state variable value may be differ-

entially encoded with respect to another value, with the difference, not the variable itself, encoded in

the stream.

The stream structure itself is summarised in parse diagrams, which are presented in Appendix A. The

parsing process is defined by means of pseudocode and/or mathematical formulae. The conventions

for these elements are described in the succeeding sections. In the event of any conflict between the

parse diagrams and the specified parsing processes, the latter shall be deemed to be correct.

2.2 Numbers and arithmetic operations

2.2.1 Numbers

The prefix b indicates that the following value is to be interpreted as a binary natural number (non-

negative integer).

Example The value b1110100 is equal to the decimal value 116.

The prefix 0x indicates the following value is to be interpreted as a hexadecimal (base 16) natural

number.

Example The value 0x7A is equal to the decimal value 122.

2.2.2 Arithmetic operations

All arithmetic defined by this specification is exact: the entire specification can be implemented using

only integer and logical operations. All operations are to be implemented with sufficiently large

integers so that overflow cannot occur.

The following arithmetic operators are defined on numerical values:

Absolute value |a| =
(

a if a ≥ 0

−a otherwise
.

Addition The sum of a and b is represented by a + b.

Subtraction a minus b is represented by a− b.

Multiplication a times b is represented, for clarity, by a ∗ b.
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Real division The real number value of a divided by b is represented by a/b or a
b
.

Exponentiation For integers a, b, b > 00 ab is defined as a ∗ a ∗ . . . ∗ a (b times). a0 is 1.

Ceiling dae, the smallest integer greater than or equal to a real number a

Floor bac, the smallest integer greater than or equal to a real number a

Maximum max(a, b) returns the largest of a and b.

Minimum min(a, b) returns the smallest of values a and b.

Clip clip(a, b, t) clips the value a to the range defined by b and t:

clip(a, b, t) = min(max(a, b), t)

Integer division Integer division is defined for a and b integer values, b > 0 by

a//b =
ja

b

k

(i.e. always round down).

Remainder For integers a, b, with b > 0, a%b is equal to a− (a//b) ∗ b. a%b always lies between 0

and b− 1.

Shift down For integers a, b, with b ≥ 0, a À b is a//2b.

Shift down For integers a, b, with b ≥ 0, a ¿ b is a ∗ 2b.

Mean Given a set S = {s0, s1, . . . , sn−1 of integer values, the integer mean mean(S) is defined to

be

(s0 + s1 + . . . + sn−1 + (n//2)/ /n)

Median Given a set S = {s0, s1, . . . , sn−1 of integer values the median median(S) returns the middle

value. If t0 ≤ t1 ≤ . . . ≤ tn−1 are the values si placed in ascending order, this is

t(n−1)/2

if n is odd and

(t(n−2)/2 + tn/2)//2 if n is even.

The following bitwise operations are defined on non-negative integer values:

& Logical AND is applied between the corresponding bits in the binary representation of two num-

bers, e.g. 13&6 is b1101&b110, which equals b100, or 4.

| Logical OR is applied between the corresponding bits in the binary representation of two numbers,

e.g. 13|6 is b1101—b110, which equals b1111, or 15.
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ˆ Logical XOR is applied between the corresponding bits in the binary representation of two

numbers, e.g. 13 ˆ 6 is b1101 ˆ b110, which equals b1011, or 11.

These operations are also defined on boolean values, interpreted as single-bit integers, where 0 is

interpreted as False and 1 as True and vice-versa. Logical NOT is not defined bitwise, to avoid

ambiguity concerning leading zeroes).

2.3 Pseudocode

The bulk of the normative specification is defined by means of pseudocode. The syntax used is an

amalgam of Python and Basic. It is not intended to be executable code, but rather both precise and

descriptive. Iin particular, all the arithmetic functions and operations defined in the preceding section

may be applied to variables within a pseudocode process.

2.3.1 Processes

Decoding and parsing operations are specified by means of processes – a series of operations acting

on input data and global variable data. A process can also be a function, which means it returns a

value, but it need not do so. So a process taking in variables in1 and in2 looks like:

foo(in1, in2) :

op1(in1)

op2(in2)

. . .

whilst a function process looks like

bar(in1, in2) :

op1(in1)

foo(in1, in2) 2.3.1

. . .

return out1

The right-hand column in the pseudocode representation contains a cross-reference to the section in

the specification containing the definition of other processes used at that line.

Note well: all input variables are deemed to passed by reference in this specification. This means that

any modification to a variable value that occurs within a process also applies to that variable within

the calling process even if it has a different name in the calling process. One way to understand this

is to envisage variable names as labels for pointers to workspace memory.

For example, if we define foo and bar by

foo() :

num = 0

bar(num)

state[var name] = num

and

bar(val) :

val = val + 1

then at the end of foo, state[var name] has been set to 1.

If a process is particularly complex, it may be broken into a number of steps with intermediate

discussion. This is signalled by appending and prepending “. . .” to the parts of the pseudocode

specification:
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foo() :

op1()

. . .

[text]

. . .

op2()

. . .

[text]

. . .

op3()

Note that the intervening text may define or modify variables used in the succeeding pseudocode,

and must be considered as a normative part of the specification of the process. This is done as it is

sometimes much more clear to split up a long and complicated process into a number of steps.

2.3.2 Variables and data types

The only global variables are the state variables encapsulated in state and default state. If a

variable is not declared as an input to the process and is not a state variable, then it is local to the

function.

The following basic types are defined:

Boolean A boolean variable has two possible states, True and False.

Unsigned integer A non-negative (≥ 0) whole number, of arbitrary size.

Integer A whole number, of arbitrary size.

Set A collection of variables or values, with no particular indexing. The usual set-theoretic opera-

tions such as ∪ (union), ∩ (intersection), ∈ (membership) and so on apply.

Map A map is a set accessed by token names. For example p[Y ], p[U ], p[V ] might give the value of

the different video components (Y, U and V) of a pixel. The set of argument tokens of a map m can

be accessed by args(m), so that args(p) = {Y, U, V }.

Array A list is a set with an integer index or indices. All arrays are indexed from 0. Elements of

a 1-dimensional array a are accessed by a[n] for n in the range 0 to length(a) − 1. Elements of a

2-dimensional array are accessed by a[n][m] for 0 ≤ m ≤ width(a)− 1 and 0 ≤ n ≤ height(a)− 1.

A 1-dimensional array can be explicitly defined by the syntax a = [u, v, w, . . .]. Then a[0] = u, a[1] = v

and so on.

These basic variable types may be combined. For example, picture data may be considered to be a

map of arrays pic, where pic[Y ] is a 2-dimensional array storing luma data, and pic[U ] and pic[V ] are

two-dimensional arrays storing chroma data.
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Variables within processes are not explicitly declared, and their type is determined from context or

defined in the surrounding description.

Assignment between variables a and b is denoted by a = b, and is a copy operation between the data

contained within b to a.

It is to be distinguished from the boolean identity operator a == b (Section 2.3.4).

Occasionally the notation a = 0 will be used for an array of integer values: it means set all elements

of the matrix to 0.

For integer variables, assignment can be combined with arithmetic and bit-wise operations in the

usual programming manner: for example,

x+ = y

means x = x + y, and

x| = 0x4B

means x = x|0x4B.

2.3.3 Control flow

The pseudocode comprises a series of statements, linked by functions and flow control statements

such as if, while, and for.

The statements do not have a termination character, unlike the ; in C for example. Blocks of state-

ments are indicated by indentation: indenting in begins a block, indenting out ends one.

Statements that expect a block (and hence a following indentation) end in a colon.

if The if control evaluates a boolean or boolean function, and if true, passes the flow to the block of

following statement or block of statements. If the control evaluates as false, then there is an option to

include one or more else if controls which offer alternative responses if some other condition is true.

If none of the preceding controls evaluate to true, then there is the option to include an else control

which catches remaining cases.

if (control1):

block1

else if (control2):

block2

else if (control3):

block3

else:

block4

The if and else if conditions are evaluated in the order in which they are presented. In particular, if

control1 or control2 is true in the preceding example, block3 will not be executed even if control3 is

true; neither will block4.

for The for control repeats a loop over an integer range of values. For example,

for i = 0 to n− 1:

foo(i)

calls foo() with value i, as i steps through from 0 to n− 1 inclusive.



2.3 Pseudocode 13

for each The for each control loops over the elements in a list:

for each c in Y, U, V :

block

for such that The for such that control loops over elements in a set which satisfy some condition:

for a ∈ A such that control:

block

This may only be used when the order in which elements are processed is immaterial.

while The while control repeats a loop so long as a switch variable is true. When it is false, the

loop breaks to the next statement(s) outside the block.

while (condition):

block1

block2

2.3.4 Logical (boolean) operations

A logical operator takes a variable or pair of variables as arguments and returns the boolean values

True or False.

The following logical operators are defined:

== Test of equality of two variables. a == b is True if and only if the value of a equals the value

of b.

< Less than

≤ Less than or equal to

> Greater than

>= Greater than or equal to

! Not. !a is True for a boolean value a if and only if a is False

! = not equal to. a! = b is equivalent to !(a == b)

When used in pseudocode conditions, the words “and” and “or” are used to denote logical AND and

logical (inclusive) OR between boolean values, for example:

if (condition1 and condition2):

. . .
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Majority Given a set S = s0, . . . , sn−1 of boolean values, majority(S) returns mean(S) where the

elements of S are intepreted as 0 if False and 1 if True. So if the number of True values is greater

than or equal to the number of False values, majority(S) returns True, otherwise it returns False.
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Part I

Stream access

3 Data encodings

Data is encoded in the Dirac bitstream in three basic ways: fixed-length bit-wise and byte-wise

encodings; variable-length codes; and arithmetic encoding.

This section defines how data bits are extracted from the bitstream and how sequences of bits are

interpreted as values of various types using fundamental data-reading functions, covering encodings

of the first two sorts. The extraction of arithmetic-encoded data is defined in Section 4.

3.1 Bit-packing and data input

This section defines the operation of the read bit(), read byte() and byte align() functions used for

direct access to the Dirac stream.

Access to the Dirac stream is bytewise, and a decoder is deemed to maintain a copy of the current

byte, state[current byte], and an index to the next bit to be read, state[next bit]. state[next bit]

is an integer from 0 (least-significant bit) to 7 (most-significant bit). Bits within bytes are accessed

from the msb first to the lsb.

Each access unit and individual frame is a whole number of bytes. Decoding from the start of an

access unit, state[next bit] is set to 7.

The read byte() function –

• returns state[current byte] if state[next bit] == 7

• sets state[next bit] = 7 and returns the next byte in the Dirac stream otherwise

The read bit() function is defined by

read bit() :

if (state[next bit] == 7):

state[current byte] = read byte()

bit = (state[current byte] À state[next bit])&1

state[next bit]− = 1

if (state[next bit] < 0):

state[next bit] == 7

return bit

The byte align() function discards data in the current byte and begins data access at the next byte,

unless input is already at the beginning of a byte:

byte align() :

state[next bit] = 7

This is used to ensure that a whole number of bytes are read before beginning reading a new stream

element.

3.2 Fixed-length code formats

3.2.1 Bool

The read bool() function returns –
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• True if read bit() is 1

• False if read bit() is 0

3.2.2 n-byte unsigned integer literal

A single byte may be interpreted as an unsigned integer value from 0 to 255.

An n-byte number in literal format shall be decoded by the recipe:

read uint lit(n) :

val = 0

for i = 0 to n− 1:

val+ = read byte() 3.1

val ¿= 8

return val

3.3 Variable-length code formats

Variable-length codes are used in two ways in the Dirac stream. The first use is for direct encoding

into the stream. The second use is for binarisation in the arithmetic encoding/decoding process so

that integer values may be coded and decoded using a binary arithmetic coding engine.

3.3.1 Unsigned interleaved exp-Golomb

This section defines the unsigned interleaved exp-Golomb data format and the operation of the

read uint() function.

Unsigned interleaved exp-Golomb data is decoded to produce unsigned integer values.The format

consists of two interleaved parts, and each code is an odd number, 2K + 1 bits, in length.

The K +1 bits in the even positions (counting from zero) are the “follow” bits, and the K bits in the

odd positions are the “data” bits bi which are used to construct the decoded value itself. A follow bit

value of 0 indicates a subsequent data bit, whereas a follow bit value of 1 terminates the code:

0 bK−1 0 bK−2 . . . 0 b0 1

The data bits bK−1, bK−2, . . . , b0 are the binary representation of the first K bits of the (K + 1)-bit

number N + 1, where N is the number to be decoded:

N + 1 = 1bK−1bK−2 . . . b0(base 2)

A table of encodings of the first 10 values is shown in Figure 1.

Although apparently complex, the interleaving ensures that the code has a very simple decoding loop.

The read uint() function returns an unsigned integer value and is defined by the recipe:

read uint() :

value = 1

while (read bool() == False):

value ¿= 1

if (read bool() == True):

value+ = 1

value− = 1

return value
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Bit sequence Decoded value

1 0

0 0 1 1

0 1 1 2

0 0 0 0 1 3

0 0 0 1 1 4

0 1 0 0 1 5

0 1 0 1 1 6

0 0 0 0 0 0 1 7

0 0 0 0 0 1 1 8

0 0 0 1 0 0 1 9

Figure 1: Example conversions from unsigned interleaved exp-Golomb-coded values to unsigned inte-

gers

Informative: Conventional exp-Golomb coding places all follow bits at the beginning as a prefix.

This is easier to read, but requires that a count of the prefix length be maintained. Values can only

be decoded in two loops – the prefix followed by the data bits. Interleaved exp-Golomb coding allows

values to be decoded in a single loop, without the need for a length count.

3.3.2 Signed interleaved exp-Golomb

This section defines the signed interleaved exp-Golomb data format and the operation of the read sint()

function.

The code for the signed interleaved exp-Golomb data format consists of the unsigned interleaved

exp-Golomb code for the magnitude, followed by a sign bit for non-zero values (Figure 2).

Bit sequence Decoded value

1 0

0 0 1 1 -1

0 0 1 0 1

0 1 1 1 -2

0 1 1 0 2

0 0 0 0 1 1 -3

0 0 0 0 1 0 3

0 0 0 1 1 1 -4

0 0 0 1 1 0 4

Figure 2: Example conversions from signed interleaved exp-Golomb-coded values to signed integers

The decoding operation is as follows.

read sint() :

value = read uint()

if (read bool() == True):

value = −value

return value
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4 Arithmetic decoding

This section describes the arithmetic decoding engine and processes for using it to extract data from

the Dirac stream.

The arithmetic decoding engine consists of two elements:

• a collection of state variables representing the state of the arithmetic decoder (Section 4.2)

• a set of functions for extracting values from the decoder and updating the decoder state (Section

4.4)

4.1 State and contexts

The arithmetic decoder state consists of the following decoder state variables:

• state[low], an integer representing the beginning of the current coding interval

• state[high], an integer representing the end of the current coding interval

• state[code], an integer within the interval from state[low] to state[high], determined from the

encoded bitstream

• state[bits left], a decrementing count of the number of bits yet to be read in

• state[contexts], a map of all the contexts used in the Dirac decoder

A context context is an integer array consisting of two positive values, context[0], and context[1],

representing counts of values 0 and 1 respectively. Contexts are accessed by decoding functions via

the indices defined in Section 4.5.

4.1.1 Rescaling contexts

An individual context is rescaled by halving the counts of 0 and 1 and ensuring that these counts do

not reach zero:

rescale context(context) :

context[0] À= 1

context[0]+ = 1

context[1] À= 1

context[1]+ = 1

4.2 Initialisation

At the beginning of the decoding of any data unit, the arithmetic decoding state is initialised as

follows:

initialise arithmetic decoding(block data length) :

state[bits left] = 8 ∗ block data length

state[low] = 0x0000

state[high] = 0x0000

state[code] = 0x0000

init contexts()

Contexts are initialised by the init contexts() function as follows:
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init contexts() :

for i = 0 to length(state[contexts])− 1:

state[contexts][i][0] = 1

state[contexts][i][1] = 1

4.3 Data input

The arithmetic decoding process accesses data in a contiguous block of bytes whose size is set on

initialisation (Section 4.2). The bits in this block are sufficient to allow for the decoding of all coeffi-

cients. However, the specification of arithmetic decoding operations in this section may occasionally

cause further bits to be read, even though they are not required for determining decoded values. For

this reason a read function read bita() is defined which returns 0 if the bounds of this block of data

have been exceeded:

read bita() :

if (state[bits left] == 0):

return 0

else:

state[bits left]− = 1

return read bit()

Informative: The Dirac arithmetic decoding engine uses 16 bit words, and so no more than 16

additional bits can be read beyond the end of the block. Hence it is sufficient to read in the entire

block of data and pad the end with two zero bytes to avoid a branch condition with each input bit.

4.4 Decoder functions

The arithmetic decoding engine is a multi-context, adaptive binary arithmetic decoder, performing

binary renormalisation and producing binary outputs. For each bit decoded, the semantics of the

relevant calling decoder function determine which contexts are passed to the arithmetic decoding

operations.

4.4.1 Shifting bits in

This section defines the operation of the shift bit in() and shift all bits() functions for reading bits

into the arithmetic decoding state variables.

shift bit in() :

state[high] ¿= 1

state[high]& = 0xFFFF

state[high]+ = 1

state[low] ¿= 1

state[low]& = 0xFFFF

state[code] ¿= 1

state[code]& = 0xFFFF

state[code]+ = read bita() 4.3

shift all bits() expands the interval between state[low] and state[high] until the msbs (bit 15) differ

and the interval no longer straddles the half-way point 0x8000.
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shift all bits() :

while (state[high]&0x8000) == 0x0&&(state[low]&0x8000) == 0x0):

shift bit in()

while ((state[high]&0x4000) == 0x0and(state[low]&0x4000) == 0x4000):

state[code]̂ = 0x4000

state[high]̂ = 0x4000

state[low]̂ = 0x4000

shift bit in()

Informative: Note that if 16-bit words (unsigned shorts) are used for decoder state variables

state[low], state[high] and state[code] then there is no need for &-ing with 0xFFFF. However, the

operations specified here are defined in terms of integers, since intermediate calculations require higher

dynamic range. In software, the efficiency of using short word lengths may or may not be offset by

the requirement to cast to other data types for these calculations.

4.4.2 Decoding boolean values

This section specifies the operation of the read boola() function for extracting a boolean value from

the Dirac stream. Before extracting any values, all possible bits are shifted in to ensure that the

decoding state has maximum information.

read boola(context index) :

shift all bits() 4.4.1

context = state[contexts][context index]

weight = context[0] + context[1]

scaler = (0x10000 + weight//2)//weight

probability0 = context[0] ∗ scaler

count = code− low + 1

range = high− low + 1

range times prob = (range ∗ probability0) >> 16

if (count > range times prob):

value = True

low = low + range times prob

context[1]+ = 1

else:

value = False

high = low + range times prob− 1

context[0]+ = 1

if ((context[0] + context[1]) > 255):

rescale context(state[contexts][context index]) 4.1.1

return value

Informative: The function scales the probability of 0 from the decoding context so that a prob-

ability of 1 is commensurate with the interval between state[low] and state[high]. If state[code] is

greater than this cut-off, then 1 (True) has been encoded, else 0 (False) has.

4.4.3 Arithmetic decoding of integer values

This section defines the operation of the read sinta(context set) function for extracting integer values

from a block of arithmetically coded data.
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4.4.3.1 Binarisation and contexts

Signed and unsigned integer values are binarised using interleaved exp-Golomb binarisation as per

Section 3.3: the read sinta() and read uinta() processes are essentially identical to the read sint()

and read uint() processes, except that instances of read bool() are replaced by instances of read ba()

(Section 4.4.2) using suitable contextualisation.

A choice of context depends upon whether the bit is a data bit, follow bit, or sign bit, and the position

of the bit within the binarisation: context set consists of three parts -

• an array of follow contexts, context set[follow] (indexed from 0 to length(context set[follow])−
1)

• a single data context context set[data]

• a sign context context set[sign] (ignored for unsigned integer decoding)

Each follow context is used for decoding the corresponding follow bit, with the last follow context being

used for all subsequent follow bits (if any) also. The follow context selection function follow context()

is defined by:

follow context(index, context set) :

pos = max(index, length(context set[follow])− 1

ctxindex = context set[follow][pos]

return state[contexts][ctx index]

So the last follow context is used for all the remaining follow bits also.

4.4.3.2 Unsigned integer decoding

Unsigned integers are decoded by:

read uinta(context set) :

value = 1

index = 0

while (read ba(follow context(index, context set)) == False):

value ¿= 1

if (read ba(state[contexts][context set[data])])):

value+ = 1

index+ = 1

value− = 1

return value

4.4.3.3 Signed integer decoding

read sinta() decodes first the magnitude then the sign, as necessary:

read sinta(context set) :

value = read uinta(contextset)

if (value! = 0):

if (read ba(state[contexts][context set[sign])]) == True):

value = −value

return value

4.5 Context indices

The following is a list of all the context indices used in Dirac arithmetic decoding operations:
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SIGN ZERO

SIGN POS

SIGN NEG

ZPZN F1

ZPNN F1

ZP F2

ZP F3

ZP F4

ZP F5

ZP F6+

NPZN F1

NPNN F1

NP F2

NP F3

NP F4

NP F5

NP F6+

COEFF DATA

ZERO BLOCK

Q OFFSET FOLLOW

Q OFFSET INFO

Q OFFSET SIGN

SB F1

SB F2

SB DATA

PMODE REF1

PMODE REF2

GLOBAL BLOCK

REF1x F1

REF1x F2

REF1x F3

REF1x F4

REF1x F5+

REF1x DATA

REF1x SIGN

REF1y F1

REF1y F2

REF1y F3

REF1y F4

REF1y F5+

REF1y DATA

REF1y SIGN

REF1x F1

REF1x F2

REF1x F3

REF1x F4

REF1x F5+

REF1x DATA

REF1x SIGN

REF2y F1

REF2y F2

REF2y F3

REF2y F4

REF2y F5+
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REF2y DATA

REF2y SIGN

YDC F1

YDC F2+

YDC DATA

YDC SIGN

UDC F1

UDC F2+

UDC DATA

UDC SIGN

VDC F1

VDC F2+

VDC DATA

VDC SIGN
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Part II

Stream parsing

5 Dirac stream specification

This section specifies the Dirac stream and stream parsing operations, excepting the decoding of

wavelet coefficients and motion data, which are deferred to Sections 7 and 6. The decoding operations

for extracting decoded pictures from parsed data are specified in Section 8.

The stream parsing specification is augmented by the parse diagrams in Appending A, which sum-

marise in graphical form the struture of the stream.

5.1 Introduction

A stream is a concatenation of Dirac sequences. A sequence is a concatenation of Access Units,

comprised of Access Unit headers and a number of picture data units, together with data headers

(“Parse Info”) allowing for efficient navigation of the sequence.

The essential difference between a stream and a sequence is that a sequence corresponds to a single

video sequence, meaning a stream of images of constant video parameters (picture dimensions, aspect

ratio, frame rate and so on as defined in Sections 5.7 and 5.8). Any change in video parameters

necessitates that a sequence be terminated and a new sequence started.

Default decoding parameters are computed based on the Access Unit header data. AU header data

(excluding the AU picture number) is required to be constant throughout a sequence (Section 5.5):

however the decoding parameters used for decoding pictures are not necessarily constant since they

may be overridden within the picture data.

As a result, the parsing and decoding model used in this specification maintains two sets of state

variables: the sequence or default state variable default state, holding the defaults to be used

throughout a sequence, and the state variable state holding the values to be used for decoding the

current picture, which may override the defaults for many variables. The picture state variable is

re-intialised from the default settings before each picture is decoded.

Informative: The requirement that default decoding parameters are overridden for each picture

– rather than, for example, changing defaults for all subsequent pictures – potentially causes a little

more overhead. However it greatly enhances random access: once the Access Unit header has been

read, any picture within the Access Unit can be successfully parsed independently, and decoding

may even be possible from a variety of points within the Access Unit. Since the AU data is constant

throughout the sequence, reading the AU header once allows any picture in the sequence to be parsed.

5.2 Stream

A stream is a concatenation of Dirac sequences. The process for parsing a stream is to parse all

sequences it contains.

5.2.1 Sequence

The data contained in a Dirac Sequence corresponds to a single video sequence with constant video

parameters as defined in Sections 5.7 and 5.8. A sequence is preceded by a Parse Info header which

indicates the beginning of the sequence with a parse code. A Dirac sequence can be excised from a

Dirac stream and decoded entirely independently.



5.3 Parse Info header 25

video sequence() :

parse info() 5.3

while (is access unit()): 5.3

access unit() 5.4

5.3 Parse Info header

This section specifies the operation of the parse info() process for parsing Parse Info header data.

This header is byte-aligned. It occurs at the beginning of a sequence, at the end of a sequence, before

an Access Unit header, and before each set of picture data. It is used to navigate through the stream

(Section 8). The values of Parse Info parameters determine the type and format of the subsequent

data structures, in particular indicating whether a picture is Intra or Inter coded, and if Inter how

many references it has.

parse info() :

byte align()

state[parse info prefix] = read uint lit(4)

state[parse code] = read byte()

state[next parse offset] = read uint lit(3)

state[previous parse offset] = read uint lit(3)

The Parse Info parameters shall satisfy the following constraints:

• state[parse info prefix] shall be set to be 0x42 0x42 0x43 0x44, which is ASCII for BBCD.

• state[parse code] shall be one of the supported values set out in Table 1

• state[next parse offset] shall be the number of bytes from the first byte of the current Parse Info

header to the first byte of the next Parse Info header, if there is one. If there is no subsequent

Parse Info header, it shall be be 0

• state[previous parse offset] shall be the number of bytes from the first byte of the current Parse

Info header to the first byte of the previous Parse Info header, if there is one. If there is no

subsequent Parse Info header, it shall be be 0

state[parse code] Bits Description

Number of

Reference

Pictures

0x00 0000 0000 Access Unit header –

0x0C 0000 1100 Intra Reference Picture 0

0x08 0000 1000 Intra Non Reference Picture 0

0x0D 0000 1101 Inter Reference Picture 1

0x0E 0000 1110 Inter Reference Picture 2

0x09 0000 1001 Inter Non Reference Picture 1

0x10 0000 1010 Inter Non Reference Picture 2

0x10 0001 0000 End of Sequence –

Table 1: Parse codes

A number of functions are defined based on the parse code value, considered as a bit-field, which

shall be used to direct subsequent decoding operations. All are boolean, except for num refs() which

returns an integer:

is AU() :

return !(state[parse code]&0x18)
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is picture() :

return ((state[parse code]&0x18) == 0x08)

is end of sequence() :

return ((state[parse code]&0x18) == 0x10)

is reference() :

return ((state[parse code]&0x04) == 0x04)

is non reference() :

return ((state[parse code]&0x04) == 0x00)

num refs() :

return (state[parse code]&0x03)

is intra() :

return (num refs() == 0)

is inter() :

return (num refs() > 0)

Informative: Next Parse Offset and Previous Parse Offset are added to the byte stream to simplify

parsing. Next Parse Offset represents the offset in bytes from the start of the current Parse Info to

the start of the next Parse Info. So counting forward Next Parse Offset bytes from the first byte

(0x42=B) of the current Parse Info should yield a byte of value 0x42=B corresponding to the start

of the next Parse Info. The Previous Parse Offset is the number of bytes backwards to the start of

the previous Parse Info header. The Previous Parse Offset of the current Parse Info therefore equals

the Next Parse Offset of the previous Parse Info.

The 4 byte Parse Info Prefix is present to allow an application to find a point from which to start

decoding. That is, the function of Parse Prefix Header is to synchronise the decoder with the byte

stream. Parsing of the stream can start from any Access Unit Header, and successful decoding once

the reference buffer has converged (see Section 8).

The decoder first needs to find a Parse Info structure. It should then check the Parse Code in the

Parse Info. If the following parse unit is an Access Unit Header then the decoder can start decoding.

If the it is a Picture then the decoder should skip forward by Next Parse Offset bytes (from the start

of the Parse Info Prefix) to the next Parse Info. The decoder would continue skipping forward until

it locates an Access Unit Header. Note that the decoder does not need to parse any intervening data

in order to navigate through the stream to find an Access Unit Header. The Previous Parse Offset is

provided to allow searching backwards through the byte stream.

Any particular instance of the Parse Info Prefix in the byte stream may not, necessarily, indicate

the start of a Parse Info structure. This is because other parts of the byte stream may, by chance,

introduce these bytes into the byte stream. In particular, the use of arithmetic coding in Dirac means

that it is impossible to directly avoid accidentally introducing the Parse Info Prefix. When encoding a

bytestream it is not necessary to avoid accidentally introducing Parse Info Prefix sequences. They are

present to allow synchronisation of the bytes stream with the decoder and this can be ensured, even

in the presence of spurious Parse Info Prefixes, as follows. When the decoder finds a Parse Info Prefix

it should skip forward by Next Parse Offset (or back by Previous Parse Offset) and check whether the

next three bytes are a Parse Info Prefix. If so the decoder can be reasonably certain that it has found

a genuine Parse Info Prefix. If it does not find another Parse Info Prefix it was probably unlucky

enough to have found a spurious Parse Info Prefix. In this case it should search for the next Prefix

and repeat the test.

The probability of a spurious Parse Info Prefix is low: 1 in 232 since the prefix is 4 bytes long. This

is the probability of finding two Parse Info Prefix sequences separated by Next Parse Offset. The test
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outlined in the previous paragraph is, therefore, more than adequate in practice. For the paranoid

the test may of course be extended.

The test for two appropriately separated Parse Info Prefixes is, anyway, prudent in any channel subject

to bit errors even in the absence of spurious Prefixes.

This defintion of Dirac only includes three types of Parse code: the AU header, those for different

picture sorts, and that indicating the end of the sequence. It is envisaged that other codes may be

introduced in future to indicate data such as user data or extension data.

5.4 Access Units

This section specifies the operation of the access unit() process for parsing an Access Unit. Access

Units provide points at which the stream may be randomly accessed. Specifically, a stream may be

successfully parsed from any Access Unit Header (Section 5.5) without reference to prior data, and

successfully decoded once the reference picture buffer has converged (Section 8).

The Access Unit parsing process is given by:

access unit() :

access unit header() 5.5

parse info() 5.3

while (is picture() == True): 5.3

picture() 5.9

parse info() 5.3

Each Access Unit begins with the Access Unit header. Picture data may be read from that point

until the next Access Unit or until the end of the sequence/stream. Data is read into the default

parameter set by parsing the Access Unit header (Section 5.5).

5.5 Access Unit header

This section specifies the structure of the Access Unit header. This Access Unit header is byte aligned.

Parsing this header consists in reading the Access Unit parameters (parse, source and sequence pa-

rameters) and initialising the default decoder parameters default state as a result of these. Access

Unit parameters remain constant throughout a sequence, so in theory the AU header may be skipped

after being read once.

access unit header() :

byte align()

parse parameters() 5.6

sequence parameters() 5.7

source parameters() 5.8

Informative: Note that source parameters indicate whether the video sequence is interlaced or

progressive. In particular a change from interlaced to progressive video, or vice-versa, necessitates

that the Dirac sequence be terminated and a new sequence begun.

The source parameters are not used by the Dirac decoder. Source and sequence parameter values

should be made available using appropriate interfaces and standards to any downstream video pro-

cessing device or display, but their use and interpretation by other devices is not specified in this

standard. Neverthless, Appendix B specifies the video systems model that should be used for the

interpretation of source and sequence parameters.
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5.6 Access unit parse parameters

This section specifes the structure of the Access Unit Parse Parameters, which is as follows:

parse parameters() :

default state[au picture number] = read uint lit(4)

default state[version major] = read uint()

default state[version minor] = read uint()

default state[profile] = read uint()

default state[level] = read uint()

Access Unit Parse parameter data, with the exception of default state[au picture number] shall

remain constant (byte-for-byte identical) for all instances of the Access Unit header within a Dirac

sequence.

5.6.1 AU picture number

default state[au picture number] shall be equal to the picture number of the immediately succeeding

picture, if there is one.

5.6.2 Version number

The version number of the Dirac syntax specification (this document) shall be used by the decoder to

determine whether it can decode the sequence. It falls into two integer parts, the major and minor ver-

sion, written as M.m, where M = default state[version major] and m = default state[version minor].

The major version defines the version of the syntax with which the stream complies. A decoder

complies with a major version number if it can parse all bit streams that comply with that version

number. Such a compliant decoder must be able to parse all previous versions too. Decoders that

comply with a major version of the specification may not be able to parse the bit stream corresponding

to a later specification.

Depending on the profile and level defined a decoder compliant with a given major version number

may still not be able to decode a bitstream.

All minor versions of the specification should be functionally compatible with earlier minor versions

with the same major version number. Later minor versions may contain corrections, clarifications,

and disambiguations; they must not contain new features.

5.6.3 Profiles and levels

A profile determines a toolset that is sufficient to decode a sequence. A level determines decoder re-

sources (picture and data buffers; computational resources) sufficient to decode a sequence. Applicable

values of profile and level are specified in Appendix D.

5.7 Access unit sequence parameters

The AU sequence parameters consist of the video format, the image dimensions, the chroma format

and the video depth. AU sequence parameter data shall remain constant throughout a Dirac sequence.
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sequence parameters() :

default state[video format] = read uint()

set format defaults() 5.7.1

image dimensions() 5.7.2

chroma format() 5.7.3

video depth() 5.7.4

5.7.1 Setting format defaults

Default parameter values are set based on the value of default state[video format], as specified in Ap-

pendix C. These cover sequence and source parameters, but also decoding parameters such as wavelet

transform depth and motion compensation block sizes. For example, if default state[video format] ==

4, CIF defaults are set, with picture size equal to 252 × 288, 4:2:0 chroma format, and 12 × 12 luma

blocks.

Sequence and source parameters may be overridden by subsequent data in the AU header. For

example, an image width of 360 may be encoded as per Section imagedimensions, overriding the CIF

format defaults. Decoding parameters may be overridden by data in individual pictures.

5.7.2 Custom image dimensions

If a flag is set, the image dimensions specified by the video format defaults may be overridden:

image size() :

custom dimensions flag = read bool()

if (custom dimensions flag == True):

default state[luma width] = read uint()

default state[luma height] = read uint()

5.7.3 Chroma formats

If a flag is set, the chroma format specified by the video format defaults is overridden.

chroma format() :

chroma format flag = read bool()

if (chroma format flag == True):

default state[chroma format index] = read uint()

chroma dimensions()

The supported chroma formats are specified in Table 2:

default state[chroma format index] Chroma format

0 4:4:4

1 4:2:2

1 4:2:0

Table 2: Supported chroma formats

Chroma dimensions are set according to the scaling implied by the chroma format:
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chroma dimensions() :

if (default state[chroma format index] == 0):

default state[chroma width] = default state[luma width]

default state[chroma height] = default state[luma height]

else if (default state[chroma format index] == 1):

default state[chroma width] = default state[luma width]//2

default state[chroma height] = default state[luma height]

else:

default state[chroma width] = default state[luma width]//2

default state[chroma height] = default state[luma height]//2

Utility functions returning the chroma subsampling factors are also defined:

chroma h ratio() :

if (default state[chroma format index] == 0):

return 1

else if (default state[chroma format index] == 1):

return 2

else:

return 2

chroma h ratio() :

if (default state[chroma format index] == 0):

return 1

else if (default state[chroma format index] == 1):

return 1

else:

return 2

5.7.4 Video depth

If a flag is set, the default video depth specified by the video format is overridden:

video depth() :

video depth flag = read bool()

if (video depth flag == True):

default state[video depth] = read uint()

5.8 Access unit source parameters

The Access Unit source parameters consist of: the scan format, frame rate, aspect ratio, clean area,

signal range and colour specification. These parameters have been grouped together as they directly

influence how a downstream display device will display decoded pictures produced by a Dirac decoder.

Access Unit source parameter data shall remain constant throughout a Dirac sequence. Default values

are derived from the video format, as specified in Appendix C.

Display and downstream processing falls outside the scope of this specification, and hence the inter-

pretation of these parameters is not normatively defined, with the exception of frame rate (Section

5.8.2) which imposes requirements on compliant decoders for a given level and profile (Appendix D).

Appendix B describes how the source should be interpreted. Deviation from the description there

will reduce video quality, perhaps significantly, and in embedding a Dirac decoder in a display or

processing device manufacturers should take the greatest care in adhering to that description.
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source parameters() :

scan format() 5.8.1

frame rate() 5.8.2

aspect ratio() 5.8.3

clean area() 5.8.4

signal range() 5.8.5

colour spec() 5.8.6

5.8.1 Scan format

Scan Format parameters are concerned with interlace. If default state[interlaced] = True, then the

video should be displayed as interlaced video. The process for parsing the Scan Format parameters

is as follows:

scan format() :

scan format flag = read bool()

if (scan format flag == True):

default state[interlaced] = read bool()

if (default state[interlaced]):

field dominance flag = read bool()

if (field dominance flag == True):

default state[top field first] = read bool()

field interleaving flag = read bool()

if (field interleaving flag == True):

default state[sequential fields] = read bool()

Informative: If we have an interlaced source the field lines can either be interleaved line by line

(pseudo-progressive format) or interleaved field by field (sequential field format, required for low delay

and low resource coding). Pseudo-progressive format is set as default for all the interlaced video

formats. The field interleaving flag indicates non-default field interleaving, and the sequential fields

(Boolean) parameter indicates whether the fields are interleaved as pseudo-progressive or sequential

fields.

Note that if the video stream is in sequential field format, then picture dimensions refer to fields rather

than frames. Even picture numbers will in this case refer to even fields, and odd picture numbers to

odd fields. In pseudo-progressive mode, picture dimensions are frame dimensions.

scan format() :

scan format flag = read bool()

if (scan format flag == True):

default state[interlaced] = read bool()

if (default state[interlaced]):

field dominance flag = read bool()

if (field dominance flag == True):

default state[top field first] = read bool()

field interleaving flag = read bool()

if (field interleaving flag == True):

default state[sequential fields] = read bool()

5.8.2 Frame rate

The process for parsing Frame Rate parameters is as follows:
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frame rate() :

frame rate flag = read bool()

if (frame rate flag == True):

index = read uint()

if (index == 0):

default state[frame rate numer] = read uint()

default state[frame rate denom] = read uint()

else:

preset frame rate() uint

The decoded value of index shall fall in the range 0 to 8.

preset frame rate(index) sets frame rate values as specified in Table 15 (Appendix B.8).

The true frame rate is
default state[frame rate numer]

default state[frame rate denom]
.

Note that what is encoded is frame rate, not picture rate. If default state[sequential fields] = True

then picture rate is twice the encoded frame rate. Supported frame rates in a given profile and level

are specified in Appendix D.

5.8.3 Aspect ratio

The process for extracting aspect ratio parameters is as follows:

aspect ratio() :

aspect ratio flag = read bool()

if (apect ratio flag == True):

index = read uint()

if (index == 0):

default state[aspect ratio numer] = read uint()

default state[aspect ratio denom] = read uint()

else:

preset aspect ratio(index)

The decoded value of index shall fall in the range 0 to 3.

preset aspect ratio(index) sets aspect ratio values as specified in Table 16 (Appendix B.8).

The true aspect ratio is
default state[aspect ratio numer]

default state[aspect ratio denom]
.

It is a pixel aspect ratio.

5.8.4 Clean area

The process for extracting the clean area parameters is as follows:

clean area() :

clean area flag = read bool()

if (clean area flag == True):

default state[clean width] = read uint()

default state[clean height] = read uint()

default state[left offset] = read uint()

default state[top offset] = read uint()

The clean area determines the part of the picture that should be displayed. The following restrictions

shall apply:
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• state[clean width] + state[left offset] ≤ default state[luma width]

• state[clean height] + state[top offset] ≤ default state[luma height]

5.8.5 Signal range

Picture component data output by the Dirac decoder is in the range 0 to 2default state[video depth]− 1.

The signal range parameters determine how these data ranges should be adjusted prior to matrixing

operations (Appendix ??).

The process for extracting the signal range parameters is as follows:

signal range() :

signal range flag = read bool()

if (signal range flag == True):

index = read uint()

if (index == 0):

default state[luma offset] = read uint()

default state[luma excursion] = read uint()

default state[chroma offset] = read uint()

default state[chroma excursion] = read uint()

else:

preset signal ranges(index)

The decoded value of index shall fall in the range 0 to 3.

preset signal ranges(index) sets signal range values as specified in Tables 17 and 18 (Appendix B.8).

The offset and excursion values shall satisfy the following constraints:

• 0 ≤ default state[luma offset] < 2default state[video depth]

• 0 ≤ default state[luma excursion] < 2default state[video depth]

• 0 ≤ default state[chroma offset] < 2default state[video depth]

• 0 ≤ default state[chroma excursion] < 2default state[video depth]

5.8.6 Colour specification

This section specifies the colour spec() parsing process. The colour specification consists of primaries,

matrix and transfer function. Defaults are available for all three collectively and individually. The

process is:

colour spec() :

colour specf lag = read bool()

if (colour spec flag == True):

index = read uint()

preset colour specs(index)

if (colour spec index == 0):

colour primaries() 5.8.6.1

colour matrix() 5.8.6.2

transfer function() 5.8.6.3

index shall fall in the range 0 to 3.

preset colour spec(index) sets the colour primaries, matrix and transfer function as specified in Table

19 (Appendix B.8).



5.9 Picture 34

5.8.6.1 Colour primaries

The colour primaries() process is as follows:

colour primaries() :

colour primaries flag = read bool()

if (colour primaries flag == True):

index = read uint()

preset colour primaries(index)

index shall fall in the range 0 to 3. preset colour primaries(index) sets the colour primaries as

specified in Table 20 (Appendix B.8).

5.8.6.2 Colour matrix

The colour matrix() process is as follows:

colour matrix() :

colour matrix flag = read bool()

if (colour matrix flag == True):

index = read uint()

preset colour matrices(index)

index shall fall in the range 0 to 2. preset colour matrices(index) sets the colour matrix as specified

in Table 21 (Appendix B.8).

5.8.6.3 Transfer function

The transfer function() process is as follows:

transfer function() :

transfer function flag = read bool()

if (transfer function flag == True):

index = read uint()

preset transfer functions(index)

index shall fall in the range 0 to 3. preset transfer functions(index) sets the transfer function as

specified in Table 22 (Appendix B.8).

5.9 Picture

This Section specifies the operation of the picture() parsing process. The process for decoding and

outputting pictures is specified in Section 8.

Picture data may be successfully parsed after parsing any Access Unit header within the same Dirac

sequence. The parsing process is:

picture() :

init decode params() 5.9.1

picture header() 5.9.2

if (is inter()): 5.3

picture prediction() 5.10

wavelet transform() 5.11

5.9.1 Initialising decoding parameters

The default parameters are used to initialise the decoder state prior to decoding each picture:
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init decode params() :

for each var in args(default state):

state[var] = default state[var]

State variables and default state variables are listed in the index.

5.9.2 Picture header

The picture header is byte aligned and follows a Parse Info header with a picture parse code. The

process for parsing the picture header is as follows:

picture header() :

bytealign()

state[picture number] = read byte lit(4)

if (is inter()): 5.3

reference picture numbers()

retired picture list()

Picture numbers are not required to be unique within a sequence.

Reference picture numbers are encoded differentially with respect to the picture number:

reference picture numbers() :

state[ref1 picture number] = (state[picture number] + read sint())%232

if (num refs() == 2): 5.3

state[ref2 picture number] = (state[picture number] + read sint())%232

The retired picture list is a list of pictures to be removed from the reference picture buffer before the

current picture is decoded. The rules for the use of the retired picture list are specified in Section 8.4.

The list of retired picture numbers is also encoded differentially with respect to the picture number:

retired picture list() :

num retired pictures = read uint()

for i = 0 to num retired pictures− 1:

state[retired picture list][i] = (state[picture number] + read sint())%232

5.10 Picture prediction

This section specifies the picture prediction() process for parsing picture prediction data. The process

consists of two parts: extracting picture prediction parameters and decoding and extracting motion

vector fields for motion compensation, as follows:

picture prediction() :

picture prediction parameters() 5.10.1

block data() 6

The decoding and generation of block motion vector fields is specified in Section 6. The remainder of

this section is concerned with the overall structure of the picture prediction data and the process for

parsing and setting picture prediction parameters, including global motion parameters.

The two elements of the picture prediction process correspond to two elements of the Dirac stream,

the picture prediction parameters and the block motion data. Global motion parameters are used

to construct a global motion vector field, and block motion data is used to provide motion vectors

block-by-block. Both elements may not be present, depending upon flags signalled within the stream.

Both elements are byte-aligned within the stream.
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5.10.1 Picture prediction parameters

Picture prediction parameters consist of metadata required for successful parsing of the motion data

and for performing motion compensation. It includes data indicating whether and how global motion

is used, the size of blocks, and the weightings used for reference pictures in motion compensation

(Section 10).

picture prediction parameters() :

block parameters() 5.10.2

motion vector precision() 5.10.4

global motion() 5.10.5

picture prediction mode() 5.10.6

reference picture weights() 5.10.7

5.10.2 Block parameters

This Section specifies the operation of the block parameters() process for setting the block parame-

ters, consisting of the state variables state[luma xblen], state[luma yblen], state[luma xbsep], and

state[luma ybsep] defining luma blocks, and state[chroma xblen], state[chroma yblen], state[chroma xbsep],

and state[chroma ybsep] defining chroma blocks.

Before this process is invoked, default block parameters are set by the video format encoded in the

Access Unit header (Section 5.5). These may be temporarily overridden for the current picture if a

flag is set, either by a preset or by explicit signalling:

block parameters() :

block params flag = read bool()

if (block params flag):

index = read uint()

if (index == 0):

state[luma xblen] = read uint()

state[luma yblen] = read uint()

state[luma xbsep] = read uint()

state[luma ybsep] = read uint()

else:

preset block params(index)

chroma block params() 5.10.3

index shall fall in the range 0 to 4. preset block params(index) sets the transfer function as specified

in Table 3 (note that chroma block parameter values are computed from luma values in Section

5.10.3).

Block parameters

index state[luma xblen] state[luma yblen] state[luma xbsep] state[luma ybsep]

1 8 8 4 4

2 12 12 8 8

3 16 16 12 12

4 24 24 16 16

Table 3: Luma block parameter presets

Block parameters shall satisfy the following constraints:

1. state[luma xblen], state[luma yblen], state[luma xbsep], and state[luma ybsep] shall all be

positive multiples of 4
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2. state[luma xblen] ≥ state[luma xbsep] and state[luma yblen] ≥ state[luma ybsep]

3. state[luma xblen]−state[luma xbsep] and state[luma yblen]−state[luma ybsep] shall be pow-

ers of 2 other than 1

4. state[chroma xblen] − state[chroma xbsep] and state[chroma yblen] − state[chroma ybsep]

shall be powers of 2 other than 1

Informative: Note that these requirements do not preclude length from equalling separation, i.e.

motion compensation blocks are not overlapped. This may improve quality at higher bitrates.

5.10.3 Setting chroma block parameters

This section specifies the operation of the chroma block params() process, which determines chroma

block dimensions from luma block dimensions. Chroma block parameters are equal to the correspond-

ing luma block parameters scaled according to the chroma vertical and horizontal subsampling ratios.

In this way chroma blocks and luma blocks are co-located in the video picture.

chroma block params()() :

state[chroma xblen] = state[luma xblen]//chroma h ratio()

state[chroma yblen] = state[luma yblen]//chroma v ratio()

state[chroma xbsep] = state[luma xbsep]//chroma h ratio()

state[chroma ybsep] = state[luma ybsep]//chroma v ratio()

[Note that all the stuff about recomputing the chroma block lengths is now redundant since we allow

non-overlapping blocks as well]

5.10.4 Motion vector precision

This section specifies the motion vector precision() process for setting the precision (number of sub-

pixel accuracy bits) used for motion compensation.

motion vector precision() :

motion vector precision flag = read bool()

if (motion vector precision flag == True):

state[mv precision] = read uint()

state[mv precision] shall lie in the range 0 (pixel-accurate) to 3 (1/8th-pixel accurate).

5.10.5 Global motion

[Say something about global motion data structures?]

Global motion parameters are encoded if a flag is set. Up to two sets are encoded, depending upon

the number of references:

global motion() :

state[using global] = read bool()

if (state[using global] == True):

global motion parameters(state[global params][1])

if (num refs() == 2):

global motion parameters(state[global params][2])

Global motion parameters state[global params] consist of three elements:
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• an integer pan/tilt vector

b =

 
b0

b1

!

• an integer matrix element

A =

 
A0,0 A0,1

A1,0 A1,1

!

capturing zoom, rotation and shear, together with a scaling exponent

• an integer perspective element

c =

 
c0

c1

!

capturing the effect of non-orthogonal projection onto the image plane, together with a scaling

exponent

Their interpretion and the process for generating a global motion vector field is specified in Section

10.7. These elements are parsed in turn:

global motion parameters(gparams) :

pan tilt(gparams)

zoom rotate shear(gparams)

perspective(gparams)

The pan tilt() process extracts horizontal and vertical translation elements:

pan tilt(gparams) :

gparams.b = 0

nonzero pan tilt flag = read bool()

if (nonzero pan tilt flag == True):

gparams.b0 = read sint()

gparams.b1 = read sint()

The zoom rotate shear() process extracts a linear matrix element:

zoom rotation shear(gparams) :

nontrivial zrs flag = read bool()

if (nontrivial zrs flag == True):

gparams[ZRS exp] = read uint()

gparams.A0,0 = read sint()

gparams.A0,1 = read sint()

gparams.A1,0 = read sint()

gparams.A1,1 = read sint()

else:

gparams[ZRS exp] = 0

gparams.A =

 
1 0

0 1

!

The perspective() process extracts horizontal and vertical perspective elements:
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perspective(gparams) :

nonzero perspective flag = read bool()

if (nonzero perspective flag == True):

gparams[perspective exp] = read uint()

gparams.c0 = read sint()

gparams.c1 = read sint()

else:

gparams[perspective exp] = 0

gparams.c = 0

5.10.6 Picture prediction mode

The picture prediction mode encodes alternative methods of motion compensation.

picture prediction mode() :

pic pred mode flag = read bool()

if (pic pred mode flag == True):

state[picture prediction mode] = read uint()

else:

state[picture prediction mode] = 0

state[picture prediction mode] shall be 0.

5.10.7 Reference picture weight values

Alternative reference picture weight values may be defined to override the video format defaults:

reference picture weights() :

non default weights flag = read bool()

if (non default weights flag == True):

state[refs weight precision] = read uint()

state[ref1 weight] = read sint()

if (num refs == 2):

state[ref2 weight] = read sint()

For bi-directional prediction modes, reference 1 data will be weighted by

state[ref1 weight]

2state[refs weight precision]

and reference 2 data by

state[ref2 weight]

2state[refs weight precision]

(Section 10.4).

5.11 Wavelet transform

The wavelet tranform() function parses metadata determining the wavelet transform (including

filters, wavelet depth, and code block structures) together with the transformed wavelet coefficients.

Decoded wavelet transform coefficient data is stored in the state variables state[y transform], state[u transform]

and state[v transform] for subsequent processing using the inverse wavelet transform (Section 9).
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wavelet transform() :

state[zero residual] = False

if (is inter()): 5.3

state[zero residual] = read bool()

if (state[zero residual] = False):

transform parameters() 5.11.1

state[component width] = state[luma width]

state[component height] = state[luma height]

state[y transform] = transform data()
7.2.1

state[component width] = state[chroma width]

state[component height] = state[chroma height]

state[u transform] = transform data() 7.2.1

state[v transform] = transform data() 7.2.1

If state[zero residual] = True then all component pixels will be set to zero prior to motion compen-

sation (Section 8).

Wavelet coefficients have been encoded using entropy coding, and their decoding is specified in Section

7. The remainder of this section specifies the decoding of transform parameters.

5.11.1 Wavelet transform parameters

The wavelet transform parameters encode the filter to be used, the depth of filtering and how subbands

are spatially partitioned:

transform parameters(state) :

wavelet filter() 5.11.1.1

wavelet depth() 5.11.2

spatial partition() 5.11.3

5.11.1.1 Wavelet filters

A variety of preset wavelet filters are available, encoded as a values of state[wavelet index], which is

an index into Table 4. Default wavelet filters are the Deslauriers-Debuc (9,3) filter for intra pictures

and the LeGall (5,3) filter for inter pictures. If a flag is set, other presets may be used. Their

interpretation and lifting implementations are specified in Section 9.4.

wavelet filter() :

non default wavelet flag = read bool()

if (non default wavelet flag == True):

state[wavelet index] = read uint()

else:

if (is intra() == True):

state[wavelet index] = default state[wavelet index][INTRA]

else:

state[wavelet index] = default state[wavelet index][INTER]

state[wavelet index] shall lie in the range 0 to 7.

Informative: For consistency, the filter nomenclature (m, n) refers to the length of the analysis low-

pass and high-pass filters in the conventional prefiltering (i.e. before subsampling) model of wavelet

filtering. They do not reflect the length of lifting filters, which operate in the subsampled domain:

see Section 9.4. Deslauriers-Debuc filters are normally referred to in terms of the number of vanishing
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state[wavelet index] Filter

0 Deslauriers-Debuc (9,3)

1 LeGall (5,3)

2 Deslauriers-Debuc (13,5)

3 Haar with no shift

4 Haar with single shift per level

5 Haar with double shift per level

6 Fidelity filter

7 Daubechies (9,7) integer approximation

Table 4: Wavelet filter presets

moments of their synthesis filters, so the (9,3) and (13,5) filters may be referred to in the literature

as (2,2) and (4,2) filters respectively.

5.11.2 Wavelet depth

The wavelet depth determines the number of times the vertical and horizontal wavelet filters may be

applied. The wavelet depth() parsing process is as follows:

wavelet depth() :

non default wavelet depth flag = read bool()

if (non default wavelet depth flag == True):

state[wavelet depth] = read uint()

Allowable state[wavelet depth] values are determined by the level and profile (Appendix D). The

wavelet depth determines the number of subbands and the the dimensions of the subband data array

(Section 7.1.1).

5.11.3 Spatial partition of wavelet data

Each subband may be partitioned into a number of code blocks. The number of codeblocks to be used

for subbands at level level is encoded in state[codeblocks][level][v] and state[codeblocks][level][h]

respectively.

spatial partition() :

spatial partition flag = read bool()

if (spatial partition flag == True):

nondefault partition flag = read bool()

if (nondefault partition flag == True):

depth = state[wavelet depth]

for level = 0 to depth:

state[codeblocks][level][h] = read uint()

state[codeblocks][level][v] = read uint()

index = read uint()

state[codeblock mode] = codeblock mode(index)

else:

if (is intra() == True):

state[codeblocks] = default state[codeblocks][INTRA]

else:

state[codeblocks] = default state[codeblocks][INTER]

index shall lie in the range 0 to 2, and codeblock mode sets the codeblock mode according to Table 5.



5.11 Wavelet transform 42

The maximum number of codeblocks vertically shall be less than or equal subband height(level)//4

and the number of codeblocks horizontally shall be less than or equal to subband width(level)//4

(subband dimensions as specified in Section subbandwidthheight).

index state[codeblock mode]

0 SINGLE QUANT

1 MULTI QUANT

2 Undefined

Table 5: Codeblock modes
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6 Motion data decoding

This section specifies the operation of the block data() process for extracting block motion data from

the Dirac stream.

Block data is aggregated into superblocks, consisting of a 4x4 array of blocks. The number of su-

perblocks horizontally and vertically is determined so that there are sufficient superblocks to cover

the picture area. Superblocks may overlap the right and bottom edge of the picture.

Informative: Since superblocks may overlap the right and bottom edge of the picture, blocks in

such superblocks may also overlap the edges or even fall outside the picture area altogether. Motion

data for blocks which fall outside the picture area is still decoded, but will not be used for motion

compensation (Section ??).

Unlike macroblocks in MPEG standards, a superblock does not encapsulate all data within a given

area of the picture. It is merely an aggregation device for motion data, and for this reason a different

nomenclature has been adopted.

6.1 Motion data conventions

For the purposes of this specification, block motion data is stored in a two dimensional array state[block data]

of block data structures. A block motion data element b = state[block data][j][i] consists of:

• A motion vector for reference 1, b[ref1], with integral horizontal and vertical components

b[ref1].x and b[ref1].y

• A motion vector for reference 2, b[ref2], with integral horizontal and vertical components

b[ref2].x and b[ref2].y

• A set of integral DC values, b[dc][Y ], b[dc][U ], and b[dc][V ] for each component

• A prediction mode, b[mode], consisting of two flags b[mode][1] and b[mode][2] indicating whether

the corresponding reference is to be used for predicting block (i, j)

Four prediction modes shall be supported by the decoder:

• INTRA- corresponding to b[mode][1] = False and b[mode][2] = False, and using DC prediction

only

• REF1ONLY- corresponding to b[mode][1] = True and b[mode][2] = False, and using a predic-

tion from Reference 1 only

• REF2ONLY- corresponding to b[mode][1] = False and b[mode][2] = True, and using a predic-

tion from Reference 2 only

• REF1AND2- corresponding to b[mode][1] = True and b[mode][2] = True, and using a predic-

tion from Reference 1 and Reference 2

In this way, Reference X is used for prediction if and only if b[mode][X] = True.

6.2 Motion data decoding process

This section specifies the overall operation of the block data() process for extracting block mo-

tion data elements: motion vectors and block prediction modes. This process is called by the

picture prediction() process (Section 5.10) and depends upon the parameters that have been ex-

tracted and set in the picture prediction parameters() process (Section 5.10.1).

Block motion data elements are all coded differentially with respect to a spatial prediction. The

spatial prediction processes for the block motion elements are specified in Section 6.2.5
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6.2.1 Overall decoding loop

The decoding loop for block data iterates over all superblocks in raster order:

block data() :

initialise motion data() 6.2.2

length = read uint()

byte align()

initialise arithmetic decoding(length) 4.2

superblock count = 0

for v = 0 to state[superblocks y]:

for h = 0 to state[superblocks x]:

superblock(4 ∗ v, 4 ∗ h)

superblock count+ = 1

if (superblock count == 32):

superblock count = 0

for i = 0 to len(state[contexts])− 1:

rescale context(i) 4.1

byte align()

Informative: The specification for parsing and decoding block data is written indicating that

a sequence of superblocks are read following the block data length. This is conceptually correct.

However, in practice it may be more efficient to read the whole of the block data (excluding the

block data length) into a buffer before parsing and decoding. To facilitate this the arithmetic coded

superblock data is byte aligned, i.e. starts at the beginning of a byte boundary and occupies a whole

number of bytes.

One reason for the improved efficiency afforded by first reading into a buffer is because the arith-

metic coding engine may require (up to) two extra bytes of data for its output to converge. In this

specification this feature is provided by testing that the amount of data requested has not exceeded

length bytes and, if it has, inputting a zero byte. By reading the data directly into a buffer of length

length + 2 this test can be avoided.

6.2.2 Motion data initialisation

This section specifies the operation of the initialise motion data() process. It sets the dimen-

sion variables determining the number of blocks and superblocks and hence the dimension of the

state[block data] array encapsulating block motion data.

The number of superblocks horizontally and vertically is set by:

state[superblocks x] =

‰
state[luma width]

4 ∗ state[luma xbsep]

ı

state[superblocks y] =

‰
state[luma height]

4 ∗ state[luma ybsep]

ı

The number of blocks horizontally and vertically is set by:

state[blocks x] = 4 ∗ state[superblocks x]

state[blocks y] = 4 ∗ state[superblocks y]

The array state[block data] is set to have horizontal dimension state[blocks x] and vertical dimension

state[blocks y].
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The array state[sb split] is set to have horizontal dimension state[superblocks x] and vertical dimen-

sion state[superblocks y].

6.2.3 Superblock decoding

This section specifies the process superblock(y, x) for decoding a superblock containing the blocks

with horizontal indices x, x + 1, x + 2, x + 3 and vertical indices y, y + 1, y + 2, y + 3.

Data for blocks within each superblock is preceded by a superblock header containing a split mode.

There are three possible split modes: 0, 1 and 2. In split mode 0, a single set of block data is encoded,

which is to be used for all blocks within the superblock. In split mode 1, four sets of block data is

encoded, to be used for each of the four sets of 2x2 blocks within the superblock. In split mode 2, all

sixteen sets of block data are encoded.

superblock(y, x) :

sb split(y//4, x//4) 6.2.3.1

block count = 2state[sb split][y//4][x//4]

step = 4//block count

for q = 0 to block count− 1:

for p = 0 to block count− 1:

block(y + q ∗ step, x + p ∗ step) 6.2.4

propagate data(y + q ∗ step, x + p ∗ step, step) 6.2.3.2

6.2.3.1 Superblock splitting mode The sb split(y, x) decodes the superblock splitting mode

at superblock coordinates (x, y).

sb split(ypos, xpos) :

state[sb split][ypos][xpos] = read uinta(sb split contexts())

state[sb split][ypos][xpos]+ = split prediction(ypos, xpos) 6.2.5.2

state[sb split][ypos][xpos]% = 3

6.2.3.2 Propagating data between blocks The propagate data(s, r, k) copies decoded block

data from the top-left-most block of a set of k × k blocks:

propagate data(s, r, k) :

for j = s to s + k − 1:

for i = r to r + k − 1:

state[block data][j][i] = state[block data][s][r]

6.2.4 Block decoding

The block decode(y, x) process parses block motion data for the block at coordinates (x, y). If

state[using global] is set then a block will either be intra or will use global motion compensation

according to the block mode, and for non-intra blocks a flag is decoded indicating whether this is so.

If the block is not intra, and not globally motion compensated, then motion vectors are decoded.
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block decode(y, x) :

state[block data][y][x][mode] = block mode(y, x) 6.2.4.1

if (state[block data][y][x][mode] == INTRA):

state[block data][y][x][global] = False

block dc(y, x) 6.2.4.4

else:

if (state[using global] == True):

block global(y, x) 6.2.4.2

else:

state[block data][y][x][global] = False

if (state[block data][y][x][global] = False):

block vectors(y, x) 6.2.4.3

Informative: Note that if the picture is using global motion, block global motion vectors are never

used: the

6.2.4.1 Block mode

The block mode(ypos, xpos) process parses the block prediction mode for the block at position

(xpos, ypos). Each bit of the block prediction mode is decoded separately.

block mode(ypos, xpos) :

state[block data][ypos][xpos][mode][1] = read boola(PMODE REF1)

state[block data][ypos][xpos][mode][1] ˆ = mode prediction(ypos, xpos, 1) 6.2.5.3

if (state[num refs] == 2):

state[block data][ypos][xpos][mode][2] = read boola(PMODE REF1)

state[block data][ypos][xpos][mode][2] ˆ = mode prediction(ypos, xpos, 2) 6.2.5.3

6.2.4.2 Block global motion flag

The block global(ypos, xpos) process parses the block global motion flag for the block at position

(xpos, ypos).

block mode(ypos, xpos) :

state[block data][ypos][xpos][global] = read boola(GLOBAL BLOCK)

state[block data][ypos][xpos][global] ˆ = block global prediction(ypos, xpos) 6.2.5.4

6.2.4.3 Block motion vectors

The block motion(ypos, xpos) process parses the block motion vectors for the block at position

(xpos, ypos).

block motion(ypos, xpos) :

if (state[block data][ypos][xpos][mode][1] == True):

state[block data][ypos][xpos][ref1].x = read sinta(ref1x contexts()) 6.2.6.2

state[block data][ypos][xpos][ref1].y = read sinta(ref1y contexts()) 6.2.6.2

state[block data][ypos][xpos][ref1]+ = mv prediction(ypos, xpos, 1)

if (state[block data][ypos][xpos][mode][2] == True):

state[block data][ypos][xpos][ref2].x = read sinta(ref2x contexts()) 6.2.6.2

state[block data][ypos][xpos][ref2].y = read sinta(ref2y contexts()) 6.2.6.2

state[block data][ypos][xpos][ref2]+ = mv prediction(ypos, xpos, 2)

6.2.4.4 DC values

The block dc(ypos, xpos) process parses the block DC values for the three components for the block
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at position (xpos, ypos).

block motion(ypos, xpos) :

for each c in Y, U, V :

state[block data][ypos][xpos][dc][c] = read sinta(dc contexts(c)) 6.2.6.3

state[block data][ypos][xpos][dc][c]+ = dc prediction(ypos, xpos, c) 6.2.5.6

6.2.5 Spatial prediction of motion data elements

6.2.5.1 Prediction apertures A consistent convention for prediction apertures is used. The

nominal prediction aperture for block motion data is defined to be the relevant data to the left, top

and top-left of the data element in question (Figure 3). For the superblock split mode of the superblock

with index (i, j) this means the superblocks with indices (i− 1, j), (i, j− 1) and (i− 1, j− 1). For the

block motion data itself, the same applies where these indices are block indices.
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Figure 3: Basic prediction aperture

Note that this is the nominal prediction aperture. Not all data elements in this prediction aperture may

be available, either because they would require negative indices, or because the data is not available

- for example a block to the left of a block with mode REF2ONLYmay have mode REF1ONLYand

so can furnish no contribution for a prediction to the Reference 2 motion vector.

Note also that when superblocks have split level 1 or 0, block data has been propagated (Section

6.2.3.2) across 4 or 16 blocks so as to furnish a prediction. The effect is illustrated for a variety of

splitting modes in Figure 4.
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Figure 4: Effect of splitting modes on spatial prediction
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6.2.5.2 Superblock split prediction

split prediction returns the mean of the the neighbouring split values:

split prediction(ypos, xpos) :

if (xpos == 0&&ypos == 0):

return 0

else if (ypos == 0):

return state[sb split][ypos][xpos− 1]

else if (xpos == 0):

return state[sb split][ypos− 1][xpos]

return (state[sb split][ypos− 1][xpos− 1] + state[sb split][ypos][xpos− 1]+

state[sb split][ypos− 1][xpos] + 1)//3

6.2.5.3 Block mode prediction

mode prediction returns a majority verdict for each of the references:

mode prediction(ypos, xpos, n) :

if (xpos == 0&&ypos == 0):

return False

else if (ypos == 0):

return state[block data][ypos][xpos− 1][mode][n]

else if (xpos == 0):

return state[block data][ypos− 1][xpos][mode][n]

return majority(state[block data][ypos− 1][xpos− 1][mode][n],

state[block data][ypos− 1][xpos][mode][n],

state[block data][ypos][xpos− 1][mode][n])

6.2.5.4 Block global flag prediction

block global prediction returns a majority verdict of the neighbouring blocks:

block global prediction(ypos, xpos) :

if (xpos == 0&&ypos == 0):

return False

else if (ypos == 0):

return state[block data][ypos][xpos− 1][global]

else if (xpos == 0):

return state[block data][ypos− 1][xpos][global]

return majority(state[block data][ypos− 1][xpos− 1][global],

state[block data][ypos− 1][xpos][global],

state[block data][ypos][xpos− 1][global])

6.2.5.5 Motion vector prediction

Motion vectors are predicted using the median of available block vectors in the aperture. A vector

is available for prediction if a) its block falls within the picture area and b) its prediction mode allows

it to be defined and c) it is not a global motion block.

The process mv prediction(ypos, xpos, ref) returns motion values according to the following rules:

Case 1. If xpos == 0 and ypos == 0, there are no vectors in the prediction aperture and the zero

vector (0, 0) is returned.

Case 2. If xpos > 0 and ypos == 0 then:

1. If



6.2 Motion data decoding process 49

state[block data][ypos][xpos− 1][global] == False

and

state[block data][ypos][xpos− 1][mode][ref ] == True

then state[block data][ypos][xpos− 1][ref ] is returned.

2. Otherwise, (0, 0) is returned

Case 3. If xpos == 0 and ypos > 0 then:

1. If

state[block data][ypos− 1][xpos][global] == False

and

state[block data][ypos− 1][xpos][mode][ref ] == True

then state[block data][ypos− 1][xpos][ref ] is returned.

2. Otherwise, (0, 0) is returned

Case 4. If both xpos > 0 and ypos > 0 then all 3 blocks in the prediction aperture may potentially

contribute to the prediction. Define sets valuesx = ∅ and valuesy = ∅. The prediction is the median

vector has horizontal and vertical components equal to the median of the horizontal and vertical

components of available vectors:

if (state[block data][ypos][xpos− 1][global] == True):

if (state[block data][ypos][xpos− 1][mode][ref ] == False):

valuesx = valuesx ∪ {state[block data][ypos][xpos− 1][ref ].x}
valuesy = valuesy ∪ {state[block data][ypos][xpos− 1][ref ].y}

if (state[block data][ypos− 1][xpos][global] == True):

if (state[block data][ypos− 1][xpos][mode][ref ] == False):

valuesx = valuesx ∪ {state[block data][ypos− 1][xpos][ref ].x}
valuesy = valuesy ∪ {state[block data][ypos− 1][xpos][ref ].y}

if (state[block data][ypos− 1][xpos− 1][global] == False):

if (state[block data][ypos− 1][xpos− 1][mode][ref ] == True):

valuesx = valuesx ∪ {state[block data][ypos− 1][xpos− 1][ref ].x}
valuesy = valuesy ∪ {state[block data][ypos− 1][xpos− 1][ref ].y}

return (median(valuesx), median(valuesy))

(Note that the median of an empty set is zero.)

6.2.5.6 DC value prediction

DC values are predicted using the unbiased mean available values in the aperture. The process

dc prediction(ypos, xpos, comp) returns values according to the following rules:

Case 1. If xpos == 0 and ypos == 0, there are no blocks in the prediction aperture and the default

prediction 2state[video depth]−1 is returned.

Case 2. If xpos > 0 and ypos == 0 then:

1. If state[block data][ypos][xpos−1][mode] == INTRA, state[block data][ypos][xpos−1][dc][comp]

is returned

2. Otherwise, 2state[video depth]−1 is returned

Case 3. If xpos == 0 and ypos > 0 then:
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1. If state[block data][ypos−1][xpos][mode] == INTRA, state[block data][ypos−1][xpos][dc][comp

is returned

2. Otherwise, 2state[video depth]−1 is returned

Case 4. If both xpos > 0 and ypos > 0 then all 3 blocks in the prediction aperture may potentially

contribute to the prediction. Define a set values = ∅. The prediction is the unbiased mean of available

values:

. . .

pred = (0, 0)

if (state[block data][ypos][xpos− 1][mode] == INTRA):

values = values ∪ {state[block data][ypos][xpos− 1][dc][comp]}
if (state[block data][ypos− 1][xpos][mode] == INTRA):

values = valuesx ∪ {state[block data][ypos− 1][xpos][ref ][dc][comp]}
if (state[block data][ypos− 1][xpos− 1][mode] == INTRA):

values = values ∪ {state[block data][ypos− 1][xpos− 1][ref ][dc][comp]}
if (values! = {}):

return pred = (unbiased mean(values)

else:

return 2state[video depth]−1

6.2.6 Block motion data contexts

6.2.6.1 Superblock splitting mode

The sb split contexts() function returns the following unsigned integer context set:

• Follow = [ SB F1, SB F2]

• Data = SB DATA

6.2.6.2 Motion vectors

There are four motion vector context sets, which are signed integer context sets as follows.

ref1x contexts returns the set with

• Follow = [ REF1x F1, REF1x F2, REF1x F3, REF1x F4, REF1x F5+]

• Data = REF1x DATA

• Sign = REF1x SIGN

ref1y contexts returns the set with

• Follow = [ REF1y F1, REF1y F2, REF1y F3, REF1y F4, REF1y F5+]

• Data = REF1y DATA

• Sign = REF1y SIGN

ref2x contexts returns the set with

• Follow = [ REF1x F1, REF1x F2, REF1x F3, REF1x F4, REF1x F5+]

• Data = REF1x DATA
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• Sign = REF1x SIGN

ref1y contexts returns the set with

• Follow = [ REF2y F1, REF2y F2, REF2y F3, REF2y F4, REF2y F5+]

• Data = REF2y DATA

• Sign = REF2y SIGN

6.2.6.3 DC values

There are three DC value context sets, which are signed integer context sets for each component.

dc contexts(Y ) returns the set:

• Follow = [ YDC F1, YDC F2+]

• Data = YDC DATA

• Sign = YDC SIGN

dc contexts(U) returns the set:

• Follow = [ UDC F1, UDC F2+]

• Data = UDC DATA

• Sign = UDC SIGN

dc contexts(V ) returns the set:

• Follow = [ VDC F1, VDC F2+]

• Data = VDC DATA

• Sign = VDC SIGN
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7 Wavelet coefficient decoding

This section specifies how wavelet transform coefficients are parsed.

7.1 Decoded subband data conventions

7.1.1 Wavelet data initialisation

This section specifies the initialise wavelet data() process, which returns a structure which will

contain the decoded wavelet coefficients for the component.

For the purposes of this specification, this is a four-dimensional array data, where individual subbands

are two-dimensional arrays accessed by level and depth:

band = data[level][orientation]

Valid levels are integers from in the range 0 to state[transform depth]inclusive. Level 0 consists of a

single subband with orientation LL. All other levels consist of 3 subbands of orientation LH, HL, and

HH. The orientations correspond to either low- or high-pass filtering horizontally and vertically: so

the LHband consists of coefficients derived from horizontal low-pass filtering and vertical high-pass

filtering. The subbands partition the spatial frequency domain by orientation and level as illustrated

in Figure 5.

Individual subband coefficients are signed integers accessed by vertical and horizontal coordinates

within the subband:

c = band[y][x], x ∈ {0, ..., subband width(level)− 1}, y ∈ {0, ..., subband height(level)− 1}

where the dimensions subband width(level) and subband height(level) of the subband are as defined

in Section 7.1.2. These dimensions correspond to a wavelet transform being performed on a copy of

the component data which has been padded (if necessary) so that its dimensions are a multiple of

2state[transform depth].

7.1.2 Dimensions of wavelet subbands

This section defines the values of the subband width(level) and subband height(level) functions, giv-

ing the width and height of subbands at a given level, and hence the range of subband vertical and

horizontal indices.

Define the padded dimensions of the component by

ph = 2state[transform depth] ∗
‰
state[component height]

2state[transform depth]

ı

pw = 2state[transform depth] ∗
‰
state[component width]

2state[transform depth]

ı

If level == 0,

subband height(level) = ph//2state[transform depth]

=

‰
state[component height]

2state[transform depth]

ı

subband width(level) = pw//2state[transform depth]

=

‰
state[component width]

2state[transform depth]

ı



7.2 Wavelet data decoding process 53

Level 4
?

Level 3
?

2
?

1
?

4-HL

4-LH 4-HH

3-HL

3-LH 3-HH

2-HL

2-LH 2-HH

1-HL

1-LH 1-HH

0-LL

Figure 5: Subband decomposition of the spatial frequency domain showing subband numbering, for

a 4-level wavelet decomposition

If level > 0

subband height(level) = ph//2state[transform depth]−level+1

= 2level−1 ∗
‰
state[component height]

2state[transform depth]

ı

subband width(level) = pw//2state[transform depth]−level+1

= 2level−1 ∗
‰
state[component width]

2state[transform depth]

ı

Informative: In encoding, these padded dimensions may be achieved by padding the component

data up to the padded dimensions and applying the forward Discrete Wavelet Transform (the inverse

of the operations specified in Section 9). Any values may be used for the padded data, although the

choice will affect wavelet coefficients at the right and bottom edges of the subbands. Good results, in

compression terms, may be obtained by using edge extension for intra pictures and zero extension for

inter pictures. A poor choice of padding may cause visible artefacts near the bottom and right edges

at high levels of compression.

7.2 Wavelet data decoding process

7.2.1 Summary

This section specifies the overall operation of the transform data() process for parsing and decoding

the set of coefficient subbands corresponding to a video picture component (Y, U or V), according to

the conventions set out in Section 7.1.

In the Dirac stream, subband data is arranged by level and orientation, from level 0 up to level
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state[transform depth]. The decoding process for each subband is contingent on data from subbands

of the same orientation in the next lower level. This is the parent subband; the subband of the same

orientation in the next higher level is the child subband.

Decoding an individual subband therefore requires prior decoding of the parent subband, and of its

parent, and so on until level 1 is reached (level 1 subbands do not depend upon the single level 0 DC

band).

Informative: The data for each subband consists of a subband header and a block of arithmetically

coded coefficient data. The subband header contains a length code giving the number of bytes of the

block of arithmetically-coded data. The transform data can therefore be parsed without invoking

arithmetic decoding at all, since the length codes allow a parser to skip from one subband header to

the next, similarly to the way that parse unit offsets allow frame skipping.

7.2.2 Decoding loop

The overall transform data() decoding process is as follows:

transform data() :

data = initialise wavelet data() 7.1.1

subband decode(data, 0,LL) 7.3

for level = 1 to state[transform depth]:

for each orient in LH,HL,HH:

subband decode(data, level, orient) 7.3

byte align()

return data

7.3 Subband decoding process

This section specifies the process subband decode(level, orient) for coefficients within a subband at

level level (0 to state[transform depth]) and of orientation orient (LL, LH, HL, or HH ).

7.3.1 Subband header and codeblock loop

This section specifies the operation of the subband decode(data, level, orient) function for decoding a

subband at level level and of orientation orient.

7.3.1.1 Initialisation

The subband decode() process begins by reading a length code. If this length is zero, then the

subband is deemed to be skipped and all coefficients are set to zero before the process exits:

subband decode(data, level, orient) :

length = read unsigned()

if (length == 0):

for y = 0 to subband height(level)− 1:

for x = 0 to subband width(level)− 1:

band[y][x] = 0

return

. . .

If length > 0 then the subband coefficient decoding process is initialised by setting up arithmetic

decoding, initialising the coefficient count, reading the quantisation index and byte-aligning the sub-

sequent read operations.



7.3 Subband decoding process 55

. . .

if (length > 0):

initialise arithmetic decoding(length) 4.2

state[coefficient count] = 0

vol = subband height(level) ∗ subband width(level)

state[coefficient reset] = max(min(vol//32, 800), 25)

quant index = read uint()

byte align()

. . .

Note: byte alignment only occurs if length > 0: a skipped subband is not byte-aligned.

7.3.1.2 Codeblocks

Data within a subband is divided into code blocks, representing rectangular blocks of coefficients.

The numbers of codeblocks in each subband are determined in decoding the transform header, as

specified in Section 5.11.3.

The overall subband decoding process loops over all the code blocks after initialising the arithmetic

decoding engine, and setting quantisers. There is a different code block decoding process for Intra

DC bands, since values are coded using spatial prediction.

. . .

band = data[level][orient]

if (level > 1):

parent = data[level − 1][orient]

else:

parent = ∅
for y = 0 to state[codeblocks][level][v]− 1:

for x = 0 to state[codeblocks][level][h]− 1:

codeblock(band, parent, orient, quant index, y, x)
7.3.2

if (is intra() and level == 0):

intra dc prediction(band) 7.3.3

7.3.2 Decoding subband codeblocks

This section defines the operation of the codeblock(band, parent, orient, quant index, y, x) function,

which decodes a codeblock in position (x, y) and populates it with reconstructed wavelet coefficients.

7.3.2.1 Codeblock dimensions

The codeblock covers coefficients in the horizontal range left to right− 1 and in the vertical range

bottom to top− 1 where these values are defined by:

left = (subband width(level) ∗ x)//state[codeblocks][level][horizontal]

right = (subband width(level) ∗ (x + 1))//state[codeblocks][level][horizontal]

bottom = (subband height(level) ∗ y)//state[codeblocks][level][vertical]

top = (subband height(level) ∗ (y + 1))//state[codeblocks][level][vertical]



7.3 Subband decoding process 56

7.3.2.2 Codeblock decode process

The codeblock decoding process is defined as:

codeblock(band, parent, orient, quant index, y, x) :

if (zero flag()): 7.3.2.3

for v = bottom to top− 1:

for h = left to right− 1:

band[v][h] = 0

else:

quant idx+ = quant offset() 7.3.2.4

for v = bottom to top− 1:

for h = left to right− 1:

coeff decode(band, parent, orient, quantidx, v, h)
7.4

7.3.2.3 Zero block flag

We may set the number of codeblocks in the subband as

num blocks = state[codeblocks][level][horizontal] ∗ state[codeblocks][level][vertical]

If num blocks is 1 or level = 0, then zero flag() returns False.

Otherwise, the flag is decoded from the stream: read boola(ZERO BLOCK) is returned.

7.3.2.4 Block quantiser offset

If state[codeblock mode] = SINGLE QUANT, quant offset() shall return 0.

If state[codeblock mode] = MULTI QUANT then the quantiser index offset is decoded from the

stream – read sinta(quant contexts()) is returned, where quant contexts() returns the context set:

• Follow= {Q OFFSET FOLLOW}

• Data=Q OFFSET INFO

• Sign=Q OFFSET SIGN

7.3.3 Intra DC band prediction

This section defines the operation of the intra dc prediction(band) function for reconstructing values

within Intra picture DC bands using spatial prediction. Intra DC values are derived by spatial

prediction using the mean of the three values to the left, top-left and above a coefficient (if available).
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intra dc prediction(band) :

prediction = 0

for v = 0 to subband height(level)− 1:

for h = 0 to subband width(level)− 1:

prediction = 0

N = 0

if (v > 0):

prediction+ = band[v − 1][h]

N+ = 1

if (h > 0):

prediction+ = band[v − 1][h− 1] + band[v][h− 1]

N+ = 1

else:

if (h > 0):

prediction+ = band[0][h− 1]

N+ = 1

prediction = prediction//N

band[v][h]+ = prediction

7.4 Subband coefficient decoding process

This section describes the operation of the coeff decode(band, parent, orient, quant idx, v, h) pro-

cess for decoding a coefficient in position (h, v) in the subband band with parent band parent and

orientation orient.

Decoding a coefficient makes use of arithmetic decoding, inverse quantisation and, in the case of DC

(level 0) bands of Intra frames, neighbourhood prediction. The decoding process periodically refreshes

the contexts, by halving the context counts every time a count is reached.

Arithmetic coding uses a highly compact set of contexts, with magnitudes contextualised on whether

parent values and neighbouring values are zero or non-zero.

7.4.1 Overall coefficient decoding process

Two different processes are used for decoding coefficients, depending upon whether spatial prediction

is required or not.

coeff decode(band, parent, orient, quant index, v, h) :

parent = parent val(parent, v, h) 7.4.2

nhood = zero nhood(band, v, h) 7.4.3

sign pred = sign predict(band, orient, v, h) 7.4.4

context set = select coeff ctxs(parent, nhood, sign pred) 7.4.5

quant coeff = read sina(context set)

band[v][h] = inverse quant(quant coeff, quant index) 7.4.6

update count() 7.4.8

7.4.2 Parent values

The function parent val(v, h) returns the parent value of a coefficient in a subband, which is the

co-located coefficient in the parent subband. If there is a parent band (parent! = ∅), then

parent[v//2][h//2]
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is returned. If there is no parent (parent = ∅), then 0 is returned.

7.4.3 Zero neighbourhood

The zero nhood() function returns a boolean indicating whether neighbouring values are all zero.

zero nhood(band, v, h) :

if (v > 0):

if (band[v − 1][h]! = 0):

return False

if (h > 0):

if (band[v − 1][h− 1])! = 0||band[v][h− 1]! = 0):

return False

else:

if (h > 0):

if (band[v][h− 1]! = 0):

return False

return True

7.4.4 Sign prediction

The sign predict() function returns a prediction for the sign of the current pixel. Correlation within

subbands depends upon orientation, and so this is taken into account in forming the prediction.

For vertically-oriented (HL) bands, the predictor is the sign of the coefficient above the current

coefficient; for horizontally-oriented (LH) bands, the predictor is the sign of the coefficient to the left.

The predictions are not used for differential encoding of the sign, but for conditioning of the sign

contexts only.

sign predict(band, orient, v, h) :

if (orient == HL):

if (v == 0):

return 0

else:

return sign(band[v − 1][h])

else if (orient == LH):

if (h == 0):

return 0

else:

return sign(band[v][h− 1])

else:

return 0

7.4.5 Coefficient context selection

This section defines the select context(zero nhood, parent, sign) function, which chooses a context

index set for decoding a coefficient value.

Twelve possible coefficient index sets are defined, and are returned as specified in Table 6. Note that

follow contexts are an array indexed from 0 as per Section 4.4.3.

Note that parent values affect the context of all follow bits, and that neighbour values only affect the

context of the first follow bit. A common data context is used for all coefficients.
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parent zero nhood sign Context set

0 True 0 Follow [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN ZERO

0 True < 0 Follow [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN NEG

0 True > 0 Follow [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN POS

0 False 0 Follow [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN ZERO

0 False < 0 Follow [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN NEG

0 False > 0 Follow [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

Data COEFF DATA

Sign SIGN POS

6= 0 True 0 Follow [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN ZERO

6= 0 True < 0 Follow [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN NEG

6= 0 True > 0 Follow [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN POS

6= 0 False 0 Follow [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN ZERO

6= 0 False < 0 Follow [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN NEG

6= 0 False > 0 Follow [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

Data COEFF DATA

Sign SIGN POS

Table 6: Subband coefficient context sets

7.4.6 Inverse quantisation

The inverse quant() function is defined by:

inverse quantise(quantised coeff, quant index) :

magnitude = |quantised coeff |
magnitude∗ = quant factor(quant index) 7.4.7

magnitude+ = quant offset(quant index) 7.4.7

magnitude = magnitude//4

return sign(quantised coeff) ∗magnitude

Informative: The pseudocode description separates inverse quantisation from decoding. However,

since dead-zone quantisation is used, the inverse quant() function must compute the magnitude.

Hence it is more efficient to first decode the coefficient magnitude, then inverse quantise, and then



7.4 Subband coefficient decoding process 60

decode the coefficient sign.

7.4.7 Quantisation factors and offsets

This section specifies the operation of the quant factor() and quant offset() functions for performing

inversion quantisation.

Quantisation factors represent an approximation of quarter-bit values with two bits of accuracy (i.e.

round(2
index

4 +2):

quant factor(index) :

base = 2 ∗ ∗(index//4)

if ((x%4) == 0):

return 4 ∗ base

else if ((x%4) == 1):

return 78892 ∗ base + 8292)//16585

else if ((x%4) == 2):

return 228486 ∗ base + 20195)//40391

else if ((x%4) == 3):

return 440253 ∗ base + 32722)//65444

Offsets are approximately 3/8 of the quantisation factors - these mark the reconstruction point within

the quantisation interval:

quant offset(index) :

return (quant factor(index) ∗ 3 + 4)//8

7.4.8 Updating counts and resetting contexts

The update count() function updates a periodic count of subband coefficients and rescales arithmetic

decoding contexts if state[coefficient reset]has been reached.

update count() :

state[coefficient count]+ = 1

if (state[coefficient count] == state[coefficient reset]):

state[coefficient count] = 0

for i = 0 to len(state[contexts])− 1:

rscale context(i) 4.1
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Part III

Decoding operations

8 Picture decoding process

This section specifies the process for decoding a picture from the Dirac stream. Picture decoding

depends upon correctly parsing the Dirac bitstream, and decoding operations are dependent upon the

parsing operations set out in Sections 5, 6 and 7.

This section does not specify how pictures are encoded, nor how pictures are presented for display,

which are outside the scope of this specification.

8.1 Introduction

Dirac supports both intra and inter picture coding, with forward and backward prediction. This

means that pictures may be encoded in the stream in non-display order: reordering pictures will be

required in order to display them correctly, and decoded picture buffer will be necessary to store

pictures while temporally prior pictures are decoded. Note that the core Dirac specification does not

encompass the operation of the decoded picture buffer: this is specified in conjunction with the level

and profile values extracted from the stream (Section 5.6), in Appendix D.

Decoded pictures may, however, be reference pictures, used for the prediction of subsequent pictures

in the Dirac stream. Reference pictures are stored in a reference picture buffer state[ref buffer].

The operation of state[ref buffer] does form part of the core Dirac specification, and the rules for

management of the buffer are set out in Section 8.4.

8.2 Overall picture decoding process

8.2.1 Picture data initialisation

Picture data from the current picture being decoded is stored in the state[current picture] state

variable, which is a structure with indices pic num, Y , U and V .

The init picture data() initialises the current picture data so that:

• state[current picture][pic num] = state[picture number]

• state[current picture][Y ] is a 2-dimensional of width state[luma width] and heightstate[luma height],

all values state[current picture][Y ][y][x] set to 0

• state[current picture][U ] and CurrentP icture[V ] are 2-dimensional arrays of width state[chroma width]

and height state[chroma height], all values state[current picture][U ][y][x] and state[current picture][V ][y][x]

set to 0

8.2.2 Initialisation

The process for decoding pictures within a Dirac sequence can commence once an Access Unit header

has been located and parsed, and the default parameters set. This is achieved by searching for a Parse

Info header within the sequence for which is au() returns True and then initialising the default state

parameters by parsing the subsequent Access Unit header as per Section 5.5.

At this point the reference picture buffer shall be initialised with no reference pictures.

This initialisation process need only occur once within a sequence, since apart from the AU picture

number, all AU headers within a sequence are identical.
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8.2.3 Decoding process

The process for decoding a picture with picture number n in a Dirac sequence consists of:

decode pic(n) :

seek picture parse(n) 8.3

picture() 5.9

init picture data() 8.2.2

ref buffer remove() 8.4

if (state[zero residual] == False):

state[current picture][Y ] = idwt(state[y transform]) 9

state[current picture][U ] = idwt(state[u transform]) 9

state[current picture][V ] = idwt(state[v transform]) 9

if (is inter()):

ref1 = get ref(state[ref1 picture number])

if (num refs() == 2): 5.3

ref2 = get ref(state[ref2 picture number])

motion compensate(ref1[Y ], ref2[Y ], state[current picture][Y ], c) 10

motion compensate(ref1[U ], ref2[U ], state[current picture][U ], c) 10

motion compensate(ref1[V ], ref2[V ], state[current picture][V ], c) 10

clip picture() 8.5

if (is ref()):

ref buffer add() 8.4

When randomly accessing a sequence, a picture may not be decodeable because reference pictures

may not be available in the buffer. In this case the current picture may be discarded, although some

decoders may be designed to produce an output.

A Dirac sequence shall be so constructed so that if pictures are decoding commences from the begin-

ning of the stream and pictures are decoded in stream order, there shall be no undecodeable pictures

i.e. the reference pictures associated with any picture in the sequence stall have occurred prior to

that picture in the sequence.

Picture numbers within the stream may not be in numerical, and subsequent reordering may be

required: the size of the decoded picture buffer required to perform any such reordering is specified

as part of the application profile and level (Appendix D).

8.3 Seeking in the Dirac stream

The seek picture parse(n) locates and parses a Parse Info header within the Dirac sequence for which

is picture() is True and state[picture number] == n. If pictures are being decoded sequentially from

the stream, there is no need to search for parse codes. The parse offset values may be used to make

the seeking process greatly more efficient, so that only a single parse code need be located initially

(Section 1)

8.4 Reference picture buffer management

This section specifies how the Dirac stream data is used to manage the reference picture buffer

state[ref buffer]. The reference picture buffer has a maximum size of 5 elements.

The ref picture remove() process operates as follows:
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ref picture remove() :

for i = 0 to length(state[retired picture list])− 1:

n = state[retired picture list][i]

for k = 0 to length(state[ref buffer])− 1:

if (state[ref buffer][k][pic number] == n):

delete state[ref buffer][k]

state[retired picture list] = ∅

The get ref(n) function returns the (first) reference picture in the buffer with picture number n.

The ref picture add() process for adding pictures to the reference picture buffer proceeds according

to the following rules:

Case 1. If the reference picture buffer is not full i.e. has fewer than 5 elements, then add the

state[current picture] data to the end of the buffer.

Case 2. If the reference picture is full i.e. it has 5 elements, then remove the first (i.e. oldest) element

of the buffer state[ref buffer][0], and set

state[ref buffer][4] = state[current picture]

8.5 Clipping

Picture data must be clipped to the video range prior to being output or being used as a reference:

clip picture() :

for each c in Y, U, V :

clip comp(state[current picture][c])

clip component(data) :

for y = 0 to height(data)− 1:

for x = 0 to width(data)− 1:

data = clip(data[y][x], 0, 2state[video depth] − 1)



64

9 Inverse discrete wavelet transform

This section defines the process idwt(data) for reconstructing picture component data from decoded

subband data data using the Inverse Discrete Wavelet Transform (IDWT). idwt() can be invoked in

the picture decoding process only after successful parsing of the subband coefficient data (Section 7).

The idwt() process consists of two sub-processes:

1. Synthesis, which returns a pixel array from the subband wavelet coefficients:

pic = idwt synthesis(data) (Section 9.1)

2. Pad-removal, which removes padding values from the synthesised pixel array pic (Section 9.5)

The output returned by this process is a two-dimensional array pic of pixel data representing Y, U or

V component data.

Informative: The IDWT can operate with a number of different wavelet filters, whose identity has

been signalling in the transform data header. These allow trade-offs to be made between compression

efficiency, implementation complexity and perceptual quality.

Different filters are applicable in different scenarios. Shorter filters are generally more suitable for

motion-compensated residual data, and longer filters for intra picture data. The default filter set

includes a “Fidelity” filter optimised for downconversion, so that a lower-resolution, but high-quality,

proxy layer may be decoded for viewing.

Since wavelet filtering operates on both rows and columns of two-dimensional arrays independently

it is useful to define operators row(a, k) and column(a, k) for extracting rows and columns with index

k from a 2-dimensional array a:

If b = row(a, k) then b[r] is a referenceto the value of a[k][r]. This means that modifying the value

of b[r] modifies the value of a[k][r].

If b = column(a, k) then b[r] is a referenceto the value of a[r][k]. This means that modifying the

value of b[r] modifies the value of a[r][k].

Informative: These definitions allow us to express the important feature that all filtering operations

are specified as in place calculations, not involving data being copied at any stage.

9.1 IDWT synthesis operation

This section defines the process idwt synthesis(pic, data) invoked by idwt().

This is an iterative procedure operating on four subbands at each iteration stage to produce a new

subband. The procedure is:

idwt synthesis(data) :

LL band = data[0][LL]

for n = 0 to state[wavelet depth]− 1:

LL band = vh synthesis(LL band, data[n][HL], data[n][LH], data[n][HH]) 9.2

return LL band

Note that at each stage, the input dimensions of LL band will be the same as those of the other input

bands, whereas the output dimensions are double those of the input bands.

9.2 Vertical and horizontal synthesis

This section specifies the operation of the vertical and horizontal synthesis process vh synthesis(LL data, HL data, LH data, HH data).
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vh synthesis is repeatedly invoked by idwt synthesis(). It operates on four subband data arrays of

identical dimensions to produce a new array synth, which is returned as the result of the process.

Step 1. synth is initialised so that:

width(synth) = 2 ∗ width(LL data)

height(synth) = 2 ∗ height(LL data)

Step 2. The data from the four arrays is interleaved as follows:

. . .

for y = 0 to (height(synth)//2)− 1:

for x = 0 to (width(synth)//2)− 1:

synth[2 ∗ y][2 ∗ x] = LL data[y][x]

synth[2 ∗ y][2 ∗ x + 1] = HL data[y][x]

synth[2 ∗ y + 1][2 ∗ x] = LH data[y][x]

synth[2 ∗ y + 1][2 ∗ x + 1] = HH data[y][x]

. . .

This enables in-place calculation during the inverse filter process.

Step 3. Data is next synthesised vertically by operating on each column of data using a one-

dimensional filter, and then horizontally by operating on each row.

. . .

for x = 0 to width(synth)− 1:

1d synthesis(column(synth, x)) ??

for y = 0 to height(synth)− 1:

1d synthesis(row(synth, y)) ??

. . .

Step 4. Finally, the synthesised subband data receives a bitshift to remove any accuracy bits. The

shift value filtershift() used is as determined in Section 9.4 from the wavelet index state[wavelet index].

. . .

shift = filtershift()

for y = 0 to height(synth)− 1:

for x = 0 to width(synth)− 1:

synth[y][x] = synth[y][x] À shift

Informative: Accuracy bits are added in the encoder by shifting up all coefficients in the LL band

prior to applying any filtering (this includes an initial shift of all values in the component data).

Adding a small shift before each decomposition is the most efficient way of providing additional

resolution where it is needed: the result is that the shift varies with the level to which a subband

belongs.

Accuracy bits are required because the rounding stages in integer lifting introduce non-linearities that

can aliase data between subbands. Quantising data in non-DC bands can then (for example) produce

artefacts at DC band frequencies. This increases bit rate and the perceptual impact of quantisation,

especially for 8-bit video. The accuracy bits have been computed so as to virtually eliminate these

effects (with the exception of Haar0 which is included as it is suitable for low-delay low-complexity

implementations, especially lossless coding). For example, Fidelity does not require a shift value since

its filter gain is such as to add a bit of resolution with each level of decomposition.
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9.3 One-dimensional synthesis

This section specifies the one-dimensional synthesis process 1d synthesis() applied to a 1-dimensional

array of coefficients of even length, consisting of either a row or a column of a 2-dimensional integral

data array.

The one-dimensional synthesis process comprises the application of a number of reversible integer

lifting filter operations. An integral lifting filter is characterised by four elements:

• a set of taps t−N , . . . , tM

• a scale factor s

• a parity (odd or even)

• whether it is an “update“ or “predict“ filter

An even lifting filtering operation modifies the even coefficients by the odd coefficients:

A[2 ∗ n] + =
` MX

i=−N

ti ∗A[2 ∗ (n + i) + 1] + (1 ¿ (s− 1))
´À s (Update)

A[2 ∗ n] − =
` MX

i=−N

ti ∗A[2 ∗ (n + i) + 1] + (1 ¿ (s− 1))
´À s (Predict)

An odd lifting filtering operation modifies the odd coefficients by the even coefficients:

A[2 ∗ n + 1] + =
` MX

i=−N

tiA[2 ∗ (n + i)] + (1 ¿ (s− 1))
´À s (Update)

A[2 ∗ n + 1] − =
` MX

i=−N

tiA[2 ∗ (n + i)] + (1 ¿ (s− 1))
´À s (Predict)

Informative: Note that the distinction between update and predict filters is necessary because

integer rounding is being used, and the filters are non-linear. A predict filter with taps ti is not

equivalent to an update filter with taps −ti.

These formulae are deemed to be applied for all applicable n before the next filtering stage is applied

and to use reflection at the array edges where the filter would otherwise overlap. In pseudo-code, two

functions lifteven(A, ti, s) and liftodd(A, ti, s) are specified by:
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lifteven(A, ti, s, fsort) :

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = −N to M :

pos = 2 ∗ (n + i)− 1

if (pos < 0):

sum+ = A[−pos]

else if (pos ≥ length(A)):

sum+ = A[2 ∗ length(A)− pos]

else:

sum+ = A[pos]

sum+ = (1 ¿ (s− 1))

if (fsort == PREDICT):

A[2 ∗ n]− = (sum À s)

else:

A[2 ∗ n]+ = (sum À s)

and

liftodd(A, ti, s, fsort) :

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = −N to M :

pos = 2 ∗ (n + i)

if (pos < 0):

sum+ = A[−pos]

else if (pos ≥ length(A)):

sum+ = A[2 ∗ length(A)− pos]

else:

sum+ = A[pos]

sum+ = (1 ¿ (s− 1))

if (fsort == PREDICT):

A[2 ∗ n + 1]− = (sum À s)

else:

A[2 ∗ n + 1]+ = (sum À s)

1d synthesis applies the sequence of lifting filters specified in Section 9.4, invoking lifteven for even

parity filters and liftodd for odd parity filters.

Informative: This specification defines the lifting process on the basis of lifting procedures applied

to an entire row or column consecutively. It is possible to implement lifting filtering operations so that

a filtering operation associated with one lifting filter is followed by a filtering operation associated

with another lifting filter. I.e. the order of iteration is changed. In this case, the order in which

filtering is applied to coefficients does affect the outcome of the process as even lifting operations may

be followed by odd ones, and care must be taken that values are not modified in the wrong order.

Nevertheless such an implementation may be more efficient, and complies with this specification if it

produces identical results.

9.4 Filters and shift values

The following the lifting filters and bitshift operations that apply for each value of state[wavelet index]

are specified in Tables 7 to 14.
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Informative: This specification contains an implementation of the Daubechies (9,7) filter

(state[wavelet index] == 7). Daubechies (9,7), like any other FIR biorthogonal wavelet, possesses a

lifting implementation. However, to produce a perfect reconstruction filter, the lifting stages require

real-valued filter taps, and a final coefficient scaling stage. Any realisable implementation is therefore

an approximation. The implementation specified here is fully integral, yet (other than omitting the

final scaling stages), it is a very close approximation. These filters can therefore (unlike the JPEG2000

implementation) be used for lossless as well as lossy compression, whilst lossy compression perfor-

mance is near-indentical to the real-valued filter. The integer lifting implementaiton also allows for

much more efficient implementation.

Lifting steps filtershift()

1. Even, Predict, s = 2, t0 = 1, t1 = 1 i.e.

A[2 ∗ n]− = (A[2 ∗ n− 1] + A[2 ∗ n + 1] + 2) À 2

2. Odd, Update, s = 4, t−1 = −1, t0 = 9, t1 = 9, t2 = −1 i.e.

A[2 ∗ n + 1]+ = (−A[2 ∗ n− 2] + 9 ∗A[2 ∗ n] + 9 ∗A[2 ∗ n + 2]−A[2 ∗ n + 4] + 8) À 4

1

Table 7: state[wavelet index] == 0: Deslauriers-Debuc (9,3) lifting stages and shift values

Lifting steps filtershift()

1. Even, Predict, s = 2, t0 = 1, t1 = 1 i.e.

A[2 ∗ n]− = (A[2 ∗ n− 1] + A[2 ∗ n + 1] + 2) À 2

2. Odd, Update, s = 1, t0 = 1, t1 = 1 i.e.

A[2 ∗ n + 1]+ = (A[2 ∗ n] + A[2 ∗ n + 2] + 1) À 1

1

Table 8: state[wavelet index] == 1: LeGall (5,3) lifting stages and shift values

Lifting steps filtershift()

1. Even, Predict, s = 5, t−1 = −1, t0 = 9, t1 = 9, t2 = −1 i.e.

A[2 ∗ n]− = (−A[2 ∗ n− 3] + 9 ∗A[2 ∗ n− 1] + 9 ∗A[2 ∗ n + 1] + A[2 ∗ n + 3] + 16) À 5

2. Odd, Update, s = 4, t−1 = −1, t0 = 9, t1 = 9, t2 = −1 i.e.

A[2 ∗ n + 1]+ = (−A[2 ∗ n− 2] + 9 ∗A[2 ∗ n] + 9 ∗A[2 ∗ n + 2] + A[2 ∗ n + 4] + 8) À 4

1

Table 9: state[wavelet index] == 2: Deslauriers-Debuc (13,5) lifting stages and shift values

Lifting steps filtershift()

1. Even, Predict, s = 1, t1 = 1 i.e.

A[2 ∗ n]− = (A[2 ∗ n + 1] + 1) À 1

2. Odd, Update, s = 0, t0 = 1 i.e.

A[2 ∗ n + 1]+ = A[2 ∗ n]

0

Table 10: state[wavelet index] == 3: Haar filter with no shift

Lifting steps filtershift()

1. Even, Predict, s = 1, t1 = 1 i.e.

A[2 ∗ n]− = (A[2 ∗ n + 1] + 1) À 1

2. Odd, Update, s = 0, t0 = 1 i.e.

A[2 ∗ n + 1]+ = A[2 ∗ n]

1

Table 11: state[wavelet index] == 4: Haar filter with single shift
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Lifting steps filtershift()

1. Even, Predict, s = 1, t1 = 1 i.e.

A[2 ∗ n]− = (A[2 ∗ n + 1] + 1) À 1

2. Odd, Update, s = 0, t0 = 1 i.e.

A[2 ∗ n + 1]+ = A[2 ∗ n]

2

Table 12: state[wavelet index] == 5: Haar filter with double shift

Lifting steps filtershift()

1. Even, Predict, s = 8, t−1 = −11, t0 = 36, t1 = 36, t2 = −11 i.e.

A[2 ∗ n]− = (−11 ∗A[2 ∗ n− 3] + 36 ∗A[2 ∗ n− 1] + 36 ∗A[2 ∗ n + 1]− 11 ∗A[2 ∗ n + 3] + 128) À 8

2. Odd, Update, s = 8, t−1 = −22, t0 = 84, t1 = 84, t2 = −22 i.e.

A[2 ∗ n + 1]+ = (−22 ∗A[2 ∗ n− 2] + 84 ∗A[2 ∗ n] + 84 ∗A[2 ∗ n + 2]− 22 ∗A[2 ∗ n + 4] + 128) À 8

3. Even, Predict, s = 8, t−1 = −19, t0 = 85, t1 = 85, t2 = −19 i.e.

A[2 ∗ n]− = (−19 ∗A[2 ∗ n− 3] + 85 ∗A[2 ∗ n− 1] + 85 ∗A[2 ∗ n + 1]− 19 ∗A[2 ∗ n + 3] + 128) À 8

4. Odd, Update, s = 8, t−1 = −8, t0 = 41, t1 = 41, t2 = −8 i.e.

A[2 ∗ n + 1]+ = (−8 ∗A[2 ∗ n− 2] + 41 ∗A[2 ∗ n] + 41 ∗A[2 ∗ n + 2]− 8 ∗A[2 ∗ n + 4] + 128) À 8

0

Table 13: state[wavelet index] == 6: Fidelity filter for improved downconversion and anti-aliasing

Lifting steps filtershift()

1. Even, Predict, s = 12, t0 = 1817, t1 = 1817 i.e.

A[2 ∗ n]− = (1817 ∗A[2 ∗ n− 1] + 1817 ∗A[2 ∗ n + 1] + 2048) À 12

2. Odd, Predict, s = 12, t0 = 3616, t1 = 3616 i.e.

A[2 ∗ n + 1]− = (3616 ∗A[2 ∗ n] + 3616 ∗A[2 ∗ n + 2] + 2048) À 12

3. Even, Update, s = 12, t0 = 217, t1 = 217 i.e.

A[2 ∗ n]+ = (217 ∗A[2 ∗ n− 1] + 217 ∗A[2 ∗ n + 1] + 2048) À 12

4. Odd, Update, s = 12, t0 = 6497, t1 = 6497 i.e.

A[2 ∗ n + 1]+ = (6497 ∗A[2 ∗ n] + 6497 ∗A[2 ∗ n + 2] + 2048) À 12

1

Table 14: state[wavelet index] == 7: Integer lifting approximation to Daubechies (9,7)
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9.5 Removal of IDWT pad values

This section defines the decoding process idwt pad removal(pic, c). This is invoked subsequent to

idwt synthesis.

Subband data elements have been padded to ensure that the reconstructed data array pic has dimen-

sions divisible by 2state[wavelet depth].

Values width and height are defined to be the appropriate dimensions of the component data:

• If c = Y , then

width = state[luma width]

height = state[luma height]

• else if c = U or c = V ,

width = state[chroma width]

height = state[chroma height]

All component data pic[j][i] with

• i ≥ width, or

• j ≥ height

are discarded and pic is resized to have width width and height height. [Need a bit somewhere about

width and height conventions for 2-d arrays]
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10 Motion compensation

This section defines the operation of the process motion compensate(ref1, ref2, pic, c) for motion-

compensating a picture component array pic of type c = Y, U or V from reference component arrays

ref1 and ref2 of the same type.

This process is invoked for each component in a picture, subsequent to the decoding of coefficient

data, specified in Section 7, and the Inverse Wavelet Transform (IWT), specified in Section 9.

10.1 Definitions and conventions

Motion compensation uses the motion block data state[block data] and (optionally) the global motion

parameters state[global params].

Since motion compensate() applies to both luma and (potentially subsampled) chroma data, for

simplicity a number of local variables are defined. If c = Y then:

lenX = state[luma width]

lenY = state[luma height]

xblen = state[luma xblen]

yblen = state[luma yblen]

xbsep = state[luma xbsep]

ybsep = state[luma ybsep]

If c = U or c = V , then likewise:

lenX = state[chroma width]

lenY = state[chroma height]

xblen = state[chroma xblen]

yblen = state[chroma yblen]

xbsep = state[chroma xbsep]

ybsep = state[chroma ybsep]

Define the offsets xoffset, yoffset by

xoffset = (xblen− xbsep)//2

yoffset = (yblen− ybsep)//2

Informative: The subband data that makes up the IWT coefficients is padded in order that the

IWT may function correctly. For simplicity, in this specification, padding data is removed after

the IWT has been performed so that the picture data and reference data arrays have the same

dimensions for motion compensation. However, it may be more efficient to perform all operations

prior to the output of pictures using padded data, i.e. to discard padding values subsequent to

motion compensation. Such a course of action is equivalent, so long as it is realised that blocks must

be regarded as edge blocks if they overlap the actual picture area, not the larger area produced by

padding. The specification of this section fully supports such an interpretation.

Throughout this Section, the following conventions are used.

• x, y are co-ordinates in the predicted picture component

• u, v are co-ordinates in a potentially upconverted reference picture component
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10.2 Overlapped Block Motion Compensation (OBMC) (Informative)

Motion compensated prediction methods provide methods for determining predictions for pixels in

the current picture by using motion vectors to define offsets from those pixels to pixels in previously

decoded pictures. Motion compensation techniques vary in how those pixels are grouped together, and

how a prediction is formed for pixels in a given group. In conventional block motion compensation, as

used in MPEG2, H.264 and many other codecs, the picture is divided into disjoint rectangular blocks

and the motion vector or vectors associated with that block defines the offset(s) into the reference

pictures.

In OBMC, by contrast, the predicted picture is divided into a regular overlapping blocks of dimensions

xblen by yblen that cover at least the entire picture area as shown in figure 6. Overlapping is ensured

by starting each block at a horizontal separation xbsep and a vertical separation ybsep from its

neighbours, where these values are less than the corresponding block dimensions.
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Figure 6: Block coverage of the predicted picture

The overlap between blocks horizontally is xblen− xbsep and vertically is yblen− ybsep. As a result

pixels in the overlapping areas lie in more than one block, and so more than one motion vector set

(and set of associated predictions) applies to them. Indeed, a pixel may have up to eight predictions,

as it may belong to up to four blocks, each of which may have up to two motion vectors. These are

combined into a single prediction by using weights, which are so constructed so as to sum to 1. In

the Dirac integer implementation, fractional weights are achieved by insisting that weights sum to a

power of 2, which is then shifted out once all contributions have been summed.

In Dirac blocks are positioned so that blocks will overspill the left and top edges by (xoffset) and

(yoffset) pixels. The number of blocks has been determined (Section ??) so that the picture area is

wholly covered, and the overspill on the right hand and bottom edges will be at least the amount on

the left and top edges. Indeed, the number of blocks has been set so that the blocks divide into whole

superblocks (sets of 4x4 blocks), which mean that some blocks may fall entirely out of the picture

area. Any predictions for pixels outside the picture area defined by 0 ≤ x < lenX, 0 ≤ y < lenY are

discarded.
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10.3 Overall motion compensation process

The motion compensation process forms an integer prediction p[y][x] for each pixel in the predicted

picture component pic, and adds it to the component data. This is then clipped to keep it in

range. Note that this clipping is in addition to clipping performed on the output picture after motion

compensation and/or the inverse wavelet transform (Section 8.5).

for y = 0 to lenY − 1:

for x = 0 to lenX − 1:

pic[y][x]+ = pixel predict(y, x, pic, ref1, ref2, c) 10.4

pic[y][x] = clip(pic[y][x], 0, 2state[video depth] − 1)

10.4 Pixel prediction

In order to specify the pixel predict() process, some definitions are required. For block indices (i, j),

define the set of elements B(i, j) in the corresponding block by:

xstart = max(i ∗ xbsep− xoffset, 0)

ystart = max(j ∗ xbsep− xoffset, 0)

xstop = min (xstart + xblen, lenX) = min ((i + 1) ∗ xbsep + xoffset, lenX)

ystop = min (ystart + yblen, lenY ) = min ((j + 1) ∗ ybsep + yoffset, lenY )

B(i, j) = {(x, y) : xstart ≤ x < xstop, ystart ≤ y < ystop}

Define the total weight resolution total wt bits as follows:

hbits = log2(xblen− xbsep) + 1 = log2(xoffset) + 2

vbits = log2(yblen− ybsep) + 1 = log2(yoffset) + 2

total wt bits = hbits + vbits + state[refs weight precision]

This is the number of bits added to pixel values in order to perform OBMC reversibly with integer

arithmetic using the spatial specified in Sections 10.5 and the reference weights extracted in parsing

the picture prediction header data (Section 5.10.7).

The pixel predict(y, x, ref1, ref2, c) function forms a prediction by adding together weighted predic-

tions for all blocks containing the pixel (x, y). Weight contributions come both from a spatial matrix

and from the weights assigned to references:
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pixel pred(y, x, pic, ref1, ref2, c) :

p = 0

for (i, j) such that (x, y) ∈ B(i, j):

m = state[block data][j][i][mode]

if (m == INTRA):

val = state[block data][j][i][dc][c]

val = val ∗ 2state[refs weight precision]

else if (m == REF1ONLY):

val = block pred(ref1, 1, i, j, x, y, c)

val = val ∗ (state[ref1 weight] + state[ref2 weight])

else if (m == REF2ONLY):

val = block pred(ref2, 2, i, j, x, y, c)

val = val ∗ (state[ref1 weight] + state[ref2 weight])

else:

val1 = block pred(ref1, 1, i, j, x, y, c)

val1 = val1 ∗ state[ref1 weight]

val2 = block pred(ref2, 2, i, j, x, y, c)

val2 = va2l ∗ state[ref2 weight]

val = val ∗ spatial wt(i, j, x, y) 10.5

p = p + val

p = (p + 2total wt bits−1) À total wt bits

return p

Informative:

1. Note that the number of bits total wt bits used for the OBMC weighting matrix depends upon

the block sizes - specifically the block overlaps - selected. A Dirac decoder level (??) specifies the

maximum block overlaps allowable, and hence the word widths necessary for processing OBMC. If we

assume that the picture weights are complementary (i.e. the weights for reference 1 and reference 2

sum to 2state[refs weight precision], then the number of bits required for performing motion compensation

calculations is

state[video depth] + total wt bits + state[refs weight precision]

unsigned bits. 8 bit video data encoded with block overlaps of 4 luminance pixels and the standard

picture weights therefore requires 8+3+3+1=15 unsigned bits. The additional bit within a 16 bit

word could be used to provide additional reference weighting.

2. The motion compensation process has been presented as double loop: first over all pixels in a given

component and second over all blocks of which the pixel is a member. However, if an intermediate

buffer is allowed, the loop order can be reversed. In this case one sets a picture buffer, consisting of a

component of data (or a strip of component data lines) and add in the weighted predictions for each

block. As the blocks overlap, the contributions sum and form a prediction for every pixel. This is the

most natural implementation strategy:
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b[ ][ ] = 0

for j = 0 to state[blocks y]− 1:

for i = 0 to state[blocks x]− 1:

m = state[block data][j][i][mode]

for each (x, y) in B(i, j):

if (m == INTRA):

wt = 2state[refs weight precision] ∗ spatial wt(i, j, x, y)

b[y][x]+ = state[block data][j][i][dc][c] ∗ wt

else if (m == REF1ONLY):

wt = (state[ref1 weight] + state[ref2 weight]) ∗ spatial wt(i, j, x, y)

b[y][x]+ = block pred(ref1, 1, i, j, x, y, c) ∗ wt

else if (m == REF2ONLY):

wt = (state[ref1 weight] + state[ref2 weight]) ∗ spatial wt(i, j, x, y)

b[y][x]+ = block pred(ref2, 2, i, j, x, y, c) ∗ wt

else:

wt = state[ref1 weight] ∗ spatial wt(i, j, x, y)

b[y][x]+ = block pred(ref1, 1, i, j, x, y, c) ∗ wt

wt = state[ref2 weight] ∗ spatial wt(i, j, x, y)

b[y][x]+ = block pred(ref2, 2, i, j, x, y, c) ∗ wt

for y = 0 to lenY − 1:

for x = 0 to lenX − 1:

pic[y][x]+ = (b[y][x] + 2total wt bits−1) À total wt bits

pic[y][x] = clip(pic[y][x], 0, 2state[video depth] − 1)

The double multiplication by a spatial and by a reference weight can be avoided by using a set of

spatial weighting matrices pre-multiplied by the applicable reference weights according to prediction

mode. In the default case where the reference picture weights are one, as is the picture weight

precision, this means a double-size spatial matrix for all modes other than REF1AND2.

3. The reference prediction weights used for each prediction mode may appear confusing. It is helpful

to think of two cases for using reference picture weighting. The first is interpolative prediction, where

the picture being predicted is, for example, a cross-fade and is closely approximated by some mixture

of the reference pictures: P w δR1 + (1 − δ)R2. Here the weights we’d like to use for each frame

prediction add up to 1 (or 2state[refs weight precision] for integer weights). The second case is scaling

prediction, where the weights we’d like to use for the frame predictions don’t add up to 1: for example,

a fade to or from black P w δ1R1 and P w δ2R2. It is not possible to choose weights for each prediction

mode which will be optimal both cases. The weighting factors chosen will give work with interpolative

prediction (which is more common) but are not perfect for scaling prediction. It would have been

possible to create a variety of prediction modes to cover all cases, however the potential savings do

not justify the additional complexity.

For interpolative prediction, all data in the current picture will be of commensurate scale to that

of the references. In forming the bi-directional prediction, a value W1p1 + W2p22 is formed, so the

prediction has ”scale” W1 + W2. W1 + W2 is therefore the weighting value used to scale unidirec-

tional prediction, in order to provide predictions of commensurate order. The unity weighting value

2state[refs weight precision] is used for DC blocks as this gives the best prediction, and in the interpolative

case this equals W1 + W2 so all predictions are of the same order.

The weighting factors we would like to use for unidirectionally predicted blocks in the scaling case are

2W1 and 2W2 - the factor 2 takes into account that we’re only adding in one prediction value as against

two for bidirectional prediction. These factors differ from W1+W2, and hence unidirectional prediction

is incorrect when there are two references. Note, however, that we can still perform prediction with
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the correct scaling values when we only have a single reference. Note also that the value of W1 + W2

was selected instead of 2state[refs weight precision], which would be equivalent in the interpolative case,

as it gives a better approximation when the weights do not sum to 2state[refs weight precision].

10.5 Spatial weighting matrix

This section specifies the process wt(i, j, x, y) for deriving a spatial weighting value for a pixel with

coordinates (x, y) in the block with coordinates (i, j). Note that other weights are applied to the

prediction as a result of the weights applied to each reference.

The two-dimensional spatial weighting matrix W applies a linear roll-off in both horizontal and vertical

directions based on the position of the pixel (x, y) within the block B(i, j). Define xpos, ypos as the

relative pixel coordinates from the top-left corner of the block:

xpos = x− (i ∗ xbsep− xoffset)

ypos = x− (i ∗ ybsep− yoffset)

Define a horizontal weighting array WH by the recipe:

max x = 2(xblen− xbsep)

if (i == 0andxpos < xblen//2):

WH[xpos] = max x

else if (i == state[blocks x]andxpos ≥ xblen//2):

WH[xpos] = max x

else:

WH[xpos] = clip(xblen− 2

˛̨
˛̨xpos− (xblen− 1)

2

˛̨
˛̨ , max x)

Likewise define WV by

max y = 2(yblen− ybsep)

if (j == 0andxpos < yblen//2):

WH[ypos] = max y

else if (j == state[blocks y]andypos ≥ yblen//2):

WH[ypos] = max y

else:

WV [ypos] = clip(yblen− 2

˛̨
˛̨ypos− (yblen− 1)

2

˛̨
˛̨ , 0, max y)

The overall spatial weighting matrix W is given by

W [ypos][xpos] = WH[xpos][WV [ypos]

and this is the value returned.

Note that blocks at the extremities of the block set receive maximum weight around their outward-

facing edges. This is to compensate for the lack of blocks making weight contributions on these edges,

and ensures that the total contribution for the pixels in the blocks is 2alpha. In section (i = 0), the

profile of the matrix for interior blocks is:
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Figure 7: Profile of overlapped-block motion compensation matrix

10.6 Block prediction

This section specifies the operation of the block pred(ref, ref num, i, j, x, y, c) process for forming a

prediction for a pixel with coordinates (x, y) in component c, belonging to the block with coordinates

(i, j).

Case 1: state[block data][j][i][global] = False. In this case, the block motion vectors are used to

form a prediction. Motion vectors for chroma components must be scaled according to the chroma

scale factors. If c = Y , set

mv = state[block data][j][i][ref ]

whereas if c = U or c = V , set

mv.x = (state[block data][j][i][ref ].x + (chroma hfactor()//2))//chroma hfactor()

mv.y = (state[block data][j][i][ref ].y + (chroma vfactor()//2))//chroma vfactor()

(chroma subsampling factors are as specified in Section 2)

Case 2: state[block data][j][i][global] = True. In this case, a motion vector is determined from

the global motion parameters as per Section 10.7:

mv = global mv(ref, ref num, x, y, c)

In both cases the value

upconvert(ref, (x ¿ state[mv precision]) + mv.x, (y ¿ state[mv precision]) + mv.y)

where upconvert is defined in Section 10.8 is returned.

10.7 Global motion vector field generation

This section specifies the operation of the global pred(ref, ref num, x, y, c) process for deriving a

global motion vector for a pixel at location (x, y), in a component of type c from a reference ref .

10.7.1 Chroma scaling

The global motion parameters are extracted from the state data. If the component is a chroma

component, the parameters must be scaled appropriately. Set:

• Ã = state[global params][ref num].A

• b̃ = state[global params][ref num].b

• c̃ = state[global params][ref num].c
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If c = Y , set A = Ã, b = b̃ and c = c̃.

If c = U or c = V , A, b and c are defined as follows. Scale b according to the chroma scale factors:

b0 =
“
b̃0 + chroma h factor()//2

”
//chroma h factor()

b1 =
“
b̃1 + chroma h factor()//2

”
//chroma h factor()

Scale A, taking into account vertical and horizontal factors:

A0,0 = Ã0,0

A1,1 = Ã1,1

A0,1 =
“
Ã0,1 ∗ chroma h factor() + chroma v factor()//2

”
//chroma v factor()

A1,0 =
“
Ã1,0 ∗ chroma v factor() + chroma h factor()//2

”
//chroma h factor()

and give c the inverse scaling to b:

c0 = c̃0 ∗ chroma h factor

c1 = c̃1 ∗ chroma h factor

10.7.2 Field generation

Set α = state[global params][ref num][ZRS exp] and β = state[global params][ref num][perspective exp].

Writing x =

 
x

y

!
, set y to be the integer vector defined by:

y =
“
2α+β − 2α ∗ cT x

”“
2β ∗Ax + 2α+β ∗ b

”

Set

mv.x = y0 À (α + β)

mv.x = y1 À (α + β)

and return the motion vector mv.

10.8 Upconversion

This section specifies the operation of the upconvert(ref, u, v) function for producing a value from an

upconverted picture reference. This allows for sub-pixel precision in motion compensation.

Motion vectors are allowed to extend beyond the edges of the upconverted reference picture component

and values lying outside the range of the component are determined by edge extension, using the

values:

cu = clip(u, 0, 2state[mv precision] ∗ width(ref))

cv = clip(v, 0, 2state[mv precision] ∗ height(ref))

There are four cases, depending upon the motion vector precision selected.

10.8.1 Pixel-accurate motion vectors

If state[mv precision] == 0, no upconversion is actually required and the value ref [cv][cu] is returned.
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10.8.2 Half-pixel accurate motion vectors

If state[mv precision] == 1 then the reference picture component ref is upconverted by a factor of

2 in each dimension to create an array upref . The value returned is upref [cv][cu].

upref is created in two stages, first upconverting vertically by a factor of 2, then horizontally. Define

the interpolation filter h to be the 10-tap symmetric filter with taps as defined in figure 8.

Tap t0 t1 t2 t3 t4

Value 167 -56 25 -11 3

Figure 8: Interpolation filter coefficients

Define an array ref2 of height 2 ∗ height(ref) and width width(ref) by the recipe, for 0 ≤ p <

width(ref) and 0 ≤ q < 2 ∗ height(ref):

Case 1. If q%2 == 0, set

ref2[q][p] = ref2[q//2][p]

Case 2. If q%2! = 0, ref2[q][p] is set by

ref2[q][p] =
P4

i=0 ti ∗ (ref [clip((q − 1)//2− i, 0, height(ref)− 1)][p] + ref [clip((q + 1)//2 + i, 0, height(ref)− 1))][p])

ref2[q][p] = (ref2[q][p] + 128) À 8

ref2[q][p] = clip(ref2[q][p], 0, 2state[video depth] − 1)

The full upconverted array is constructed from ref2 in the same way. For 0 ≤ p < 2∗width(ref) and

0 ≤ q < 2 ∗ height(ref) we have:

Case 1. If p%2 == 0, set

upref [q][p] = ref2[q][p//2]

Case 2. If p%2! = 0, upref [q][p] is set by

upref [q][p] =
P4

i=0 ti ∗ (ref2[q][clip((p− 1)//2− i, 0, width(ref2)− 1)] + ref2[q][clip((p + 1)//2 + i, 0, width(ref2)− 1)])

upref [q][p] = (upref [q][p] + 128) À 8

upref [q][p] = clip(upref [q][p], 0, 2state[video depth] − 1)

Informative: While this filter may appear to be variable separable, the integer rounding and

clipping processes prevent this being so. Note also that the clipping process for filtering terms implies

that the upconversion uses edge-extension at the array edges, consistent with the edge-extension used

in motion-compensation itself.

10.8.3 Quarter- and eighth-pixel accurate motion vectors

If state[mv precision] == 2 or state[mv precision] == 3, upconverted values are derived by linear

interpolation from the half-pixel interpolation values upref , which is calculated as per Section 10.8.2.

Given coordinates (u, v), their half-pixel part is extracted by:

hu = u À (state[mv precision]− 1)

hv = v À (state[mv precision]− 1)

and their remainder (giving the residual subpixel accuracy) by
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ru = u− (hu ¿ (state[mv precision]− 1))

rv = v − (hv ¿ (state[mv precision]− 1))

ru and rv satisfy 0 ≤ ru, rv < 2state[mv precision]−1. Then define four weighting values by:

w00 = (2state[mv precision]−1 − rv) ∗ (2state[mv precision]−1 − ru)

w01 = (2state[mv precision]−1 − rv) ∗ ru

w10 = rv ∗ (2state[mv precision]−1 − ru)

w11 = rv ∗ ru

and also define the clipped coordinates that we shall use for interpolation by:

cu = clip(hu, 0, width(upref)− 1)

cu1 = clip(hu + 1, 0, width(upref)− 1)

cv = clip(hv, 0, width(upref)− 1)

cv1 = clip(hv + 1, 0, width(upref)− 1)

The value returned is:

0
BBB@

w00 ∗ upref [cv][cu]+

w01 ∗ upref [cv][cu1]+

w10 ∗ upref [cv1][cu]+

w11 ∗ upref [cv1][cu1] + 2state[mv precision]−2

1
CCCAÀ (state[mv precision]− 1)

Informative: Note that the remainder values ru, rv are not determined from the clipped half-pixel

values cu, cv, cu1, and cv1. This ensures the remainder values depend only on the motion vector,

and hence are constant across each block, and allows a block-wise implementation. If the clipped

values had been used, blocks whose reference block straddled the edge of a picture would use different

remainders in different parts of the block. See Section 10.9.

10.9 Implementation

[TBC]

The motion compensation process is defined in this specification in terms of the prediction determined

for each pixel. Typically, an implementation will motion compensate all pixels within a prediction

unit or a block together, as they share motion parameters and hence will have a contiguous prediction

data set in the reference frames.
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B Video systems model and source parameters

The interpretation of Display Parameters by a display mechanism interfacing with a compliant decoder

is non-normative. However, it should where possible follow the recommendations and interpretations

specified in this section. Likewise, encoders should ensure that accurate display parameter information

is encoded to maximise the quality of displayed video.

[Include discussion of YCgCo here. Different matrixing requirements]

B.1 Colour

All current video systems use the following model for YUV coding of the RGB values (computer

systems often omit coding to and from YUV).

The R, G and B are tristimulus values (e.g. candelas/meter2). Their relationship to CIE XYZ

tristimulus values can be derived from the set of primaries and white point defined in the colour

primaries part of the colour specification below using the method described in SMPTE RP 177-1993.

In this document the RGB values are normalised to the range [0,1], so that RGB=1,1,1 represents

the peak white of the display device and RGB=0,0,0 represents black.

The ER, EG, EB values, are related to the RGB values by non-linear transfer functions labelled f()

and g() in the diagram. Normally, these values also fall in the range [0,1], but in the case of extended

gamut, negative values may be allowed also. The transfer function f() is typically performed in the

camera and is specified in the Transfer Characteristic part of the Colour Specification. For aesthetic

and psychovisual reasons the transfer function g() is not quite the inverse of f(). In fact the combined

effect of f() and g() is such that

where is the rendering intent or end to end gamma of the system, which may vary between about

1.1 and 1.6 depending on viewing conditions. The rationale for this is given in [Digital Video and

HDTV, Charles Poynton 2003, Morgan Kaufmann Publishers, ISBN 1-55860-792-7].

The non-linear ER, EG, EB values are subject to a matrix operation (known as non-constant lu-

minance coding), which transforms them into luma (EY) and chroma (normally ECb and ECr, but

sometimes ECg and ECo). EY is normally limited to the range [0,1] and the chroma values to the

range [-0.5, 0.5]. This is YUV coding and sometimes the chroma components are subsampled, either

horizontally or both horizontally and vertically. UV sampling is specified by the CHROMA FORMAT

value.

The EY, ECb, ECr (or EY, ECg, ECo) values are mapped to a range of integers Y, Cb, Cr (Y, Cg,

Co). Typically they are mapped to an 8 bit range [0, 255]. The way this mapping occurs is defined by

the signal range parameters. It is these integer values that are actually output from the decoder.In

order to display video, the inverse to the above operations must be performed to convert this data to

EY, ECb, ECr, then to ER, EG, EB and thence to R, G and B.

The E values can be viewed as something of a mathematical abstraction. For example in digital

display devices, R, G and B values are specified in terms of integer levels which are derived from

the integral luma and chroma values by direct operations subsuming and approximating all the real-

number operations described here. Generally, these approximations cause loss through quantisation of

intermediate values, and the restriction of values to particular ranges also restricts the colour gamut.

In the case of YCgCo coding, a lossless direct integer transform is used, so that in this mode (together

with 4:4:4 sampling and lossless compression), Dirac supports lossless RGB coding.

B.2 Frame rate

The FRAME RATE value encodes the intended rate at which frames should be displayed subsequent

to decoding. If INTERLACE is TRUE, then fields are displayed at double the frame rate, in the
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order specified by the TOP FIELD FIRST flag.

B.3 Aspect ratios and clean area

The PIXEL ASPECT RATIO value of an image is the ratio of the intended spacing of horizontal

samples (pixels) to the spacing of vertical samples (picture lines) on the display device. Pixel aspect

ratios are fundamental properties of sampled images because they determine the displayed shape of

objects in the image. Failure to use the right value of PIXEL ASPECT RATIO will result in distorted

images for example, circles will be displayed as ellipses and so forth.

Some HDTV standards and computer image formats are defined to have pixel aspect ratios that are

exactly 1:1.

The clean area is intended to define an area within which picture information is subjectively uncon-

taminated by all edge transient (and other) distortions. It may only be appropriate to display the

clean area rather than the whole picture, which may be distorted at the edge.

The top-left corner of the clean area has coordinates (CLEAN TL X, CLEAN TL Y) and dimensions

CLEAN WIDTHxCLEAN HEIGHT.

The clean area and the pixel aspect ratio determine the IMAGE ASPECT RATIO which is the ratio

of the width of the intended display area to the height of the intended display area.

Given two separate sequences, with identical IMAGE ASPECT RATIO, if the top left corner and

bottom left corners of their clean apertures are coincident when displayed, then the images as a whole

should be exactly coincident. This is regardless of the actual pixel dimensions of the images or their

clean areas. This allows sequences to be combined together appropriately if they are appropriately

scaled.

The defined pixel aspect ratios are designed to give standard image aspect ratios for typical TV

broadcasts. For example, for a 525 line (American) 704 x 480 (clean area) picture the image aspect

ratio is (704 x 10)/(480 x 11) which is exactly 4:3.

For 625 line systems the 59:54 pixel aspect ratio means (less conveniently) that a 702.9x576 image

would have an exact 4:3 image aspect ratio. It might be argued that the pixel aspect ratio for 625 line

systems should be such that a 702x576 image would have an exact 4:3 image aspect ratio. It could

be said that this corresponds to the analogue 625 line TV specification. This requirement would lead

to a pixel aspect ratio of 128:117. However, the tolerance of the analogue line length is 702 3 pixels,

which does not really seem to justify a ratio of exactly 128:117.

The values specified here are generally agreed to be the correct values. Then again not everyone

agrees with this consensus. These arise from the industry standard sampling frequencies used for

square pixels, which were originally designed for digitising composite analogue video signals. These

industry standard sampling frequencies are 11+3/11 MHz for 525 line systems and 14.75MHz for 625

line systems. The ratio of these frequencies to the (standardised) 13.5MHz sampling frequency used

for broadcasting yields the pixel aspect ratios given in and .

You are strongly advised to use one of the default pixel aspect ratios. However, if you know what you

are doing and dont like the default values you can define your own ratio. You should be aware that

many display devices may ignore your decision and may use different and unsuitable values.

B.4 Signal range

The offset and excursion values should be used to convert the integer-valued decoded luma and chroma

data Y, Cb, Cr to intermediate values EY, ECr, and ECb by the recipe

EY, is normally clipped to the range [0,1], and ECr, and ECb to the range [-0.5,0.5]. This effectively

clips Y to
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[LUMA OFFSET, LUMA OFFSET+LUMA EXCURSION]

and Cb, Cr to

[CHROMA OFFSET-LUMA EXCURSION/2, LUMA OFFSET+LUMA EXCURSION/2]

However, maintaining an extended RGB gamut may mean that either such clipping is not done, or

non-standard offset and excursion values are used to extract the extended gamut from the non-negative

decoded Y, Cr, and Cb values.

Non-default offset and excursion values cannot be coded if the chroma format is YCgCo: default

parameters should be used. However, even in this case, EY, ECg, and ECo should not be calculated.

Instead, direct integer conversion to RGB should be done as described in Section . (In fact, excursion

values will be ignored in this integer conversion.)

B.5 Colour primaries

The colour primaries allow device dependent linear RGB colour co-ordinates to be mapped to de-

vice independent linear CIE XYZ space. The primaries specified below are the CIE (1931) XYZ

chromaticity co-ordinates of the primaries and the white point of the device. The maths required to

convert between RGB and XYZ is reproduced below.

The colour primary specification therefore allows exact colour reproduction of decoded RGB values

on different displays with different display primaries. It has to be said that often conversion between

encoded primaries and display primaries is not done.

B.6 Colour matrix

Luma and chroma values EY, ECb, ECr should be used to derive ER, EG, EB values by the following

equations.

This follows by inverting the equations

In the case of YCgCo coding, ER, EG, EB should be directly computed from the integer Y, Cg and

Co values by the following recipe, whereby integer RGB IR, IG, IB values are decoded by

Y-=LUMA OFFSET

Cg-=CHROMA OFFSET

Co-=CHROMA OFFSET

TEMP=Y-(Cg¿¿1)

IG=TEMP+Cg

IB=TEMP-(Co¿¿1)

IR=IB+Co

These may be scaled down by dividing by (255¡¡ACC BITS) and clipped to [0,1] to give ER, EG, EB.

If the inverse transform has been correctly applied prior to coding and lossless coding employed, then

clipping will be unnecessary.

Note that this matrix implies that the chroma range is twice as large as the RGB range (and the

luma range), since the chroma components involve subtraction. Although logically knowing the signal

range and scaling signals is prior to performing matrixing, the matrix parameters are coded first in

the Display Parameters in order to allow the signal ranges to be correctly determined in this case.
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B.7 Transfer charactaristics

TV transfer characteristic

Denoting R or G or B as L (light) and ER, EG, EB as E then E=f(L) such is that;

All modern TV systems use this transfer characteristic at present. ITU-R BT 470 (Conventional Tele-

vision systems PAL, NTSC and SECAM) specifies an assumed gamma value of the receiver for which

the primary signals are pre-corrected as 2.2 for NTSC and 2.8 for PAL. This specification is incom-

plete, incorrect and obsolete and modern PAL and NTSC systems use the TV transfer characteristic

above.

Extended Colour Gamut

ITU-R BT 1361, Worldwide unified colorimetry of future TV systems defines a transfer characteristic

for systems with an extended colour gamut as follows.

Denoting R or G or B as L (light) and ER, EG, EB as E then E=f(L) such that;

This transfer characteristic is intended to be used with systems using an extended colour gamut.

Linear

A linear transfer characteristic has f(x)=x.

B.8 Source parameter presets

Source parameters are signalled using a range of preset indices into the following tables, as specified

in Section 5.5.

index default state[frame rate numer] default state[frame rate denom]

1 24000 1001

2 24 1

3 25 1

4 30000 1001

5 30 1

6 50 1

7 60000 1001

8 60 1

Table 15: Available preset frame rate values

index default state[aspect ratio numer] default state[aspect ratio denom]

1 (Square Pixels) 1 1

2 (525-line systems) 10 11

3 (625-line systems) 12 11

Table 16: Available preset aspect ratio values

index default state[luma offset] default state[luma excursion]

1 (8 Bit Full Range) 0 255

2 (8 Bit Video) 16 235

3 (10 Bit Video) 64 876

Table 17: Luma signal range available presets
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index default state[chroma offset] default state[chroma excursion]

1 (8 Bit Full Range) 128 255

2 (8 Bit Video) 128 224

3 (10 Bit Video) 512 896

Table 18: Chroma signal range available presets

Informative: The only presets available cover a full 8-bit range or 8- or 10-bit SDI video ranges.

If other video depths have been selected, custom signal range parameters should be signalled, or the

resulting video may have an unintended appearance that affects video quality adversely on a display

device.

index Description Primaries Matrix Transfer function

0 Custom, HDTV, PC & Internet 0 - ITU709 & sRGB 0 - HDTV/PC 0 - TV

1 NTSC 1 - SMPTE C 1 - SDTV 0 - TV

2 PAL 2 - EBU Tech 3213 1 - SDTV 0 - TV

3 D-Cinema 3 - CIE XYZ 2 - YCgCo 3 - DCI

Table 19: Colour specification presets

index Primaries

0 ITU709 & sRGB

1 SMPTE C (as used for NTSC)

2 EBU Tech 3213, as used for PAL

3 CIE XYZ

Table 20: Colour primaries presets

index Matrix

0 HDTV, PC & Internet: KR = 0.2126, KB = 0.0722

1 SDTV: KR = 0.299, KB = 0.114

2 Reversible: YCgCo

Table 21: Colour matrix presets

index Transfer function

0 TV

1 Extended Gamut

2 Linear

3 DCI Gamma

Table 22: Transfer function presets

[Must explain all these presets]
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C Video format defaults

This Section specifies the default values for decoder state variables that are determined by the value

of default state[video format]. These defaults reduce overhead by allowing a large number of pa-

rameters to be set without explicit signalling. The defaults are applied to default state variables

immediately on parsing the video format variable value.

In the case default state[video format] == 0 (Custom), these tables specify only the initial value

of default state parameters: sequence and source parameter values may be overridden within the

Access Unit header.
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Video Formats

0 – Custom 1 – QSIF 2 – QCIF 3 – SIF 4 – CIF 5 – 4SIF 6 – 4CIF

Sequence

parameters

luma width 640 176 176 352 352 704 704

luma height 480 120 144 240 288 480 576

chroma format 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0

video depth 8 8 8 8 8 8 8

Source

parameters

interlaced False False False False False False False

top field first True True True True True True True

sequential fields False False False False False False False

frame rate numer 30 15000 25 15000 25 15000 25

frame rate denom 1 1001 2 1001 2 1001 2

aspect ratio numer 1 10 12 10 12 10 12

aspect ratio denom 1 11 11 11 11 11 11

clean width 640 176 176 352 352 704 704

clean height 480 120 144 240 288 480 576

left offset 0 0 0 0 0 0 0

top offset 0 0 0 0 0 0 0

luma offset 0 0 0 0 0 0 0

luma excursion 255 255 255 255 255 255 255

chroma offset 128 128 128 128 128 128 128

chroma excursion 254 254 254 254 254 254 254

colour spec 0 1 2 1 2 1 2

colour primaries ITU709 SMPTE C EBU3213 SMPTE C EBU3213 SMPTE C EBU3213

KR 0.2126 0.299 0.299 0.299 0.299 0.299 0.299

KB 0.0722 0.144 0.144 0.144 0.144 0.144 0.144

transfer fn TV TV TV TV TV TV TV

Decoding

parameters

wavelet depth 4 4 4 4 4 4 4

wavelet index

INTRA 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3)

INTER 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – (5,3)

luma xbsep 8 4 4 8 8 8 8

luma xblen 12 8 8 12 12 12 12

luma ybsep 8 4 4 8 8 8 8

luma yblen 12 8 8 12 12 12 12

mv precision 2 2 2 2 2 2 2

picture weight ref1 1 1 1 1 1 1 1

picture weight ref2 1 1 1 1 1 1 1

picture weight bits 1 1 1 1 1 1 1

codeblocks(h× v)

INTRA

– levels 0-2 1,1 1,1 1,1 1,1 1,1 1,1 1,1

– level > 2 4 ,3 4,3 4,3 4,3 4,3 4,3 4,3

INTER

– levels 0-1 1,1 1,1 1,1 1,1 1,1 1,1 1,1

– level 2 8,6 8,6 8,6 8,6 8,6 8,6 8,6

– level > 2 12,8 12,8 12,8 12,8 12,8 12,8 12,8

Table 23: Default video parameters for video formats 0–6.



99

Video Formats

7 – SD480 8 – SD576 9 – HD720 10 – HD1080 11 – 2KCinema 12 – 4KCinema

Sequence

parameters

luma width 720 720 1280 1920 2048 4096

luma height 480 576 720 1080 1556 3112

chroma format 4:2:0 4:2:0 4:2:0 4:2:0 4:4:4 4:4:4

video depth 8 8 8 8 16 16

Source

parameters

interlaced False False False False False False

top field first True True True True True True

sequential fields False False False False False

frame rate numer 24000 25 24 24 24 24

frame rate denom 1001 1 1 1 1 1

aspect ratio numer 10 12 1 1 1 1

aspect ratio denom 11 11 1 1 1 1

clean width 720 720 1280 1920 2048 4096

clean height 480 576 720 1080 1536 3072

left offset 0 0 0 0 0 0

top offset 0 0 0 0 0 0

luma offset 16 16 16 16 0 0

luma excursion 235 235 235 235 65535 65535

chroma offset 128 128 128 128 32768 32768

chroma excursion 244 244 244 244 65534 65534

colour spec 1 2 0 0 3 3

colour primaries SMPTE C EBU3213 ITU709 ITU709 Not defined Not defined

KR 0.299 0.299 0.2126 0.2126 0.25 0.25

KB 0.144 0.144 0.0722 0.0722 0.25 0.25

transfer fn TV TV TV TV Linear Linear

Decoding

parameters

wavelet depth 4 4 4 4 4 4

wavelet index

INTRA 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 0 – DD(9,3) 6 – Fidelity 6 – Fidelity

INTER 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – (5,3) 1 – DD(9,3) 0 – DD(9,3)

luma xbsep 8 8 12 16 16 16

luma xblen 12 12 16 24 24 24

luma xbsep 8 8 12 16 16 16

luma xblen 12 12 16 24 24 24

mv precision 2 2 2 2 2 2

picture weight ref11 1 1 1 1 1 1

picture weight ref21 1 1 1 1 1 1

picture weight bits1 1 1 1 1 1 1

codeblocks(h× v)

INTRA

– levels 0-2 1,1 1,1 1,1 1,1 1,1 1,1

– level > 2 4 ,3 4,3 4,3 4,3 4,3 4,3

INTER

– levels 0-1 1,1 1,1 1,1 1,1 1,1 1,1

– level 2 8,6 8,6 8,6 8,6 8,6 8,6

– level > 2 12,8 12,8 12,8 12,8 12,8 12,8

Table 24: Default video parameters for video formats 7–12
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D Profiles and levels



Index

aspect ratio denom, 32, 95, 98, 99

aspect ratio numer, 32, 95, 98, 99

au picture number, 28

bits left, 18, 19

block data, 43–50, 71, 74, 75, 77

blocks x, 44, 75, 76

blocks y, 44, 75, 76

chroma excursion, 33, 96, 98, 99

chroma format, 98, 99

chroma format index, 29, 30

chroma height, 30, 40, 61, 70, 71

chroma offset, 33, 96, 98, 99

chroma width, 30, 40, 61, 70, 71

chroma xblen, 36, 37, 71

chroma xbsep, 36, 37, 71

chroma yblen, 36, 37, 71

chroma ybsep, 36, 37, 71

clean height, 32, 33, 98, 99

clean width, 32, 33, 98, 99

code, 18–20

codeblock mode, 41, 42, 56

codeblocks, 41, 55, 56, 98, 99

coefficient count, 55, 60

coefficient reset, 55, 60

colour primaries, 98, 99

colour spec, 98, 99

component height, 40, 52, 53

component width, 40, 52, 53

contexts, 18–21, 44, 60

current byte, 15

current picture, 61–63

frame rate denom, 32, 95, 98, 99

frame rate numer, 32, 95, 98, 99

global params, 37, 71, 77, 78

high, 18–20

interlaced, 31, 98, 99

left offset, 32, 33, 98, 99

level, 28

low, 18–20

luma excursion, 33, 95, 98, 99

luma height, 29, 30, 33, 40, 44, 61, 70, 71, 98,

99

luma offset, 33, 95, 98, 99

luma width, 29, 30, 33, 40, 44, 61, 70, 71, 98,

99

luma xblen, 36, 37, 71, 98, 99

luma xbsep, 36, 37, 44, 71, 98, 99

luma yblen, 36, 37, 71, 98

luma ybsep, 36, 37, 44, 71, 98

mv precision, 37, 77–80, 98, 99

next bit, 15

next parse offset, 25

num refs, 46

parse code, 25, 26

parse info prefix, 25

picture number, 35, 61, 62

picture prediction mode, 39

picture weight bits, 98, 99

picture weight ref1, 98, 99

picture weight ref2, 98, 99

previous parse offset, 25

profile, 28

ref1 picture number, 35, 62

ref1 weight, 39, 74, 75

ref2 picture number, 35, 62

ref2 weight, 39, 74, 75

ref buffer, 61–63

refs weight precision, 39, 73–76

retired picture list, 35, 63

sb split, 45, 48

sequential fields, 31, 32, 98, 99

superblocks x, 44, 45

superblocks y, 44, 45

top field first, 31, 98, 99

top offset, 32, 33, 98, 99

transfer fn, 98, 99

transform depth, 52–54

u transform, 39, 40, 62

using global, 37, 45, 46

v transform, 39, 40, 62

version major, 28

version minor, 28

video depth, 30, 33, 49, 50, 63, 73–75, 79, 98,

99

video format, 29, 97

wavelet depth, 41, 64, 70, 98, 99

wavelet index, 40, 41, 65, 67–69, 98, 99

y transform, 39, 40, 62

zero residual, 40, 62


