
Double Precision Floating Point Core
Verilog

Introduction

This document describes the Verilog double precision floating point core, posted at www.opencores.org. 
The Verilog version of the code is in folder “fpu_double”, and the VHDL version is in folder 
“double_fpu”.  There is a readme file in each folder, and a testbench file to simulate each core.  These 
cores are designed to meet the IEEE 754 standard for double precision floating point arithmetic.

Double Precision Floating Point Numbers

The IEEE 754 standard defines how double precision floating point number are represented.  64 bits are 
used to represent a double precision floating point number.  

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………0

The sign bit occupies bit 63.  ‘1’ signifies a negative number, and ‘0’ is a positive number.  The exponent 
field is 11 bits long, occupying bits 62-52.  The value in this 11-bit field is offset by 1023, so the actual 
exponent used to calculate the value of the number is 2^(e-1023).  The mantissa is 52 bits long and 
occupies bits 51-0.  There is a leading ‘1’ that is not included in the mantissa, but it is part of the value of 
the number for all double precision floating point numbers with a value in the exponent field greater than 
0.  A 0 in the exponent field corresponds to a denormalized number, which is explained in the next 
section.  The actual value of the double precision floating point number is the following:

Value = -1^(sign bit) * 2^(exponent – 1023) * 1.(mantissa)

(1.mantissa) being a base 2 representation of a number between 1 and 2, with 1 followed by a decimal 
point and the 52 bits of the mantissa.

For an example, how would the number 3.5 be represented in a double precision floating point format? 
The sign bit 63 is 0 to represent a positive number.  The exponent will be 1024.  This is calculated by 
breaking down 3.5 as (1.75) * 2^(1).  The exponent offset is 1023, so you add 1023 + 1 to calculate the 
value for the exponent field.  Therefore, bits 62-52 will be “1000000000”.  The mantissa corresponds to 
the 1.75, which is multiplied by the power of 2 (2^1) to get 3.5.  The leading ‘1’ is implied in the mantissa 
but not actually included in the 64-bit format.  So .75 is represented by the mantissa.  Bit 51, the highest 
bit of the mantissa, corresponds to 2^(-1).  Bit 50 corresponds to 2^(-2), and this continues down to Bit 0 
which corresponds to 2^(-52).  To represent .75, bits 51 and 50 are 1’s, and the rest of the bits are 0’s.
So 3.5 as a double-precision floating point number is:

David Lundgren (davidklun@gmail.com) 1

http://www.opencores.org/


Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
0 10000000000 1100000000000000000000000000000000000000000000000000

Denormalized Numbers

A denormalized number is any nonzero number with an exponent field of 0.  The exponent offset is 1023, 
but for the case when the value in the exponent field is 0, then the offset is changed to 1022.  The value 
multiplied by the mantissa is 2^(-1022).  The exponent offset is changed to 1022 because for 
denormalized numbers, the implied leading ‘1’ is no longer included.  So to calculate the actual value of a 
denormalized number, you multiply 2^(-1022) by the mantissa without the leading ‘1’.  The range of 
values that can be represented by a denormalized number is approximately 2.225e-308 to 4.94e-324.  

For example, the number 2e-309, is represented in the double precision floating point format as: 

Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
0 00000000000 0001011100000010101011100100110100011111101101011101

Special Cases

Positive Infinity is:

Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
0 11111111111 0000000000000000000000000000000000000000000000000000

Negative Infinity is:

Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
1 11111111111 0000000000000000000000000000000000000000000000000000

Quiet Not a Number (QNaN) is:

Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
x 11111111111 1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Signaling Not a Number (SNaN) is:

David Lundgren (davidklun@gmail.com) 2



Sign Exponent Mantissa
63 62………..52 51………………………………………………………………..0
x 11111111111 0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

For the SNaN, at least one of the mantissa bits must be nonzero.  Otherwise, it would be interpreted as 
Infinity.  For both QNaNs and SNaNs, the sign bit can be 1 or 0, and the lower 51 bits of the mantissa can 
be any value, as long as it is nonzero for the SNaN.  

Floating Point IP Core (Verilog)

The floating point IP core is separated into 7 source files:

1. fpu_double.v (top level)
2. fpu_add.v
3. fpu_sub.v
4. fpu_mul.v
5. fpu_div.v
6. fpu_round.v
7. fpu_exceptions.v

Hierarchy

David Lundgren (davidklun@gmail.com) 3

fpu_add

fpu_sub

fpu_mul

fpu_div

fpu_round

fpu_exceptions

Outputs

Inputs

fpu_double



Top Level

The input signals to the top level module are the following:

1. clk  (global)
2. rst  (global)
2. enable   (set high to start operation)
3. rmode (rounding mode, 2 bits, 00 = nearest, 01 = zero,

10 = pos inf, 11 = neg inf)
4. fpu_op (operation code, 3 bits, 000 = add, 001 = subtract,

010 = multiply, 011 = divide, others are not used)
5. opa, opb (input operands, 64 bits)

The output signals from the module are the following:

6. out_fp   (output from operation, 64 bits)
7. ready (goes high when output is available)
8. underflow 
9. overflow
10. inexact
11. exception 
12. invalid   

The top level, fpu_double, starts a counter (count_ready) one clock cycle after enable goes high.  The 
counter (count_ready) counts up to the number of clock cycles required for the specific operation that is 
being performed.  For addition, it counts to 20, for subtraction 21, for multiplication 24, and for division 
71.  Once count_ready reaches the specified final count, the ready signal goes high, and the output will be 

David Lundgren (davidklun@gmail.com) 4

fpu_double.v

clk

rst

enable

rmode

fpu_op

opa

opb

out

ready

underflow

overflow

inexact

exception

invalid



valid for the operation being performed.  fpu_double contains the instantiations of the other 6 modules, 
which are 6 separate source files of the 4 operations (add, subtract, multiply, divide) and the rounding 
module and exceptions module.

If the fpu operation is addition, and one operand is positive and the other is negative, the fpu_double 
module will route the operation to the subtraction module.  Likewise, if the operation called for is 
subtraction, and the A operand is positive and the B operand is negative, or if the A operand is negative 
and the B operand is positive, the fpu_double module will route the operation to the addition module.  The 
sign will also be adjusted to the correct value depending on the specific case.

Addition

The addition operation is performed in the source file, (fpu_add.v).  The input operands are separated into 
their mantissa and exponent components, and the larger operand goes into “mantissa_large” and 
“exponent_large”, with the smaller operand populating “mantissa_small” and “exponent_small”.  The 
comparison of the operands to determine which is larger only compares the exponents of the two 
operands, so in fact, if the exponents are equal, the smaller operand might populate the “mantissa_large” 
and “exponent_large” registers.  This is not an issue because the reason the operands are compared is to 
find the operand with the larger exponent, so that the mantissa of the operand with the smaller exponent 
can be right shifted before performing the addition.  If the exponents are equal, the mantissa’s are added 
without shifting.  

For an example of the addition operation, suppose you are adding 93 and .07.  Operand A (93) is 
represented in the double precision floating point format as:

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000101 0111010000000000000000000000000000000000000000000000

 
Operand B (.07) is represented as:

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 01111111011 0001111010111000010100011110101110000101000111101100

The exponent value for A (93) is 1029.  For B (.07), the exponent is 1019.  The difference between the 
exponents is 10.  So the mantissa of B will be shifted to the right by 10 bits, then added to the mantissa of 
A.  Also, because both numbers are normalized, meaning their exponents are greater than 0, the leading 
‘1’ needs to be included in the addition.  

Mantissa Large 10111010000000000000000000000000000000000000000000000

+ Mantissa Small 00000000001000111101011100001010001111010111000010100

= Result 10111010001000111101011100001010001111010111000010100

David Lundgren (davidklun@gmail.com) 5



The resultant mantissa will be the 52 bits following the leading 1 of the result above.  The resultant 
exponent is equal to the exponent of the larger operand, in this case (93), so the final exponent is 1029. 
So the output of the addition operation of 93 + .07 is the following double precision floating point 
number, corresponding to decimal number (93.07):  

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000101 0111010001000111101011100001010001111010111000010100

What if the exponents of the two operands are equal?  Let’s use 3.9 + 3.8 as an example.  3.9 is 
represented as the following double precision floating point number:  

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000000 1111001100110011001100110011001100110011001100110011

3.8 is represented as the following double precision floating point number:  

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000000 1110011001100110011001100110011001100110011001100110

We need to put the leading ‘1’ in front of each mantissa, and also include an extra ‘0’ bit in front in case 
the addition overflows.  This was not shown in the previous example because 93 + .07 did not overflow to 
an extra bit.  When an overflow occurs, the exponent must be increased by one.  Here is how the addition 
is performed:

  
Mantissa Large 
(3.9)

011111001100110011001100110011001100110011001100110011

+ Mantissa Small 
(3.8)

011110011001100110011001100110011001100110011001100110

= Result 111101100110011001100110011001100110011001100110011001

The leftmost ‘1’ in the result becomes the leading ‘1’ of the mantissa, and then the next 52 bits are the 
actual mantissa.  There is a ‘1’ as the 54th bit that gets shifted out of the mantissa.  That will be saved for 
rounding purposes and also will cause the “inexact” signal to be asserted in the exceptions module, but it 
is not included in the mantissa.  And because there is an overflow ‘1’ in the result, the exponent of the 
larger operand (1024) is increased by one.  The result of the addition is the following double precision 
floating point number, corresponding to the decimal number (7.7):  

David Lundgren (davidklun@gmail.com) 6



Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000001 1110110011001100110011001100110011001100110011001100

In the source file, fpu_add.v, the module (fpu_add) output the result in floating point format, because the 
result of the addition operation still needs to go through the rounding stage and then the exceptions stage. 
So the signals that are passed to the rounding stage are the three components that make up the floating 
point number: sign, exponent, and mantissa, and these three are named, respectively, as sign, exponent_2, 
and sum_2.  sum_2 is a 56-bit register, with an extra bit at the front of the mantissa for possible overflow 
in the rounding stage, the leading implied ‘1’, the 52 bits of the mantissa, and 2 extra bits which will 
determine both how the addition result gets rounded and if the “inexact” signal is asserted in the 
exceptions module.  The 2 extra bits are the result of extending the addition operation to 2 extra bits on 
the low end of the mantissa.  The 2nd extra bit also is the result of an OR on any leftover bits that might 
have been shifted out of the mantissa as caused by a difference in the exponents of the two operands. 
These 2 extra bits will come into play in the rounding stage, and they will be explained in more detail in 
the rounding section of this document.

Subtraction

The subtraction operation is performed in the source file, (fpu_sub.v).  The input operands are separated 
into their mantissa and exponent components, and the larger operand goes into “mantissa_large” and 
“exponent_large”, with the smaller operand populating “mantissa_small” and “exponent_small”. 
Subtraction is similar to addition in that you need to calculate the difference in the exponents between the 
two operands, and then shift the mantissa of the smaller exponent to the right before subtracting.  The 
definition of the subtraction operation is to take the number in operand B and subtract it from operand A. 
However, to make the operation easier, the smaller number will be subtracted from the larger number, and 
if A is the smaller number, it will be subtracted from B and then the sign will be inverted of the result. 
Take for example the operation 5- 20.  You can take the smaller number (5) and subtract it from the larger 
number (20), and get 15 as the answer.  Then invert the sign of the answer to get –15.  This is how the 
subtraction operation is performed in the module fpu_sub.  

As an example, consider 45.8 – 45.795.  45.8 is represented in the double precision floating point format 
as:   

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000100 0110111001100110011001100110011001100110011001100110

45.795 is represented as:

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 10000000100 0110111001011100001010001111010111000010100011110110

David Lundgren (davidklun@gmail.com) 7



There is no shifting of the smaller number’s mantissa because the exponents are equal.  So, putting the 
implied ‘1’ in front of the mantissa, and performing the subtraction is as follows:

Mantissa Large 
(45.8)

10110111001100110011001100110011001100110011001100110

- Mantissa Small 
(45.795)

10110111001011100001010001111010111000010100011110110

= Result 00000000000001010001111010111000010100011110101110000

The result is stored in register “diff”, and the signal “diff_shift” counts the number of 0’s in “diff” before 
the leftmost ‘1’.  “diff_shift” in this case is 13, and the exponent of the larger operand is reduced by 13, 
from 1028 to 1015, and the result is shifted 13 bits to the left to form the mantissa of the answer.  The 
leftmost ‘1’ of “diff” becomes the leading ‘1’ in front of the mantissa.  The result of the subtraction 
operation is the following double precision floating point number :

Sign Exponent Mantissa

63 62………..52 51………………………………………………………………..0

0 01111110111 0100011110101110000101000111101011100000000000000000

As with the fpu_add module, the fpu_sub module passes on the sign, exponent, and mantissa signals to 
the rounding module.  There are 2 extra remainder bits at the end of the mantissa that determine if 
rounding will be performed, with the least significant remainder bit calculated by performing an OR on 
any bits that were shifted out of the mantissa due to the difference in exponents. 

Multiply

The multiplication operation is performed in the module (fpu_mul) in the source file, (fpu_mul.v).  The 
mantissa of operand A and the leading ‘1’ (for normalized numbers) are stored in the 53-bit register 
(mul_a).   The mantissa of operand B and the leading ‘1’ (for normalized numbers) are stored in the 53-bit 
register (mul_b). Multiplying all 53 bits of mul_a by 53 bits of mul_b would result in a 106-bit product. 
Depending on the synthesis tool used, this might be synthesized in different ways that would not take 
efficient advantage of the multiplier resources in the target device.  53 bit by 53 bit multipliers are not 
available in the most popular Xilinx and Altera  FPGAs, so the multiply would be broken down into 
smaller multiplies and the results would be added together to give the final 106-bit product.  Instead of 
relying on the synthesis tool to break down the multiply, which might result in a slow and inefficient 
layout of FPGA resources, the module (fpu_mul) breaks up the multiply into smaller 24-bit by 17-bit 
multiplies.  The Xilinx Virtex5  device contains DSP48E slices with 25 by 18 twos complement 
multipliers, which can perform a 24-bit by 17-bit unsigned multiply.  

The breakdown of the 53-bit by 53-bit floating point multiply into smaller components is described on 
pages 77-78 of the Xilinx User Guide Document, "Virtex-5 FPGA XtremeDSP Design Considerations", 
also known as UG193.  You can find this document at www.xilinx.com by searching for "UG193".  The 
breakdown of the multiply in module (fpu_mul) is similar to the approach described in this document, 
though not exactly the same.  The multiply is broken up as follows:

David Lundgren (davidklun@gmail.com) 8



product_a = mul_a[23:0] * mul_b[16:0]
product_b = mul_a[23:0] * mul_b[33:17]
product_c = mul_a[23:0] * mul_b[50:34]
product_d = mul_a[23:0] * mul_b[52:51]
product_e = mul_a[40:24] * mul_b[16:0]
product_f = mul_a[40:24] * mul_b[33:17]
product_g = mul_a[40:24] * mul_b[52:34]
product_h = mul_a[52:41] * mul_b[16:0]
product_i = mul_a[52:41] * mul_b[33:17]
product_j = mul_a[52:41] * mul_b[52:34]

The products (a-j) are added together, with the appropriate offsets based on which part of the mul_a and 
mul_b arrays they are multiplying.  For example, product_b is offset by 17 bits from product_a when 
adding product_a and product_b together.  Similar offsets are used for each product (c-j) when adding 
them together.  The summation of the products is accomplished by adding one product result to the 
previous product result instead of adding all 10 products (a-j) together in one summation.  The goal is to 
take advantage of the adders in the Virtex5 DSP48E slices that follow each 24 by 17 multiply block.  If 
you are not targeting the Virtex5, you will most likely want to modify the way the multiply is broken up 
into smaller multiply blocks to match your target multiply resources.

The final 106-bit product is stored in register (product).  The output will be left-shifted if there is not a ‘1’ 
in the MSB of product.  The number of leading zeros in register (product) is counted by signal 
(product_shift).  The output exponent will also be reduced by (product_shift).

The exponent fields of operands A and B are added together and then the value (1022) is subtracted from 
the sum of A and B.  If the resultant exponent is less than 0, than the (product) register needs to be right-
shifted by the amount.  This value is stored in register (exponent_under).  The final exponent of the output 
operand will be 0 in this case, and the result will be a denormalized number.  If exponent_under is greater 
than 52, than the mantissa will be shifted out of the product register, and the output will be 0, and the 
“underflow” signal will be asserted.

The mantissa output from the (fpu_mul) module is in 56-bit register (product_7).  The MSB is a leading 
‘0’ to allow for a potential overflow in the rounding module.  The first bit ‘0’ is followed by the leading 
‘1’ for normalized numbers, or ‘0’ for denormalized numbers.  Then the 52 bits of the mantissa follow. 
Two extra bits follow the mantissa, and are used for rounding purposes.  The first extra bit is taken from 
the next bit after the mantissa in the 106-bit product result of the multiply.  The second extra bit is an OR 
of the 52 LSB’s of the 106-bit product.  

Divide

The divide operation is performed in the module (fpu_div) in the source file, (fpu_div.v).  The leading ‘1’ 
(if normalized) and mantissa of operand A is the dividend, and the leading ‘1’ (if normalized) and 
mantissa of operand B is the divisor.  The divide is executed long hand style, with one bit of the quotient 
calculated each clock cycle based on a comparison between the dividend register (dividend_reg) and the 
divisor register (divisor_reg).  If the dividend is greater than the divisor, the quotient bit is ‘1’, and then 

David Lundgren (davidklun@gmail.com) 9



the divisor is subtracted from the dividend, this difference is shifted one bit to the left, and it becomes the 
dividend for the next clock cycle.  If the dividend is less than the divisor, the dividend is shifted one bit to 
the left, and then this shifted value becomes the dividend for the next clock cycle.  

The exponent for the divide operation is calculated from the exponent fields of operands A and B.  The 
exponent of operand A is added to 1023, and then the exponent of operand B is subtracted from this sum. 
The result is the exponent value of the output of the divide operation.  If the result is less than 0, the 
quotient will be right shifted by the amount.    

The divide operation takes 54 clock cycles to complete, as it takes 1 clock cycle to calculate each of the 
54 bits of the quotient.  The register (count_out) counts down from 53 to 0, and when it reaches 0, the 54-
bit quotient register has its final value.  The value that is passed on to the rounding module is stored in the 
56-bit register (mantissa_7).  The first most significant bit is a ‘0’ to hold a value in case of overflow in 
the rounding stage, the next bit is the leading ‘1’ for normalized numbers, and the next 52 bits are the 
mantissa bits.  The remaining 2 bits are extra bits for rounding purposes.  The first extra bit is the last bit 
that was calculated in the quotient.  The quotient has 54 bits, while the mantissa and leading ‘1’ are only 
53 bits, so the extra bit is saved and passed on to the rounding stage.  The second extra bit is calculated by 
performing an OR on all of the remainder bits that were leftover after the last compare between the 
dividend and divisor registers.

Rounding

The rounding operation is performed in the module (fpu_round) in the source file, (fpu_round.v).  The 
inputs to the (fpu_round) module from the previous stage (addition, subtraction, multiply, or divide) are 
sign (1 bit),  mantissa_term (56 bits), and exponent_term (12 bits).  The mantissa_term includes an extra 
‘0’ bit as the MSB, and two extra remainder bits as LSB’s, and in the middle are the leading ‘1’ and 52 
mantissa bits.  The exponent_term has an extra ‘0’ bit as the MSB so that an overflow from the highest 
exponent (2047) will be caught;  if there were only 11 bits in the register, a rollover would result in a 
value of 0 in the exponent field, and the final result of the fpu operation would be incorrect.  

There are 4 possible rounding modes.  Round to nearest (code = 00), round to zero (code = 01), round to 
positive infinity (code = 10), and round to negative infinity (code = 11).  

For round to nearest mode, if the first extra remainder bit is a ‘1’, and the LSB of the mantissa is a ‘1’, 
then this will trigger rounding.  To perform rounding, the mantissa_term is added to the signal 
(rounding_amount).  The signal rounding_amount has a ‘1’ in the bit space that lines up with the LSB of 
the 52-bit mantissa field.  This ‘1’ in rounding_amount lines up with the 2 bit of the register 
(mantissa_term); mantissa_term has bits numbered 55 to 0.  Bits 1 and 0 of the register (mantissa_term) 
are the extra remainder bits, and these don’t appear in the final mantissa that is output from the top level 
module, fpu_double.  

For round to zero mode, no rounding is performed, unless the output is positive or negative infinity.  This 
is due to how each operation is performed.  For multiply and divide, the remainder is left off of the 
mantissa, and so in essence, the operation is already rounding to zero even before the result of the 
operation is passed to the rounding module.  The same occurs with add and subtract, in that any leftover 

David Lundgren (davidklun@gmail.com) 10



bits that form the remainder are left out of the mantissa.  If the output is positive or negative infinity, then 
in round to zero mode, the final output will be the largest positive or negative number, respectively.

For round to positive infinity mode, the two extra remainder bits are checked, and if there is a ‘1’ in either 
bit, and the sign bit is ‘0’, then the rounding amount will be added to the mantissa_term, and this new 
amount will be the final mantissa.  

Likewise, for round to negative infinity mode, the two extra remainder bits are checked, and if there is a 
‘1’ in either bit, and the sign bit is ‘1’, then the rounding amount will be added to the mantissa_term, and 
this new amount will be the final mantissa.

The output from the fpu_round module is a 64-bit value in the round_out register.  This is passed to the 
exceptions module.

Exceptions

In the exceptions module, all of the special cases are checked for, and if they are found, the appropriate 
output is created, and the individual output signals of underflow, overflow, inexact, exception, and invalid 
will be asserted if the conditions for each case exist.  The special cases are:  

1. divide by 0 – result is infinity, positive or negative, depending on the sign of operand A
2. divide 0 by 0 – result is SNaN, and the invalid signal will be asserted 
3. divide infinity by infinity -  result is SNaN, and the invalid signal will be asserted
4. divide by infinity – result is 0, positive or negative, depending on the sign of operand A

the underflow signal will be asserted
5. multiply 0 by infinity - result is SNaN, and the invalid signal will be asserted
6. add, subtract, multiply, or divide overflow – result is infinity, and the overflow signal will be

asserted
7. add, subtract, multiply, or divide underflow – result is 0, and the underflow signal will be  

asserted
8. add positive infinity with negative infinity - result is SNaN, and the invalid signal will be asserted
9. subtract positive infinity from positive infinity - result is SNaN, and the invalid signal will be 

asserted
10.  subtract negative infinity from negative infinity - result is SNaN, and the invalid signal will be 

asserted
11.  one or both inputs are QNaN – output is QNaN
12.  one or both inputs are SNaN – output is QNaN, and the invalid signal will be asserted
13.  if either of the two remainder bits is ‘1’ – inexact signal is asserted

If any of the above cases occurs, the exception signal will be asserted.

If the output is positive infinity, and the rounding mode is round to zero or round to negative infinity, then 
the output will be rounded down to the largest positive number (exponent = 2046 and mantissa is all 1’s). 
Likewise, if the output is negative infinity, and the rounding mode is round to zero or round to positive 
infinity, then the output will be rounded down to the largest negative number.  The rounding of infinity 
occurs in the exceptions module, not in the rounding module.  

David Lundgren (davidklun@gmail.com) 11



QNaN is defined as Quiet Not a Number.  SNaN is defined as Signaling Not a Number.  If either input is 
a SNaN, then the operation is invalid.  The output in that case will be a QNaN.  For all other invalid 
operations, the output will be a SNaN.  If either input is a QNaN, the operation will not be performed, and 
the output will be a QNaN.  The output in that case will be the same QNaN as the input QNaN.  If both 
inputs are QNaNs, the output will be the QNaN in operand A.  The use of Not a Number is consistent 
with the IEEE 754 standard. 

David Lundgren (davidklun@gmail.com) 12


	Inputs
	Outputs
			Verilog
	Introduction
	Double Precision Floating Point Numbers
	Denormalized Numbers
	Special Cases
	Hierarchy
	Top Level
	Addition
	Subtraction
	Multiply
	Divide
	Rounding
	Exceptions


