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Abstract

This diploma work deals with the design and implementation of an ANSI C
library. The target architecture for this implementation is ECO32, a 32-bit risc
processor invented by Prof. Dr. Hellwig Geisse.

This document describes the design and implementation of the library, doc-
umenting the behavior and describing the implementation of library functions,
especially where either the implementation is interesting in itself or where it
deviates from the C standard. The final chapters briefly describe the design of
a shell I implemented in the process of testing the library.
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Chapter 1

Introduction

The ANSI C standard defines more than just the language of C with its lexical
tokens, grammar, and semantics. In addition, it defines the standard library, a
collection of functions allowing application programmers to exploit the services
provided by the operating system in a portable way.

The standard library fulfills two major tasks: First, it ensures portability on
the source code level by encapsulating system calls in standardized functions,
and second, it provides utility functions which most any application is likely to
need, such as functions for processing C strings or basic mathematical functions.
System programs such as ls or sh should always prefer library functions over
system calls to be more easily portable to other platforms.

Many functions which were present in the early versions of Unix, such as
malloc(), printf() and strcmp(), have been included into the standard library
of ANSI C. In some cases, such as most of the string functions, porting those
functions is as easy as changing the syntax of the function definition to ANSI C
and writing the appropriate function prototype (this process can be automated).
In other cases, subtle differences between traditional C and ANSI C must be
taken into consideration.

Since a standard library is linked into almost any application, efficiency must
usually be preferred over readability, leading to a compressed, cryptic coding
style. So, rather than just use some reference implementation and be done with
it, I have chosen to implement most of the standard library myself to gain an
understanding of what goes on inside the more complex parts, such as the i/o
system and the storage allocator.

The following chapters describe my implementation of an ANSI C compliant
standard library and illustrate the major algorithms, techniques, and design
decisions. While documenting many library functions for easy reference and to
point out certain specifics of this implementation, this document should not be
regarded as a replacement for the ANSI C standard.
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Chapter 2

The Transition Between C
Dialects

2.1 Function prototypes

2.1.1 The motivation for change

A function prototype, also commonly referred to as a forward declaration, serves
the purpose of telling the compiler and the programmer how a function should
be used. For instance, consider the following function declaration, which is in
traditional style C:

double sqrt();

This carries two pieces of information: First, that there is a function called
sqrt, and second, that this function will return a value of type double. The
declaration does not tell what type—and even what number—of arguments the
function expects. From the function’s name a caller might infer that sqrt
expects one argument of type double, but without either documentation or the
source code of sqrt one cannot be sure.

An old-style prototype primarily consists of the following:

• A return type,

• the function’s name,

• and an empty pair of parentheses.

If a function’s return type happens to be int, then the prototype can be
omitted altogether. In any other case the prototype is mandatory.

Note also that since the void keyword was not part of traditional C, it was
impossible to define a function without a return value. If a function contained
no return statement, or only return statements without return values, then the
return value of that function would be undefined, but nevertheless present. So
even by looking at the head of the function definition, it was impossible to
deduce whether or not a function returned a meaningful value.

Certain Unix system programs, such as the Borne Shell, include a header
file containing a line to the effect of:
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#define void int

This made void mean the same as int to the compiler by means of macro
substitution, and even though a void function still had a return value, at least
the programmer could indicate its insignificance.

As an aside, the preprocessor was sometimes also used to approximate the
syntax of other programming languages, particularly Pascal. With preprocessor
definitions such as

#define if if(
#define then )
#define begin {
#define end }

it became possible to write an if statement as:

if a==b
then begin
c=b;
d=a;

end

You can imagine that I was, shall we say, slightly confused when I looked for
the first time at the source code of the Borne Shell and encountered code like
that. This is an example how the preprocessor can be used to perpetuate old
habits, all be it at the cost of introducing new bugs.

In short, in traditional C it is impossible to perform any sort of type check-
ing on the arguments to functions, unless the function is defined in the same
compilation unit as the function call. This has the obvious disadvantages of,
for instance, a float argument being passed to a function expecting an int, but
there are more subtle implications as well.

Consider the following function definition:

char rot13(c)
char c;
{
if(c>=’a’ && c<=’z’) {
if(c<’m’) c+=13; else c-=13;

}
else if(c>=’A’ && c<=’Z’) {
if(c<’M’) c+=13; else c-=13;

}
return c;

}

This function returns a char value, so if we want to call it from within
another compilation unit, we will have to write a prototype:

char rot13();

Now, if you coded the function call rot13(’A’), you would expect that it
yields the value ’N’, and on some machines this will indeed be the case, but on
others the function would probably return ’\0’.
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This is because rot13(’A’), apart from being a function call, is also an
expression. The operator is () (function call), the operands are rot13 and ’A’.
Since these operands are obviously of different types, the compiler will generate
code for type conversion. In particular, the value ’A’, a char value, will undergo
integer promotion. If we assume the character set of our machine to be ASCII,
the value which is actually passed to rot13 is the int value 65. Thus, though
the source code does not contain any apparent mistakes, nevertheless a function
is passed a value of a different data type than it expects.

On a little endian machine, it would probably make no difference because
the relevant byte would end up where the function expects it (on the stack just
above the return address). So if I tested my function on an Intel machine I
would never notice the bug. But if I compiled and executed the same code on
a big endian system, rot13 might suddenly fail without apparent reason. A
variant of this actually happened to me while trying to port a library function.
Such pitfalls provided the motivation for me to decide on implementing at least
part of an ANSI C standard library instead of simply trying to port the Unix
subroutines.

2.1.2 ANSI C prototypes

With ANSI C, a new form of function prototype was introduced, one in which
the pair of parentheses need not be empty, but may instead contain a list of the
types of arguments that the function expects. The function rot13, given in the
previous section to illustrate one of the more subtle pitfalls of the lack of type
checking, could be forward-declared in ANSI C as follows:

char rot13(char c);

The identifier for the formal parameter can even be omitted:

char rot13(char);

This eliminates the problem described in the previous section, because the
compiler now knows that the function expects a char value as its argument.

2.2 More differences

2.2.1 The signed qualifier

In traditional C, the “signed” type qualifier was usually not available because it
was considered that all integral types would be signed by default. The exception
to the rule was the “char” data type which was signed in some implementations
and unsigned in others. To safeguard against the problems related to unsigned-
preserving integer promotion (see previous section), chars were often cast to int
in complex expressions.

2.2.2 const

The “const” qualifier was not available in traditional C, leading to excessive
use of preprocessor macros to achieve the effect of a named constant value.
As any C programmer will find, preprocessor macros are error-prone because a
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great deal of care must be taken concerning the correct use of parentheses. The
rule of thumb—which I have followed most of the time while implementing the
library—is that an additional pair of parentheses should always be used when
in doubt.

2.2.3 Initialization of automatic arrays

In traditional C, it was not possible to directly initialize an automatic array.1

For instance, the following code snippet was not allowed:

f() {
int a[] = {2, 3, 5, 7};

}

To avoid manual assignment to the elements of an automatic array, quite a
few programmers made it common practice to use a global array instead, for the
only reason that this could be initialized. In this way, variables became global to
the entire program although their use was often restricted to just one function.
On some implementations it was sufficient to define the array as static. This,
however, resulted in an unnecessary increase in the size of the application’s data
segment.

2.2.4 enum

In traditional C, the availability of enumeration types varied between implemen-
tations, although its increasing popularity finally caused it to be included in the
ANSI C standard. On those implementations where it was present, the enum
keyword was used mainly as a means of creating constants; on other implemen-
tations one had to fall back on preprocessor macros—with all their inherent
disadvantages.

1An automatic variable is one which is defined local to a function, and which is also not
static.
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Chapter 3

Error handling

3.1 Detecting errors

Error handling in ANSI C is based on two mechanisms: The return values
of library functions, and the global variable errno which is of type int and is
declared in the header file errno.h.

When a C library function detects that it is unable to carry out its task,
it sets the errno variable to some value describing the error condition, and
it returns a value indicating an error (for instance, most of the I/O functions
indicate an error by returning the constant EOF). On the other hand, a function
which succeeds does not reset errno to zero, so a non-zero value of errno does
not indicate that the last library function call was the one which produced the
error. While reading ANSI C source code, I often encounter the idiom of setting
errno to zero, then calling a library function, then checking whether errno is
still zero. While this works as one would expect, it is more efficient to check the
return value, and access errno only when necessary.

3.2 Retrieving more information about an error

More information about the nature of an error can be retrieved by comparing
the value of errno to the valid error constants. These constants are defined
as preprocessor macros in errno.h, and are distinguished by the fact that their
names start with the letter “E”.

The current implementation defines 34 error constants. The first 33 of them
are all identical to the ones returned by Unix system calls, and their docu-
mentation may be looked up in the Unix Programmer’s Manual. The library
introduces an additional constant ERANGE which indicates that an argument
or return value is outside the valid range. For instance, the function strtol()
converts the string representation of a number to a value of type “long”. This
function sets errno to ERANGE if the number contained in the string is too
large or too small to be expressed as a “long” value.

All error constants have error messages associated with them. To retrieve
a pointer to the error message for a given error constant, the function strerror
(defined in string.h) may be used. The current implementation returns a pointer
to the string “Unknown error code” when passed an argument which is not one

9



of the error constants. The exception is the value zero which results in the string
“No error”.

The library provides a convenient shortcut for printing an error message to
the “stderr” stream. In the header stdio.h, the function perror is defined so that

perror(str);

is exactly equivalent to:

fprintf(stderr, "%s: %s\n", str, strerror(errno));

The functions setjmp() and longjmp(), described in chapter 8, make it pos-
sible to approximate more sophisticated error handling methods, such as the
“exception-throwing” mechanism of C++. In fact, the first C++ compilers
were basically ANSI C compilers with an additional, quite complex preproces-
sor pass which transformed a C++ program into an equivalent ANSI C program
which was then compiled as usual. Where the C++ code made use of excep-
tions, the resulting ANSI C code would usually call setjmp() and longjmp() to
achieve the same behaviour.

3.3 Implementation

The variable errno is implemented as a global variable exported by the assembly
module “syscall.s” which encapsulates all Unix system calls. The error constants
are defined, as preprocessor macros, in errno.h. When adding more error codes,
be sure to increase the preprocessor constant _MAX_ERRNO so that it yields the
value of the greatest error constant.

Finally, the file errno.c defines the array _ERRMSG which contains the corre-
sponding error message for each error constant.

3.4 Deviations from ANSI C

The current implementation of the error handling mechanism complies fully
with the C standard.
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Chapter 4

Standard Input/Output

4.1 Usage

4.1.1 Overview

All but the most trivial applications will need to interact with their environment
by means of input/output operations. Even the “Hello World” applications of
introductory programming classes need to rely on an underlying layer of code
for carrying out the actual output. This chapter deals with the usage and
implementation of the input/output part of the C standard library.

The data types, functions, and variables for the I/O functionality are de-
clared in the header stdio.h. Unless otherwise noted, the functions described in
this chapter are declared there, and their implementation can be found in the
file stdio.c in the lib/source directory.

The functionality of stdio.h revolves around a simple concept called a stream,
which may be defined as a source or sink of data. In the C standard library, the
atomic unit of data is a character (which takes up 8 bits on most architectures,
including ECO32). A stream might be attached to a terminal, a file, a pipe, a
printer or a network connection, but the C programmer may use the same set
of I/O functions for all these different stream variants, i.e. streams are treated
in a uniform way regardless of their physical implementations.

This design goal leads to the fact that the functionality of stdio.h is un-
doubtedly the most complex part of the C standard library. Its implementation
takes up approximately one third of the entire library code, and at the time of
writing comprises about 1200 lines of code (including inline documentation and
blank lines). It is also harder to debug than the rest of the library because one
cannot rely on stdio.h for producing debug messages.

In the implementation section of this chapter, I have chosen to adopt a fairly
low-level approach, including many technical details. The aim of this is not to
emphasize their importance but to illustrate certain programming techniques,
and also to point out certain pitfalls of the C language (more on this in chapter
2).
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4.1.2 Streams

Representing Streams

Streams in C are represented by objects of data type FILE which in most imple-
mentations (including mine) is defined as a struct. The actual members of this
structure are irrelevant to users because most of the time they will be operating
on pointers to FILE structures rather than on the structures themselves. Most
functions declared in stdio.h thus expect an argument of type FILE *.

Pre-defined Streams

In addition to any streams explicitly opened by the application, the C standard
library defines the following three streams:

• stdin (input): The standard input stream. Most of the time, when a shell
is used to launch a program, the control terminal of the shell also becomes
that program’s input stream unless the user chooses to redirect it to a file
or pipe. Filter programs such as sort or wc should always request their
input from stdin.

• stdout (output): The standard output stream (analogous to stdin but for
output).

• stderr: The standard error stream. To prevent error messages from be-
coming mixed up with the regular output of the program, a separate
output stream is maintained for them, so that, for instance, the regular
output may be redirected to a file while error messages still go to the user’s
terminal. This stream should be used for debugging and error messages
only.

4.1.3 Character-level I/O

To read or write a single character from or to a stream, an application uses the
functions getc and putc. If the operation was successful, both of these functions
return the character which was written or read, otherwise they return EOF (a
special constant defined in stdio.h, which is guaranteed not to compare equal to
any character).

When getc() returns EOF, this is because of one of two reasons:

1. The end of the input stream was reached, or

2. an error occurred while reading from the input stream, such as the error
produced by reading from a damaged disk sector.

The macros ferror and feof can be used on a stream to determine which of
those two was the reason for the return value of EOF. If the reason was an error
then the variable errno will have been set accordingly. (My implementation
does not assign any values to errno but merely retains the ones assigned by the
Unix kernel.)

A stream’s error flag may be cleared with the clrerr macro, so that the
next call to ferror for that stream will return zero. After an application has
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attempted to correct an I/O error, it should use clrerr to clear the error flag,
then retry the operation which produced the error.

Since most of the time characters will be read from stdin or written to stdout,
the library defines the macro getchar() to be equivalent to getc(stdin), and the
macro putchar(c) to be equivalent to putc(c, stdout).

The function “ungetc” exists to put a character that has been read into the
stream once more, so that the next reading operation performed on that stream
will return that character.

This is a feature which is used by most lexical scanners. Consider, for in-
stance, the following short function for reading a number from stdin:

int number(void) {
int c;
int res=0;
while((c=getc(stdin))>=0 && c<=9)
res = res*10 +c-’0’;

if(c!=EOF)
ungetc(c, stdin);

return res;
}

This function only knows where the number ends if it has read one character
“too much”. To make that additional character available to subsequent reading
operations on that stream, the function calls “ungetc” to put it back.

The ANSI standard states that it must be possible to “ungetc” at least one
character. Putting more than one character back is optional, and applications
should not rely on it. My implementation always allows for at least one char-
acter, even when the stream is unbuffered.

4.1.4 String-level I/O

The functions fgets and fputs are provided for I/O operations on zero-terminated
C strings. (In this and the following chapters, unless otherwise noted, the word
“string” will always refer to a zero-terminated C string.)

The fputs() function writes a string to a stream, not including its termination
character. Contrary to puts (see below), this function does not append a newline
character to the string.

The fgets() function reads a maximum of n − 1 characters from a stream,
stopping when it encounters a newline character. In this case, the newline will
be placed into the buffer. (By n is meant the second argument to fgets.)

There are two additional functions, puts() and gets(), which are different
from fputs() and fgets() in the following ways:

1. They operate only on the two streams stdin and stdout.

2. puts() appends a newline character at the end of the string.

3. gets() does not allow for the specification of the size of the receiving buffer.
The consequence of this is that code using gets() is always unsafe because
of potential buffer overruns. In other words, gets() should not be used,
and its implementation in the ECO32 library exists only for the sake of
completeness.
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puts() and fputs() return EOF on error, any other value on successful com-
pletion. gets() and fgets() return the NULL pointer on error or end of stream,
otherwise they return a pointer to the receiving buffer.

For reading or writing a block of memory which is not a C string, the func-
tions fread and fwrite are provided. fread() does not stop reading upon encoun-
tering a newline character, and fwrite() continues writing even when encounter-
ing a zero byte. Both functions return the number of objects successfully read
or written, an object being defined as a block whose size, in bytes, is given by
the size argument.

4.1.5 Formatted I/O

This section documents the printf and scanf families of functions. These provide
the functionality to scan a stream for formatted input and to print formatted
data such as rows of tables.

scanf, fscanf, sscanf

All of these functions take at least one argument which is a string called the
format specifier. The arguments following the format specifier are pointers
through which the scanned values are stored. The scanf functions return the
number of objects successfully scanned, or EOF if an error occurred.

The scanf function reads its input from stdin, the fscanf function reads from
the stream given as the first argument, and the sscanf function reads from a C
string.

The rest of this section documents the structure of the format specifier un-
derstood by the ECO32 library. This is only a subset of the syntax specified by
ANSI C because the ECO32 architecture, at the time of writing, does not have
a convenient representation for floating point numbers.

The specifier, or format string, consists of whitespace characters, conversion
specifiers, and other characters.

A whitespace character means that scanf (or the function in question) will
skip any sequence of whitespace characters in the input stream.

Any other character which is not a conversion specifier means that the next
character from the input stream must match this one exactly. If the character in
the format string and the next character from the input stream do not compare
equal, scanf stops at this point.

A conversion specifier begins with a percent character (%) and then contains,
in that order:

1. An optional asterisc (*). If present, it tells scanf not to store the result of
the conversion through the next pointer argument.

2. An optional decimal integer which gives the field width, i.e. the maximum
number of characters from the input stream that should be used for the
conversion. Any leading whitespace in the stream does not count towards
that maximum.

3. An optional “h” or “l”. The “l” flag must be specified if and only if the
corresponding pointer argument points to a “long int”, and the “h” flag
must be specified if and only if the corresponding pointer argument points
to a “short int”. It is an error to include both.
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4. The type specifier, which is not optional. The following specifiers are
recognized:

Specifier Type pointed to by next pointer argument
c, s, [. . . ] char
d, i, o, u, x, X int, short, or long
p pointer
n int

The specifiers d, i, o, u, x and X are used for scanning integers. The d
specifier scans for a signed decimal, o, u, and x scan for unsigned octal,
decimal and hexadecimal, respectively. X also scans for hexadecimal but
expects the alphabetic digits (“A”-“F”) to be capitalized.

The p specifier scans for a pointer value. In my implementation it is
equivalent to x.

The c and s specifiers both scan for a sequence of characters. c scans
for exactly width characters, defaulting to one character if no width was
given. s scans for a maximum of width characters, and if no width was
given it is assumed to be infinite. Contrary to c, s stops upon encountering
a whitespace character, and it also null-terminates the result, making it a
C string.

The n specifier does not read any characters from the input stream. It
stores, through the next pointer argument, the number of successful con-
versions scanf has performed so far. In my implementation, the n specifier
itself counts as one conversion (although nothing is really converted).

A special case of the format specifier is the sequence %%, meaning the
next character from the input stream must be a percent sign. If it isn’t,
then scanf aborts.

printf, fprintf, sprintf

All of these functions expect at least one argument, which is a format string sim-
ilar to that expected by the scanf functions. The remaining arguments following
the format string contain the data to convert.

The format string is comprised of simple characters and conversion specifiers.
A simple character, when encountered, is simply printed as-is. A conversion
specifier instructs printf to convert and print its next argument. A conversion
specifier is composed of the following, in that order:

1. A percent sign

2. An optional sequence of the following flags:

• “#”: Instructs printf to prepend 0x or 0X to a hexadecimal, and 0
to an octal integer.

• “0”: Left-pad with zeros instead of spaces.

• “+”: Print a plus sign for a positive integers.

• “-”: The output is left-adjusted. This flag overrides the “0” flag
described above.
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• “ ” (blank): Use a blank as sign for positive integers. This is useful to
ensure that in a table column, the least significant digits of numbers
are properly aligned.

3. An optional decimal integer which gives the field width, i.e. the minimum
number of characters printed by this conversion. Instead of a decimal an
asterisc (*) can be given, meaning that printf will take its next argument
value as the field width. If this is negative, then its absolute value is used
as field width, and the behavior of printf changes as if the “-” flag had
been specified.

4. An optional precision value, preceded by a dot, giving the number of sig-
nificant characters printed by this conversion (e.g. the number of digits).
The precision field may be a decimal integer, an asterisc (with the same
semantics as in the field width), or nothing at all (in which case a precision
of 0 is assumed).

5. An optional “l” or “h” flag, with semantics analogous to those of the same
flags in the scanf format string.

6. The type specifier, which is not optional. The following type specifiers are
understood:

• “%”: A percent character is printed, and no argument is used.

• “d”: The argument is printed as a decimal integer.

• “i”: Exactly equivalent to “d”.

• “o”: The argument is printed as an octal integer.

• “u”: The argument is printed as an unsigned decimal integer.

• “x”: The argument is printed as an unsigned hexadecimal integer,
using lower case letters a-f.

• “X”: The same as “x” but using upper case letters A-F.

• “c”: The argument, which is assumed to be of type int, is printed as
a character.

• “s”: Prints out the C string pointed to by the argument.

The printf functions return the number of bytes printed, or EOF if an error
occurred.

4.1.6 File Handling

Opening a File

The fopen function is provided for opening a file. If successful, it returns a
pointer to the newly created stream, otherwise it returns the NULL pointer.

fopen() takes two arguments, the first of which is the filename and the sec-
ond of which is a mode specifier. The list below gives all the mode specifiers
understood by the ECO32 library, along with their respective semantics:

• r, rb, rt: The file is opened for reading only, and the position in the file
will be set to the beginning.
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• w, wb, wt: The file is opened for writing only, and the position in the file
will be set to the beginning. If the file already exists, it will be truncated
to zero length.

• r+, r+b, r+t, rb+, rt+: The file will be opened for reading and writing,
and the position in the file will be set to the beginning.

• w+, w+b, w+t, wb+, wt+: The file will be opened for reading and writ-
ing, and the position in the file will be set to the beginning. If the file
already exists, it will be truncated to zero length.

• a, ab, at: The file is opened for appending at the end.

• a, a+, a+b, a+t, ab+, at+: The file is opened for appending at the end,
and also for reading.

Closing a file

The fclose function closes a file stream. If a stream is not closed explicitly by
means of this function, it will be closed at program termination (see chapter
12).

Changing the file position

The function fseekfseek may be used to set the position in a file where the
next I/O operation will occur. fseek() takes three arguments: The file stream,
the offset, and one of three pre-defined constants telling fseek() how the offset
is to be interpreted. A value of seek_set means the offset is relative to the
beginning, a value of seek_cur means it is relative to the current position, and
a value of seek_end means it is relative to the end of the file.

fseek() returns the new position in the file, relative to the beginning, or EOF
if an error occurred.

Temporary files

A temporary file, to the C standard library, is a file opened for reading and
writing which is automatically deleted when closed. The tmpfile function returns
a pointer to such a temporary file stream, or NULL if the file could not be
opened.

To obtain a unique name for the temporary file, tmpfile() makes a call to
the tmpnam() function which returns such a filename. tmpnam() may be called
directly, although it usually only makes sense in the context of tmpfile().

4.2 Implementation

This section gives some implementation details for the functionality provided
by stdio.h.
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4.2.1 Buffering basics

Besides portability, a major advantage of the stdio functions over their analogous
system calls is the fact that the stream functions are buffered.

Every stream can have a buffer associated with it. When reading from such
a buffered stream for the first time, the buffer is filled with characters from
the actual underlying file descriptor. Subsequent calls to reading functions will
return characters from that buffer, or refill the buffer in case it runs out of
characters.

Similarly, when writing to a buffered stream, the characters are not directly
written to the underlying file descriptor, but stored in that stream’s buffer. Only
if this buffer is full will its contents be written to the underlying file descriptor.

The purpose of this approach is, of course, to save on expensive system calls
and even more expensive disk access. The price to pay is a marked increase of
complexity in the implementation, and also the fact that the file on disk may
not always be consistent with the abstract stream. So if two processes share the
same file, changes originating from one process may not immediately be visible
to the other.

By default, the library will always try to allocate a buffer for a newly created
stream, and only if the system runs out of memory will the library resort to
unbuffered I/O. However, there are two exceptions to this general rule:

1. stderr is never buffered.

2. stdout is unbuffered if it is connected to a terminal. To determine whether
or not this is the case, the library issues the system call “sgtty” for the
file descriptor of stdout. This system call is only valid for terminals, so if
it fails, this would indicate that stdout is connected to something other
than a terminal, e.g. a file or pipe.

4.2.2 The FILE structure

The following is the definition of the FILE data type, taken directly from stdio.h:

/* The FILE structure */
typedef struct {
int fd;
char *buf;
char *pos;
int cnt;
int flags;

} FILE;

This structure is fairly self-explanatory:
“fd” is the file descriptor as returned by the “open” system call, and is used

for subsequent operations on that file.
“buf” points to the I/O buffer for that stream. Note that the same buffer

is used for both reading and writing. This presents no problem because a read
operation must not be followed by a write operation without an intervening
call to one of the functions “fflush” or “fseek”. It is the responsibility of these
functions to tidy up the buffer.
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“pos” points to the current position in the buffer. If this buffer is currently
used for writing, this is the address where the next character is placed by one
of the write functions. If it is used for reading, it points to the next character
which a read operation will return.

The meaning of “cnt” also depends on whether the buffer is currently used
for reading or writing. When reading, cnt specifies the number of characters
remaining in the buffer. When writing, it specifies the number of remaining
free slots. This value is used by “getc” and “putc” to determine if the buffer is
empty or full, respectively.

Finally, “flags” is a bitmask of several boolean flags giving additional infor-
mation about the stream. Some of these flags are:

• _READ: The stream is open for reading

• _WRITE: The stream is open for writing

• _READ_WRITE: The stream is open for both reading and writing. Addi-
tionally, the _READ or _WRITE flag may be set to indicate the state of the
buffer.

• _EOF: The application has tried to read beyond the end of the file

• _ERROR: An error occurred while reading from or writing to the stream.
This is most likely some physical I/O error encountered by the operating
system. The variable errno will have been set accordingly.

• _UNBUF: This stream is unbuffered, i.e. any reading or writing operation
on that stream will result in an immediate system call. An example of
an unbuffered stream is standard output when it’s going to a terminal, as
would be the case in an interactive application. If this were buffered, then
not all the output from an application would immediately be visible to the
user. One example of a stream which is never buffered is stderr. (I made
this decision based on the assumption that error messages would always
be of immediate interest to the user, even when they are redirected to a
file.)

All the FILE structures are kept in the _files array, which is defined as
follows:

FILE _files[_MAX_FILES] = {
{0, _stdinbuf, _stdinbuf, 0, _READ},
{1, NULL, NULL, 0, _WRITE},
{2, NULL, NULL, 0, _UNBUF|_WRITE}

};

With the _files array set up in this way, it is now possible to define the
three standard streams:

#define stdin (&_files[0])
#define stdout (&_files[1])
#define stderr (&_files[2])
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4.2.3 getc, putc, ungetc

At the core of buffered I/O, we have the two functions getc and putc for reading
or writing a single character. The idea is that if we have functions for buffered
I/O of single characters, all the other I/O functions can be implemented based
on those.

I have implemented both getc and putc as preprocessor macros in stdio.h.
If getc is performed on a stream with a non-empty buffer, or if putc is performed
on a stream with a buffer that is not full, then the action is carried out by
the macro alone. Otherwise, getc and putc will delegate their calls to the
helper functions _bufread and _bufwrite, respectively. These functions will
refill, flush, or allocate the buffer as needed. This would have been tedious to
implement as preprocessor macro.

There are also the two functions fputc and fgetc available, which are se-
mantically equivalent to putc and getc but are implemented as functions in-
stead of macros. This makes no difference most of the time, except if their
arguments have side effects. To illustrate, consider the following two defini-
tions:

/* First, a function */
int square(int x) {
return x*x;

}
/* and second, a preprocessor macro */
#define SQUARE(x) ((x)*(x))

The expressions square(y) and SQUARE(y) would seem to be equivalent,
but aren’t. For instance, if v is an integer variable with the value of 5, then
the expression square(v++) yields 25 and leaves v at 6, whereas the expression
SQUARE(v++), interestingly, yields 30 and leaves v at 7. This is because the
preprocessor substitutes SQUARE(v) by:

((v++)*(v++))

So, if fp were a pointer into an array of streams, then fgetc(fp++) would
work as expected, but getc(fp++) would fail miserably with my implementation
of stdio.h. This is ANSI C compliant.

For more on such intricacies, see chapter 2 on page 5.
The ungetc() function, which makes it possible to re-insert a character into

an input stream, is also implemented as a preprocessor macro. It simply places
the character into that stream’s buffer1.

4.2.4 High level I/O

All of the remaining I/O functions, such as printf and scanf, fgets and fputs,
etc. perform their I/O operations by means of the three low-level I/O functions,
getc, putc and ungetc. In light of this it becomes obvious why the latter three
had to be implemented as preprocessor macros rather than functions: This way
the stdio library does not become cluttered with lots of inefficient function calls.

1Note that this works even for unbuffered streams because, internally, they have a buffer
of size 1.
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4.2.5 Temporary files

This section deals with the implementation of the functions tmpnam() and
tmpfile().

The tmpnam() function creates a name for a temporary file, i.e. the name
must be unique on a system-wide basis, and it must easily be recognizable as a
temporary filename.

In this implementation, the name of a temporary file consists of the following:

1. The process id (pid) of the process creating the name,

2. A serial number between 00000 and 99999, and

3. the suffix “.tmp”.

So a process may have 100,000 temporary files opened simultaneously before
this implementation will run into trouble.

The tmpfile() function does little more than obtain a filename (by calling
tmpnam), open that file (with a mode argument of “w+b”), then unlink it from
the file system. This last step makes sure the file will be automatically deleted
by the operating system once the application closes it. So theoretically, only if
the system crashes will temporary files need to be cleaned up manually.

4.2.6 Conclusion

I conclude this section on the implementation of stdio, in the hope that it will
be helpful in reading and extending its source code more easily.

The source code includes extensive inline documentation explaining those
implementation details which might appear cryptic at first glance. In those
cases where the information in this document clashes with that in the inline
documentation, the latter should be regarded as superceding the former.

4.3 Deviations from the ANSI C standard

At the time of writing, my implementation of stdio.h still lacks the function
setvbuf(). The remaining functions have demonstrated ANSI-compliant behav-
ior during testing. Note that scanf() and printf() (and their relatives) do not
include the functionality for printing/scanning floating point numbers.
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Chapter 5

String and memory
functions

This chapter documents the functions provided by the header string.h, giving
implementation details where the implementation is interesting enough to justify
it.

5.1 String functions

The functions declared in string.h mostly fall into two distinct categories: Those
whose names begin with “str” are string functions; they operate on C strings,
i.e. zero-terminated character arrays. Those functions whose names start with
“mem” are memory functions; they operate on blocks of memory, regardless of
their structure.

The following string functions are available:

• strcpy(dst, src): Copies a string from src to dst, stopping at the ter-
mination character which is also copied. The function returns dst. The
memory regions for source and destination should not overlap.

• strncpy(dst, src, n): Copies at most n characters from src to dst,
stopping after a zero character has been copied. At this point, if less than
n characters have been copied, zero characters are written to dst until a
total of n characters have been written. Note that if the length of src is
greater or equal to n, dst will not be zero-terminated. strncpy() does not
work if the memory regions for src and dst overlap.

• strcat(dst, src): Appends src to dst. This is exactly equivalent to
strcpy(dst,strlen(dst), src), but it is more efficient to call strcat().

• strncat(dst, src, n): Appends at most n characters from src to dst,
stopping if a zero character has been copied. strncat() makes sure that
dst will always be zero-terminated. The function returns dst.

• strcmp(s1, s2): Lexicographically compares the two strings s1 and s2,
returning zero if they are equal, a negative value if s1 is less than s2, and
a positive value otherwise. If one of the strings is shorter than the other,

22



and the latter starts with the former, then the latter is considered greater.
Note that this function is useful as an argument to qsort() or bsearch(),
to sort or search an array of strings.

• strncmp(s1, s2, n): Has the same semantics as strcmp(), but pays at-
tention only to the first n characters of both strings.

• strchr(s, c): Returns a pointer to the first occurrence of the character
c in the string s, or a NULL pointer if s does not contain c. If ’\0’ is
passed as argument c, a pointer to the end of the string (the termination
character) is returned.

• strrchr(s, c): Returns a pointer to the last occurrence of the character
c in the string s. The NULL pointer is returned if s does not contain c. If
’\0’ is passed as argument c, the NULL pointer is returned.

• strspn(s1, s2): Returns the length of the prefix of s1 which consists
only of characters contained in s2. A common use for this function is to
strip whitespace from the beginning of a string. If s2 points to the empty
string, zero is returned.

• strcspn(s1, s2): Returns the length of the prefix of s1 which consists
only of characters not in s2. A common use is to strip trailing whitespace
from a string. If s2 points to the empty string, the length of s1 is returned.

• strpbrk(s1, s2): Returns a pointer to the first occurrence of a character
in s1 which is also contained in s2. If none of the characters in s2 are
contained in s1, the return value is the NULL pointer. The termination
characters are not considered part of the strings.

• strstr(s1, s2): Returns a pointer to the first occurrence of s2 in s1, i.e.
performs string searching. If s2 is not a substring of s1, the NULL pointer
is returned. A special case is that s1 is returned if s2 points to the empty
string.

This function is implemented as an iteration over s1. If, during this iter-
ation, the first character of s2 is found, then strncmp() is called to deter-
mine if a match was found. If so, the current position in s1 is returned,
otherwise the loop continues.

• strlen(s): Returns the length of the string s, which is defined as the
number of characters before the termination character.

• strerror(n): Returns a pointer to an appropriate error message corre-
sponding to the error code n (see chapter 3 for more details).

• strtok(s1, s2): Tokenizes a string. The string to be tokenized should
be passed as argument s1; s2 should contain the separator characters, i.e.
the characters which separate tokens in s1. If s1 contains anything other
than separator characters, a pointer to the first token is returned. If the
NULL pointer is passed as s1 to subsequent calls to strtok(), the function
will return a pointer to the next token as long as one is available. When
strtok() runs out of tokens, it returns the NULL pointer. The separator
string s2 may be different for each call to strtok(), but it may not be
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NULL. Note that strtok() “destroys” the string it tokenizes by writing
termination characters at the end of each token it finds.

The implementation of strtok() may serve as a good example for the use
of strspn() and strcspn().

5.2 Memory functions

These functions provide efficient methods for working with memory blocks,
which may or may not be C strings. The zero character which is used to termi-
nate a C string has no special significance to these functions.

• memcpy(dst, src, n): Copies n bytes from src to dst, returning dst.
memcpy() will not have the desired effect if the memory regions for source
and destination overlap.

• memmove(dst, src, n): This function has the same semantics as mem-
cpy(), but also works for overlapping memory areas.

The implementation works by comparing the two pointers dst and src.
If dst is less than src, copying takes place “from left to right”, i.e. in
ascending order of addresses. If dst is greater than src, copying is done in
reverse order. This way it is ensured that memmove() does not overwrite
memory regions it hasn’t read yet.

• memcmp(s1, s2, n): Compares two memory regions of n bytes which may
overlap. The return value is exactly the same as that of strcmp(), except
for the fact that memcmp() does not stop comparing when it encounters
a zero character.

• memchr(s, c, n): Searches the memory region defined by s and n for the
byte c, returning a pointer to the first occurrence. A NULL pointer is
returned if c cannot be found.

• memset(s, c, n): Starting with the byte pointed to by s, memset() sets
n contiguous bytes to c, then returns s.
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Chapter 6

Sorting an array

6.1 Motivation

This chapter is a singularity in that it concerns itself with just a single function,
namely the qsort function which employs the Quicksort algorithm to sort the el-
ements of an array. There are two reasons for this somewhat lengthy observation
of qsort(): First, the source code might appear cryptic to the uninitiated, and
second, it illustrates the special care which must be taken when implementing
library functions.

A library routine exists, by definition, to be reused in a wide variety of ap-
plications, so its efficiency and correctness, or lack thereof, have a much greater
impact than would be the case with any other function. The description of the
Quicksort algorithm is deceptively simple, yet it is extremely easy to come up
with an implementation which is almost, but not quite, correct. Such an imple-
mentation would work as expected in many cases, then suddenly fail when con-
fronted with a special case, such as an array whose last element is the smallest.
A naive Quicksort implementation also tends to consume much more memory
than is actually necessary.

6.2 The algorithm

The basic Quicksort algorithm was invented in 1960 by C. A. R. Hoare, and
it still ranks among the best general-purpose sorting algorithms known today.
“General-purpose” means that the algorithm performs well in most cases, al-
though better algorithms exist for certain special cases. For instance, if an array
is already sorted except for two adjacent elements which need to be exchanged,
even Bubble-sort performs better than certain Quicksort implementations. How-
ever, when the nature of the array, particularly the distribution of key values,
is not known in advance, Quicksort has been demonstrated to be a reasonable
choice.

Like most recursive algorithms, Quicksort is based upon the principle of
“divide and conquer”, i.e. it solves its problem by considering it as a composition
of smaller sub-problems which are more easily handled.

To sort an array A, Quicksort performs the following steps:
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1. Partition A so that the element A[i] ends up in its final place. All the
elements to the left of A[i] are less than or equal to A[i], and all the
elements to the right of A[i] are greater than or equal to A[i]. We call
A[i] the partitioning element or pivot element.

2. Independently of each other, sort the two sub-arrays thus created.

Admittedly, the above description leaves a lot to be desired, particularly
when it comes to the partitioning process in step 1. One common way of parti-
tioning is accomplished by maintaining two pointers, i and j, so that i starts
off pointing to the first element, and j starts off pointing to the last element of
the array. The following steps are then performed:

1. Select a pivot element.

2. Advance i to the right until it points to an element which is greater than
or equal to the pivot.

3. Advance j to the left until it points to an element which is less than or
equal to the pivot.

4. If i<j still holds, then the two elements pointed to by i and j are obviously
in the wrong order, so exchange them.

5. If the pointers cross, the partitioning process is almost complete. Other-
wise, go back to step 2.

6. Finally, exchange the element pointed to by i (or, alternatively, j) with
the partitioning element.

This description leaves us with but one arbitrary factor: the method of
choosing a partitioning element.

The following example illustrates the partitioning process for an array of 6
elements. The first element of the array has been arbitrarily chosen as the pivot
element.

State A[0] A[1] A[2] A[3] A[4] A[5] Remarks
1 4 2 5 6 3 1 Pivot is 4

i j
2 4 2 1 6 3 5

i j
3 4 2 1 3 6 5

j i The pointers cross
4 3 2 1 4 6 5 Exchanging

With state 4, the goal of the partitioning process has been achieved. A[3] is
in its final place in the array, all elements to the left of it are less than or equal
to it, and all elements to the right of it are greater than or equal to it. The next
step would be to sort the two sub-arrays to the left and right of A[3], and the
array A, in its entirety, would be sorted.
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6.3 Implementation

6.3.1 The first attempt

I started out with a naive Quicksort implementation which was well-suited to
small arrays but very demanding on memory for larger ones. For purposes of
reference, this implementation may be found in the file lib/source/qsort.c.old.

In this implementation, most of the work is done by the function rec. It
partitions the array using the method described above, choosing the first element
of the array as the pivot element. It then calls itself recursively to sort the two
sub-arrays created by the partitioning process.

The inefficiency of this implementation becomes apparent when one con-
siders the two recursive calls for the sub-arrays. For every recursive call, the
following information is pushed onto the stack:

• The return address

• The size of an array element (“size” argument)

• A pointer to the comparison function (“cmp” argument)

• Two pointers (the local variables i and j)

• Two more pointers (the arguments f and l)

Of the list above, only the last entry contains information relevant to the rest
of the sorting process. The following section introduces an implementation of
qsort() which drastically reduces the demand on memory by no longer containing
recursive calls.

6.3.2 Eliminating recursive calls

The explicit stack

The naive implementation described in the previous section makes implicit use
of the program’s runtime stack to store information. The disadvantage of this
approach is that usually more information is stored than is actually necessary.
So instead of using the implicit stack by means of nested function calls, the
current implementation of qsort() uses an explicit stack, and saves only the
information which is relevant to the problem at hand. This explicit stack is
used for “remembering” those sub-arrays which are still in need of sorting.

The idea is to place the previous implementation inside a while loop. When-
ever a partitioning process is complete, its resulting sub-arrays are pushed onto
the stack. Following this, the next sub-array is simply popped off the stack, and
partitioning continues until the stack is empty, i.e. there is no more work to be
done.

The stack is implemented by means of an array and a stack pointer. Infor-
mation is pushed onto the stack by storing it through the stack pointer, then
incrementing the pointer. Information is popped off the stack by first decre-
menting the pointer, then accessing the data it points to.
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Removing tail recursion

The use of an explicit stack already eliminated a lot of unnecessary overhead.
More overhead can be removed by reducing the amount to which the stack is
used.

A function is called tail-recursive if the last thing it does before returning is
to call itself. To allocate a new stack frame for such a function call would be
a waste of memory, because the caller will return immediately when the new
instance has returned. So instead of allocating a new stack frame, it suffices to
overwrite the old arguments with the new ones, then jump back to the beginning
of the function. So tail-recursion and iteration are one and the same: The idea
is to repeat the same operation for different values, but in the same space. As
an aside, in a functional programming language such as LISP, the only way of
expressing iteration is by means of tail recursion.

The function rec() in the implementation described above ends with such
a tail-recursive call. So, instead of pushing the boundaries of both sub-arrays
onto the stack, the current implementation saves just the boundaries of one
sub-array; the second sub-array is stored directly in the two variables f and l,
so it will be processed immediately in the next iteration.

6.4 Usage

The qsort() function expects the following arguments:

• base: A pointer to the start of the array to sort

• n: The number of elements in the array

• size: The size, in bytes, of one element. qsort() has no other way of
determining where an element ends and the next one starts.

• cmp: A pointer to a function which expects two arguments of type
const void *. qsort() uses this function to compare the key values of
two elements. The function should return zero if they are equal, a neg-
ative value if the first argument is considered less than the second one,
and a positive value if the first argument is considered greater than the
second.

A good indication of whether or not the algorithm performs well for some
array can be obtained by counting the number of comparisons, i.e. the number
of calls to the function passed as cmp. An easy way to accomplish this would
be to implement this function so that it increments some global variable each
time it is called. There are degenerate cases where the number of comparisons
is proportional to n2 [3] (this may happen when the array in question is almost
sorted). If it is known in advance that such a case is to be expected, my advice
would be to use an implementation of Shellsort instead.

6.5 Searching an array

The library function bsearch performs a binary search on an array. It expects
the following arguments:
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• key: A pointer to the key to search for

• base: A pointer to the start of the array to search

• n: The number of elements in the array

• size: The size of such an element (note that the key does not need to be
of the same size)

• cmp: The comparison function; it expects two arguments of type
const void *, the first one pointing to the key, the second pointing to
an element in the array. The expected return values are the same as with
the cmp argument to qsort().

bsearch() returns a pointer to the element if it could be found, otherwise it
returns the NULL pointer.

For completeness: Note that the binary search algorithm expects the array
to be sorted with respect to the comparison function.
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Chapter 7

The random number
generator

7.1 Usage

The ANSI C standard library contains a pseudo-random number generator
whose interface consists of the two functions srand and rand , as well as the
constant RAND_MAX.

Before the generator can be used, it is advisable to set its seed value with
the srand function. The seed value is an unsigned integer which determines the
sequence of numbers generated, so that the same seed will always result in the
generation of the same sequence.

After the generator has been seeded, the rand function is used to obtain
the next random number in the sequence. The random numbers produced by
rand() are integers in the range 0 to RAND_MAX inclusive.

7.2 Implementation

7.2.1 Linear congruential generator

I have implemented the rand() function is a so-called linear congruential gener-
ator (LCG). It is called linear because its equation does not contain exponents,
and it is called congruential because all numbers are calculated with respect to
a certain modulus m (congruential calculus).

The sequence of pseudorandom numbers x0, x1, . . . is defined recursively by
means of the following equation:

xi = axi−1 + b (mod m)

Note that a, b, m and x0 are constants. The value of x0, i.e. the base case
of the recursion, is called the seed, and is the value passed as argument to the
srand() function.

Linear congruential generators vary greatly in their properties and in their
usefulness for different types of simulations. A detailed account of the mathe-
matics involved is beyond the scope of this document, but in general, the aim
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is to choose a, b, and m so that the generator will have the greatest possible
period p.

The period p is defined as follows:

x0 = xp

∀n 0 < n < p→ xn 6= x0

In itself, a long period is not enough of an indication that a random generator
will be useful in a certain context. Consider, for instance, an application which
only uses the least significant bit of the random number produced. Even if
p = m, i.e. the period equals the modulus and is therefore as long as it can
possibly get for a given m, the generated numbers might alternate between being
odd and being even, making the sequence of least significant bits extremely
predictable.

In general, LCGs should not be used for cryptographic applications. With
reasonable parameters, however, they have been demonstrated to be strong
enough for most types of simulations. For efficiency reasons I have chosen to
implement rand() as an LCG rather than using a slower, non-linear method of
generation.

7.2.2 Parameters

My implementation of the LCG uses the following parameters, which are defined
as preprocessor macros in stdlib.c:

m = 231− 1

a = 75 = 16807

b = 0

x0 = 1

In [6] this generator is commented upon as follows:
“. . . based largely on the fact that this generator is a full period generator,

this generator has in subsequent years passed all new theoretical tests, and
(perhaps more importantly) has accumulated a large amount of successful use.”

31



Chapter 8

setjmp.h, non-local jumps

8.1 Introduction

E. W. Dijkstra, in his famous article “Go To Statements Considered Harmful”,
has pointed out that the excessive use of jump statements could greatly decrease
the readability of a program text because “it becomes terribly hard to find a
meaningful set of coordinates in which to describe the process progress.” In
practice, this means that in source code liberally cluttered with goto statements,
one cannot follow the evolution of the algorithm in time by following the source
code in text space. In my implementation of the ANSI C standard library, I
followed Dijkstra’s advice not to use goto statements, sometimes resulting in
redundant, but hopefully more readable and modifiable, source code.

There are situations, however, where it seems reasonable to immediately
“jump out” of a sequence of nested function calls to some well-defined point in
the source code. Contemporary programming languages, including C++ and
Java, have introduced the concept of an “exception.” The idea is based on
the observation that most errors, i.e. exceptional program states, cannot be
satisfactorily handled at the point in the source code where they occur. So
when an exception is “thrown”, stack frames are destroyed until an exception
handler is found, i.e. a piece of code which was specifically designed to handle
that kind of error. Exceptions make it possible to tidy up the source code by
separating the “usual” code from the error handling routines. No such luxury
is provided in ANSI C, where return values generally have to be checked for
error indicators, and regular code and error handling routines usually end up
interspersed with each other.

There is, however, a mechanism in ANSI C which provides the functionality
of non-local jumps out of a hierarchy of nested function calls. This functionality
is provided by the header setjmp.h, which is part of the ANSI C standard library.

8.2 Usage

The header setjmp.h is minimalistic in that it declares but one data type and
two functions. The following code illustrates their use:

#include <setjmp.h>
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#include <stdio.h>

void f(void);
void g(void);
jmp_buf jb;

int main(void) {
puts("main(): Starting");
switch(setjmp(&jb)) {
case 0:
puts("main(): State saved to jb");
break;

default:
puts("main(): Ended up here after jump");
return 0;

}

f();
return 0;

}

void f(void) {
puts("f(): Starting");
g();
puts("f(): Ending");

}

void g(void) {
puts("g(): Starting");
longjmp(jb, 1);
puts("g(): Ending");

}

Before the function longjmp() may be used to execute an actual jump, the
function setjmp() must first be called to save the current processor state to a
buffer, i.e. to define the target of the jump. At this time, the return value of
setjmp() will always be zero.

Later on, when the non-local jump is to be executed, the application calls
the function longjmp() with two arguments: First, a pointer to the buffer con-
taining the saved processor state, and second, an integer value which we will
arbitrary call “val”. After the jump has taken place, the illusion will be that
of setjmp() returning with the value “val” (hence the switch statement in the
above example). So, based on the return value of setjmp(), the application
determines if it has only just saved its state, or if it is now returning from a
successful non-local jump.

In chapter 18 I illustrate a real-life example where setjmp.h is used to ap-
proximate the exception mechanism familiar to C++ or Java programmers. For
now, suffice it to say that setjmp.h may facilitate certain powerful programming
techniques, but, like all goto-like statements, should be used wisely and spar-
ingly.
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8.3 Implementation

8.3.1 The buffer type

The data type jmp_buf is used to save the information which is necessary to
jump back to the point at which the state was saved, i.e. at which setjmp() was
called. This type is declared as follows:

typedef struct {
int r29, r31; /* stack pointer and return address */
int r8, r9, r10, r11, /* variables */
r12, r13, r14, r15,
r16, r17, r18, r19,
r20, r21, r22, r23;

} jmp_buf;

8.3.2 setjmp() and longjmp()

The buffer contains fields for certain designated registers, and all that setjmp()
has to do is save the values currently stored in those registers to the buffer, and
then return zero.

The longjmp() function simply restores the saved values to their original
registers, then returns its second argument (val). Since one of the registers
affected by the operation is the return address, it appears as if setjmp(), not
longjmp(), were returning.

The source code for those functions can be found in the file lib/asm/setjmp.s,
in ECO32 assembly language. Apart from the startup code, this is at the
moment the only part of the library which uses assembly routines.

8.4 Deviation from ANSI C

This implementation deviates from the ANSI C standard in the following way:
The ANSI C standard defines the argument to setjmp(), and also the first
argument to longjmp(), to be of type jmp_buf. To improve the efficiency of
these functions, my implementation uses pointers to jmp_buf instead. Other
than that, it is ANSI C compliant.
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Chapter 9

Variable Argument Lists

9.1 Usage

There are situations when a function needs to be able to deal with an arbitrary
number of arguments. Consider, for instance, the following declaration from
stdio.h:

int printf(char *fmt, ...);

The three dots in the above declaration are valid C syntax, meaning that
any number of arguments of any type may be provided when printf is called.

If a function is declared in this way, the three dots must always be followed
immediately by the closing parenthesis of the argument list. In addition, there
must always be at least one named parameter, so the following declaration would
not be allowed:

void this_is_an_error(...);

The ANSI C standard library includes a header called stdarg.h which defines
a set of macros related to variable argument lists. The actual implementation of
these macros may be very machine-dependent, but as the library encapsulates
such dependencies, variadic functions may be written, and called, in a portable
way.

Specifically, stdarg.h defines the following macros:

• va_list: The type of a variable acting as a pointer into the variable
argument list. Every function with variable arguments defines a local
variable of this type, and then uses this variable to iterate through the
unnamed arguments in sequence.

• va_start(ap, lastnamed): Initialises the argument pointer to point to
the first unnamed argument. ap must be the name of a variable of type
va_list. lastnamed is the name of the last named parameter of the
function. This is necessary for calculating the memory address at which
the variable argument list starts.

• va_arg(ap, type): This macro evaluates to the members of the variable
argument list in the sequence they were specified in the function call. The
caller of the macro must know the type of the argument to be retrieved.
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• va_end(): This macro should be called by a function after it has finished
retrieving arguments from the list, giving the library a chance for some
cleaning up. For instance, it might free storage that was allocated by
va_start.

A function using variable-length argument lists has no safe way of finding
out with how many arguments it has been called. Also, the function must de-
duce the types of the unnamed arguments before retrieving them. printf, for
instance, deduces the number and types of the variable arguments by analyzing
its first argument, a format string with placeholders for every additional argu-
ment. If, however, printf is called with the wrong number of arguments or with
an argument of the wrong type, the compiler has no way of detecting the error.
So, in general, passing a pointer to an array should be preferred over variable
argument lists whenever this is possible.

9.2 A Coding Example

The following function, named varsum, returns the sum of its arguments of type
int. The last argument must be 0 so the function knows where the list ends.

int varsum(int first, ...) {
int retval=0; /* return value */
int curr=first; /* current argument */
va_list ap; /* argument pointer */
va_start(ap, first);
while(curr) {
retval+=curr;
curr=va_arg(ap, int);

}
va_end(ap);
return retval;

}

9.3 Implementation of stdarg.h

On most machines, including the virtual one we are dealing with, a function is
called using the following method:

1. The caller pushes the arguments onto the stack, in reverse order of appear-
ance in the function call. It may be necessary to cast the arguments to
a different type so they match the function’s prototype. (On ECO32, up
to four arguments are not actually pushed onto the stack, but are instead
kept in four registers designated especially for this purpose. Fortunately,
however, the difference is hidden from the C programmer by the compiler’s
back-end. To all intents and purposes, a C program on ECO32 can treat
arguments to functions as if they were living on the stack.)

2. The caller pushes the return address onto the stack. (This step is unnec-
essary if the function does not itself contain a function call. In this case,
the return address is merely kept in a special register.)
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3. The caller sets the program counter to the entry point address of the
function.

4. The function does whatever is necessary to compute its result.

5. The function places its return value into some register.

6. The function pops the return address from the stack and jumps there, so
execution flows back into the caller.

7. The caller cleans up the stack, i.e. it removes the arguments it had previ-
ously pushed.

If we assume the stack to be a contiguous region of memory growing down-
wards as elements are being pushed onto it, then we find that the variable
arguments end up occupying the memory addresses immediately following the
last named argument.

My implementation of stdarg.h defines the type va_list to be equivalent to
char *. The macro va_start(ap, lastnamed) initialises ap to point directly
after the last named argument. This is accomplished by taking the address of
lastnamed and adding _ARGSIZE to it. This is a special constant, also defined
in stdarg.h, which gives the interval between the memory addresses at which
arguments to functions are placed. On ECO32, which is a 32-bit architecture,
this value is 4.

The va_arg macro returns the data located at the address contained in ap,
converted to the given type. It also increments ap by _ARGSIZE, so that it now
points to the next argument (if present).

My implementation of va_end() does nothing at all. Since va_start and
va_arg do not allocate any storage, no cleanup activities are necessary.

9.4 Limitations

The current implementation does not allow structures being passed as anony-
mous arguments. This should never be an issue, however, because structures
are almost always passed “by reference”, i.e. by means of a pointer.

9.5 Deviations from the ANSI C standard

The implementation of stdarg.h complies with the ANSI C standard.
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Chapter 10

The Dynamic Storage
Allocator

10.1 Anatomy of the address space

In the programming model of C, variables fall into three distinct storage classes:

• Static storage: A variable defined outside of any compound statement,
i.e. at the same level as function declarations, becomes a static variable.
In addition, a variable defined within a function definition is static if the
definition is preceded by the static keyword. Static storage is allocated
at the time of loading and remains allocated until the process terminates.
When such variables are explicitly initialized with non-zero values, they
will usually end up in the data segment of the executable and, thus, of
the process. Uninitialized global or static variable may also be stored
in the bss segment. The difference is that the values of variables in the
bss segment are not stored in the executable file, so that disk space and
loading time are saved.

• Automatic storage: Any variable defined between braces and without the
static keyword is an automatic variable. ANSI C defines the optional auto
keyword which can precede a variable definition to emphasize that the
variable is automatic. An automatic variable is allocated when execution
enters its scope; usually the process of allocation is as simple as decreasing
the stack pointer. Every instance of a function gets its own automatic
(local) variables, making recursion possible. An automatic variable is freed
when its scope is left; it vanishes along with the stack frame in which it
lived.

• Dynamic storage: Both static and automatic storage allocation are han-
dled by the compiler and the linker, which implies that the amount of
memory needed must be known at compile time. ANSI C ensures this by
requiring the size in an array declaration to be a constant expression, i.e.
one which can be computed by the compiler. However, when the size of a
data structure cannot be determined at compile time, such as the storage
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needed to hold the symbol table of a compiler, then memory must be allo-
cated dynamically, and freed explicitly when it is no longer needed. The
address area holding such dynamic variables is called the heap, and may
be considered an extension of the bss. The top end of the heap is called
break, so that any address greater than or equal to the break is not in the
address space if it is less than the stack pointer. The library functions for
heap management are the subject of this chapter.

10.2 Usage

The header file stdlib.h defines a number of functions to manage dynamic stor-
age. Specifically, malloc(n) allocates n bytes (actually char-sized units) of mem-
ory, returning a pointer to the newly allocated storage. realloc(ptr, n) takes as
its first argument a pointer to a region of memory previously allocated with
malloc, reallocating it to the new size n bytes. Finally, free is used to relinquish
dynamic storage, giving it back to the storage allocator as free space which can
be allocated by subsequent calls to malloc or realloc.

For the programmer’s convenience, the ANSI C library includes the addi-
tional function calloc, which not only allocates storage but also sets all the bytes
in the newly allocated area to zero.

In the event that the system runs out of memory and the desired storage
cannot be allocated, malloc, calloc and realloc all return the NULL pointer. In
addition, the variable errno will have been set to the constant ENOMEM.

10.3 Implementation

Unix provides the sbrk system call which is used by processes to ask the operat-
ing system for additional memory. Technically, this system call causes the kernel
to try to increase the size of the bss segment of the calling process, returning a
pointer to the new area, or NULL if the segment could not be enlarged (which
is unlikely to happen). At one time I was tempted to implement malloc as al-
most synonymous with sbrk, but this approach is inapplicable because system
calls are lengthy operations, and memory allocation is so frequent that efficiency
must be considered.

My implementation of the storage allocator is based loosely on the one pro-
posed by Kernighan and Ritchie in [2]. I decided to re-implement it to improve
my understanding of the details, and also to avoid the cryptic C code that
comes with maximum efficiency—after all, the source code is likely to get used
as educational material.

The storage allocator maintains a pool, called arena, of free memory blocks,
each one starting with a header which contains its size (in header-sized chunks)
and a pointer to the beginning of the next free block in the list. The blocks
are kept sorted in the order of increasing memory address, with the last block
pointing back to the first (cyclic linked list).

malloc() works by traversing the freespace list until it finds a block large
enough to store the requested number of bytes, i.e. it performs a first fit search
on the list. If the match is exact, then the block is simply unlinked from the list
and a pointer to the free space is returned. If the block is larger than needed,
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only the necessary part is unlinked, the remaining space becoming a free block
of its own.

If no match is found, the required storage is rounded up to the next kilobyte
(this is arbitrary), and a call to sbrk takes place. If this fails, i.e. the operating
system has run out of memory, then malloc gives up and returns NULL.

Preferring a first fit algorithm over a best fit one is a design decision which
I believe needs explaining: A best fit algorithm always chooses the smallest
block that would still be large enough to store the required number of bytes.
Over time this leads to the creation of lots of small blocks (those which malloc
“cuts” off the end of the blocks it unlinks). The first fit approach is more likely
to leave larger blocks in the list and thus to avoid what is known as memory
fragmentation.

The function free() traverses the arena to find the correct place to link the
freed block (remember that the list is sorted). If the freed block is directly
adjacent to a block already in the list, then the two blocks are merged into one
large block by simply unlinking the second and changing the size of the first
accordingly.

The function realloc() has to differentiate between two cases.

1. If a block is reallocated to a smaller size, then this block simply has its
“tail” removed and linked back into the freespace list by a call to free().
A special case is that realloc(ptr, 0) is synonymous with free(ptr).

2. If realloc() is used to enlarge a block, it simply frees the block by calling
free(), then calls malloc() to allocate a block of the desired size. Finally,
realloc() calls memmove() (defined in string.h) to move the user data from
the old block to the new one. (Note that free() and malloc() are optimized
in such a way that, whenever possible, the old and the new block will start
at the same address. memmove() is “clever” enough not to copy anything if
the source and destination pointers are found to be equal, so the efficiency
of realloc() is greatly increased for this case.)

40



Chapter 11

Assertions

11.1 Usage

In software engineering, when one writes a formal specification for an abstract
data type, this specification will usually contain preconditions and postcondi-
tions for its methods. The idea is that calling a method is reasonable only if
its precondition holds, and the implementation is considered correct only if the
postcondition holds when the method has returned.

Similarly, an assertion states that at a certain point in the execution of a
program, a given expression must yield a true (non-zero) value, otherwise it
would make no sense to continue executing.

The header file assert.h allows for such assertions to be inserted into the
source code. This header defines the assert preprocessor macro which expects
an arbitrary expression as argument. Example:

assert(i<=j);

In case the expression evaluates to a non-zero value, execution continues as
usual, otherwise the programm would terminate abnormally, with the following
error message:

Assertion "i<=j" failed!
File: myfile.c
Line: 42

“Abnormal termination” means that no cleanup activities will be carried
out, in particular, no I/O buffers will be flushed. This is yet another reason
why the stream “stderr” is never buffered.

For a beta version of an application it is perfectly reasonable to abort due
to a violated assertion, but not in the final release. Fortunately, when the
NDEBUG flag is defined, the assert value will no longer have any effect. The
fact that assertions can be so easily deactivated (or reactivated if necessary)
should encourage programmers to keep the assertions in their code in case they
are needed later on for debugging purposes.
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11.2 Implementation

“assert” is implemented by means of the following preprocessor macro:

#define assert(e) ((e) || _failed_assert(#e, __FILE__, __LINE__))

Because of short circuit evaluation, the call to _failed_assert takes place
only if the expression e evaluates to “false”.

The function _failed_assert, defined in assert.c, prints the appropriate
error message, then calls abort (defined in stdlib.h) to halt the program.

_failed_assert expects three arguments: A string representation of the
expression, the name of the source file containing the assertion, and the line
on which it occurs. __FILE__ and __LINE__ are special macros which the pre-
processor substitutes with the file name and line number, respectively. The
construct #e means “the argument e, expressed as a string”. The preproces-
sor, when parsing this construct, simply takes the value of e and places double
quotes around it.

When the flag “NDEBUG” is defined, the following definition of assert is
used instead of the one described above:

#define assert(e) ((void) 0)

((void) 0) is an expression which yields no value; appending a semicolon
makes it an expression statement with no side effects, for which a clever compiler
will not produce any machine instructions.
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Chapter 12

Program startup and
termination

Most C programmers like to think of the main() function as the entry point to
their creations. A C program is said to begin execution when the main() function
starts executing its first statement, and terminates when main() returns. In
truth, the standard library carries out certain preliminary steps when a program
starts, and only after those steps have been dealt with is the main() function
actually called. Similarly, after main() returns, the library engages in some
cleanup activity before the process actually terminates.

This chapter briefly deals with the very first, and very last, activities which
take place in the context of a process. The primary focus is on how the ANSI
C standard library is involved in those activities.

12.1 Program startup

12.1.1 Process creation

The Unix kernel identifies a process by means of a process id (pid), which is a
small integer (between 1 and 30,000, inclusive). Whenever a process P issues
a successful fork system call, a new process C is created and becomes a child
process of P , which is said to be its parent. Thus a hierarchy of processes is
created by a sequence of calls to fork().

The root of this hierarchy is called the initialization process, or init task. It
is characterized by three facts:

1. It is not created by another process calling fork(), but by the kernel during
booting.

2. Its pid is always 1.

3. It never terminates.

When a process terminates abnormally or by using the exit system call,
its task state (including the exit status) is stored in memory until its parent
retrieves the exit status by means of the system call wait. A process which
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has terminated, but whose exit status has not yet been retrieved in this way, is
sometimes referred to as a “zombie process”.

If the parent P of a process C terminates without retrieving the exit status
of C, then C will automatically become a child of the init task so the process
tree remains intact.

12.1.2 Loading a program

An executable is loaded into the context of a process by means of the exec system
call or one of its derivatives (e.g. execvp). The data, code and bss segments of
the process are created and initialized, then execution continues at the start of
the code segment, which is where the C library takes control.

12.1.3 Clearing the bss segment

The bss segment of a process contains blocks started by symbols, hence the
abbreviation. In contrast to the data segment, the initial content of the bbs
segment is not stored in the executable; instead, the bbs may or may not be
initialized by the kernel. In the worst case, it might still contain data left
over from the operation of another process. I have heard of at least one case
in which a password was compromised with the help of an application which
would allocate a large array in the bss, then simply print out its contents.

To eliminate this problem, and also to auto-initialize global variables to zero,
the library starts off by overwriting the bss with zero bytes.

12.1.4 Calling main() with command line arguments

The main() function expects two arguments: An integer value argc, and an
array of strings argv , with the following semantics: The array argv contains the
strings passed as command line arguments, and argc contains their count.

The following assembly code calls main() with command line arguments (no
line numbers in the original source code):

1: ldw $4,$29,0
2: add $5,$29,4
3: jal main

To understand the above code, it is necessary to know that $29 is used as
the stack pointer and that the registers $4 to $7 are, by convention, used for
passing arguments to a function.

The parameter argc has been placed by the kernel at the top of the stack,
and is loaded into $4 by line 1. Above argc on the stack, the kernel has placed
the pointers to the actual argument strings, so in line 2 we set $5 to $29+4.
This is a pointer to a pointer to char, and is exactly what main() expects to
find.

Finally, in line 3 above, the main() function is called. jal means “jump
and link”. This instruction places the return address into a designated register
($31), then sets the program counter to the start of main().
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12.2 Program termination

12.2.1 Abnormal termination

The kernel may notify a process of certain events by sending it a so-called
“signal”.1 A process uses the signal system call to define handler functions
for those signals which it is prepared to receive. If a process is sent a signal
which it does not handle, a default handler is called. This default handler may
simply ignore the signal and restore control to the program where it left off, or
it may terminate the process. The latter case, i.e. process termination due to
an uncaught signal, is called abnormal termination.

In this case, the library has no chance of interfering with the flow of events.
In particular, it has no possibility of flushing its I/O buffers, resulting in a higher
or lesser degree of data loss depending on the circumstances.

12.2.2 Normal termination

A process may terminate normally in one of three ways:

1. By returning from main().

2. By calling the library function exit.

3. By calling the library function _exit (notice the underscore).

As we shall see, the first two cases are equivalent. This is because of the fol-
lowing assembly code (which immediately follows the code shown in the previous
section):

add $4,$2,$0
jal exit

In this way, a return from main() will always get routed to a call to exit().
Note that in the first line, the return value from main ($2) is stored in $4 (where
exit() expects its argument to be).

The third case above, i.e. the call to _exit, results in an exit system call.
No cleanup activities are executed, no buffers are flushed, and the process ter-
minates immediately (with the exit status given as the argument to _exit).

12.2.3 The exit() function

This function is responsible for carrying out all the cleanup tasks necessary prior
to process termination. In the current implementation, exit() does the following:

1. It executes all functions registered with atexit(), in reverse order of regis-
tration (see below).

2. It calls the internal library function _iocleanup() which closes all
streams, thereby flushing all pending buffers.

3. Finally, it issues the exit system call, resulting in process termination.
1Sometimes referred to as “software interrupt”
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The atexit() function provides a way to register a number of functions for ex-
ecution when the program terminates. The functions will be executed in reverse
order of their registration. The atexit() function expects a function pointer as its
only argument, and returns zero on successful registration, non-zero otherwise.
The constant _ATEXIT_MAX, defined in stdlib.h, gives the maximum number of
functions which may be registered in this way.

Registration is implemented by means of an array of function pointers which
is called atexit_funcs and is static to one of the library modules. The int
variable atexit_num holds the number of functions currently registered.
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Chapter 13

Introducing the shell

13.1 Motivation

At some time during testing of the standard library, it became apparent to me
that my work would be greatly facilitated by a shell , i.e. an application which
could be used to launch foreground and background processes, and to make
decisions based on their exit status.

I began with a minimal variant which simply carried out the following:

1. Read the name of an executable from standard input,

2. start this executable in a sub-process,

3. display its exit status,

4. and finally, jump back to step 1.

However, the shell quickly developed into a small sub-project of its own, and
so this and the following chapters are primarily devoted to it.

I decided to call the shell “MINSH”, an acronym which may be interpreted
as standing for “minimal shell”, or, recursively, for “MINSH is not SH”. While
it is indeed far from being SH (which refers to the Borne Shell), I have tried
to structure it in such a way as to make it easy to extend, during future work
on the ECO32 project, into a full-featured command interpreter comparable to
BASH or the C Shell.

13.2 Shell structure

Software engineering tells us that if we are in possession of the exact description
of a process, the nouns contained in that description might give us a clue as to
what kinds of classes the system might include. For instance, when looking at
the description of the game of chess, we may infer that we need classes for the
different kinds of pieces, for the board, and for the players. This would certainly
be a reasonable start for the object-oriented design of a chess program.

While the nouns in a description indicate the kinds of objects involved, the
verbs will usually indicate the kinds of processes. For instance, consider the
following description of how a shell works:
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• The shell scans its input for tokens (i.e. file names, operators and key-
words)

• It parses the resulting list of tokens for commands.

• It transforms the commands into a machine-readable internal representa-
tion.

• Finally, it executes the commands thus transformed.

Interestingly enough, after some designing and experimenting the shell ended
up having a modular structure which corresponds exactly with the verbs in the
above description. The following modules now make up the shell:

• scanner.c: The lexical scanner

• parser.c: The parser which checks the input for syntactic correctness and
transforms it into an internal representation

• internal.c: Contains utility functions for operating on internal representa-
tions

• execute.c: Reads the internal representation and executes it

In addition, the following two helper modules became necessary:

• error.c: The module responsible for error handling, error messages etc.

• main.c: The module containing the main() function, which does little more
than initialize a few global variables and call the parser.

The following chapters describe the shell in more detail, each chapter con-
cerning itself with another of the shell’s modules.
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Chapter 14

Shell grammar

Before going into any detail concerning the shell’s implementation, it is necessary
to give an exact specification of the language interpreted by the shell, along with
its semantics. This chapter starts with a specification of the terminal symbols
(tokens) recognized by the scanner. Following this, a contextfree grammar for
the shell language is introduced and then iteratively refined until it becomes
possible to implement a recursive descent parser for it.

14.1 Overview

There are few areas of computer science which have been researched more exten-
sively than compiler engineering, and attempting to do more than scratch the
surface of this area would result in a book of its own. So this section restricts
itself to giving just some basic definitions of terms used throughout the remain-
der of this chapter. The so-called Dragon Book [4] gives most of the algorithms
in detail.

The problem of describing a machine-readable language is usually subdivided
into three levels:

1. The alphabet: This is the set of symbols the language consists of at its
lowest level. For instance, the alphabet of the English language would
consist of lower case letters, upper case letters, numbers, and punctuation
symbols (such as comma or semicolon). The alphabet of the shell is the
ASCII character set.

2. Tokens: A token, also referred to as a terminal or lexeme, is a small, mean-
ingful sequence of characters in the alphabet. To continue our running ex-
amples, the tokens of the English language are its words and punctuation
marks, and examples of shell tokens would be a filename or the keyword
“then”. The meaning of a token may depend on its context. The process
of searching the input stream for tokens is called scanning.

3. Sentence: Sentences are meaningful sequences of tokens. A grammar is
used to describe exactly which sequences of tokens constitute sentences
and which do not.
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14.2 Grammars

From a mathematical point of view, a language is nothing more than a set of
valid sentences, and a grammar is one way of describing such a set. A grammar
consists of the following:

• A set of terminal symbols (T )

• A set of nonterminal symbols (N), with one of them designated as the
start symbol S

• A set of production rules (R).

A production rule is written as an arrow to the left and to the right of which
are sequences of terminal and nonterminal symbols. While deriving a sentence,
the sequence to the left of the arrow may be replaced by the sequence to the
right.

To derive a sentence from a grammar, one begins with the start symbol, then
applies the production rules until only terminal symbols remain. The language
then consists of all the sentences which may be derived in this way.

Finally, a contextfree grammar is defined as a grammar in which the left
side of each production rule consists of exactly one nonterminal symbol. It has
been proven that there are languages which cannot be described by means of a
contextfree grammar, but those languages are the subject of research and are
irrelevant to practical applications. As it is, a contextfree grammar suffices to
describe most any programming language, including, for instance, C++ and
Perl.

14.3 Shell tokens

The shell, in its present state, recognizes the following tokens:

• Word: This is a sequence of characters which has no special meaning to
the shell. It might be a filename or an argument to a command. Certain
characters, called metacharacters, are not allowed within words unless the
word is enclosed in double quotes.

• Pipe: This is the | operator (vertical bar) which means that the output
of a command should be redirected to become the input of another.

• Background: This is the & operator (ampersand) which means that a com-
mand should be executed in the background, i.e. its termination should
not be waited for.

• Or: This is the || operator which means that a command should be
executed if and only if another command failed.

• And: The && operator means that a command should be executed if and
only if another command succeeded.

• End: A token which marks the end of a command (this is either a semi-
colon or a newline character).
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• Eof: The end of the input stream being scanned.

• Keyword: One of the words “if”, “then”, “do”, “fi”, “else”

• Braces ({ and }): These are used to express nested lists.

• Parentheses (“(” and “)”): A list enclosed in parentheses is executed in
the background.

14.4 Contextfree grammar

14.4.1 First attempt

Now that the alphabet and the lexemes have been defined, it is time to give
a first contextfree grammar for the shell language, liberally interspersed with
explanations concerning its semantics. By convention, I use capital letters for
terminal symbols and lower case letters for nonterminals.

1 list → pipeline
2 list → list END list
3 list → list BACKGROUND list
4 list → list AND list
5 list → list OR list

At the top level, the shell expects its input to be a list of pipelines to execute
(i.e. “list” is the start symbol). The pipelines are separated by operators which
denote the control flow. A semicolon or newline character causes sequential
execution of the list elements it separates. The && operator causes its right side
to be executed if and only if the left side succeeds, i.e. returns an exit status of
zero. Similarly, the || operator causes its right side to be executed if and only
if its left side fails, i.e. returns a non-zero exit status. Finally, the & operator
causes its left side to be executed in the background, i.e. in a sub-process which
is not waited for. The exit status of such a background execution is defined to
be always zero.

The next level is the pipeline:
6 pipeline → command
7 pipeline → pipeline PIPE pipeline

A pipeline is a sequence of one or more commands, separated by the pipe
operator (|). When a pipeline is executed, pipes are created to connect the
commands so that the output of the first one is used as the input for the second,
whose output in turn is used as input for the third etc.

So a shell script consists of pipelines which in turn consist of commands.
The anatomy of a command is as follows:
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8 command → simple-command
9 command → if-command
10 command → LEFTPARENTHESIS list

RIGHTPARENTHESIS
11 command → LEFTBRACE list RIGHTBRACE
12 simple-command → WORD
13 simple-command → WORD args
14 args → WORD
15 args → WORD args
16 if-command → IF list op

THEN list op FI
17 if-command → IF list op

THEN list op
ELSE list op FI

18 op → END
19 op → BACKGROUND

This grammar defines four types of commands:
A simple command is the instruction to execute a program with certain

arguments. The first WORD of the command is the filename of the executable,
the remaining WORDs are passed as arguments to that executable when it is
loaded. By convention, the shell passes the name of the executable as first
argument (so an application may easily determine its own location in the file
system).

A list enclosed in braces is simply a sub-list which is executed in the same
shell process. This provides a way to express nested lists, or to pipe the output
produced by one list into another.

A list enclosed in parentheses is a sub-list which is executed in the back-
ground.

Finally, an if statement allows for conditional execution of lists. The list
following the keyword “then” is executed if and only if the list following the
keyword “if” succeeds, otherwise the “else” clause is executed (if present).

14.4.2 Refinements

From a theoretical point of view, the grammar given above is a complete de-
scription of the shell language. All valid shell scripts, and nothing else, can be
derived from it. However, there are still two practical problems with this gram-
mar, the first of which is left-recursion, and the second is operator precedence.

Left-recursion

A left-recursive rule is one whose right side begins with its left side. When the
left-recursion is removed from a grammar, it generally becomes much easier to
implement a parser for it. In particular, a recursive descent parser (see below)
cannot be implemented for a grammar which still contains left-recursion.

There exists an algorithm to remove left-recursion from a grammar. Basi-
cally, the right sides of the rules in question are split apart into a “beginning”
and a “rest” (which might be candidates for new nonterminal symbols). When
the rules for those new nonterminals turn out to be left-recursive in themselves,

52



the same process of splitting is repeated until the left-recursion has been re-
moved.

As an example, consider the first five rules in the grammar given in the
previous question. Since these are the only rules for the “list” nonterminal, it
becomes obvious that a list must always begin with a pipeline, and we are left
with the task of specifying the several ways in which it may continue.

There, then, is the full shell grammar after applying the transformation:
1 list → sub-list list-rest
2 list-rest → END sub-list list-rest
3 list-rest → END sub-list list-rest
4 list-rest → EMPTY
5 sub-list → pipeline sub-list-rest
6 sub-list-rest → AND pipeline sub-list-rest
7 sub-list-rest → OR pipeline sub-list-rest
8 sub-list-rest → EMPTY
9 pipeline → command pipeline-rest
10 pipeline-rest → PIPE pipeline
11 pipeline-rest → EMPTY
12 command → simple-command
13 command → if-command
14 command → LEFTPARENTHESIS

list RIGHTPARENTHESIS
15 command → LEFTBRACE list RIGHTBRACE
16 simple-command → WORD args
17 args → WORD args
18 args → EMPTY
19 if-command → IF list op THEN list op

optional-else FI
20 optional-else → ELSE list op
21 optional-else → EMPTY
22 op → END
23 op → BACKGROUND

Determining operator precedence

When comparing the two grammars listed above, you will find that I have
“cheated” by doing a little more than removing left-recursions. In particular, I
have introduced a new nonterminal, sub-list, together with its companion sub-
list-rest. The reason for this move was to give the two list operators || and &&
a higher precedence than the operators ; and &. For instance:

cmd1 && cmd2 ; cmd3 && cmd4

Will now be correctly interpreted as:

• Execute cmd1.

• If cmd1 succeeded, execute cmd2.

• In any case, execute cmd3.

• If it succeeded, execute cmd4.
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In general, operators are given higher precedence by introducing a new non-
terminal which produces expressions containing only those operators, and isolate
them from the rest of the grammar.
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Chapter 15

Shell scanner

15.1 Purpose

The scanner is that part of the shell which operates directly on the input stream,
hiding its details to the higher-level modules of the shell. It scans the stream for
tokens, returning their types and, if appropriate, allowing access to the actual
text string which constitutes the token.

15.2 Interface

• GetToken(void): Scans for the next token from the stream, skipping
whitespace if present. Returns the token type, which is one of the con-
stants defined in scanner.h whose names begin with “TT”. In addition,
this type value is also assigned to the global variable token_type, and, if
appropriate, a pointer to the text constituting the token is assigned to the
global variable token_text.

• SetInputStream(fp): By default, the scanner reads from standard input,
but this may be changed using this function. SetInputStream() should be
called prior to the first call to GetToken().

• SetScannerContext(c): Sometimes a token needs to be interpreted differ-
ently depending on its context as determined by the parser. In the current
implementation there are two contexts: If the argument to SetScanner-
Context() is non-zero, the scanner will not recognize keywords but will
return TT_WORD instead. An argument of zero will turn keyword recogni-
tion back on. The parser makes use of this feature so that, for instance,
the command “rm fi” becomes possible (fi is passed as argument to rm).

• ShowPrompt(): Displays a prompt if the input stream is connected to a
terminal, and does nothing otherwise. It is usually not necessary to call
this function from outside the scanner.

• SkipLine(): Causes the scanner to skip the rest of the current input line.
This may be useful when recovering from a parse error.
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Chapter 16

Shell parser

16.1 Purpose

The parser repeatedly calls the GetToken() function provided by the scanner to
retrieve tokens from the shell’s input stream. It parses the sequence of tokens
according to the contextfree grammar given in chapter 14. The result of the
parsing process is an internal representation of the user input which may be
efficiently executed by the execution module.

Note that the shell may be viewed as consisting of a compiler and an inter-
preter, the compiler consisting of the scanner and parser modules, the interpreter
represented by the execution module.

16.2 Interface and implementation

I have implemented the parser as a recursive descent parser, i.e. one which
constructs the parse tree from the top down, beginning with the start symbol.
The initial implementation contained a function for every nonterminal in the
contextfree grammar of chapter 14. In the current implementation, some of
these functions (for instance the one for list-rest) have been optimized away for
efficiency reasons. Also, some of the parser functions were initially tail-recursive,
and in the current implementation those tail-recursive calls have been replaced
with iterations.

The interface consists of the following functions:

• ParseList, ParseSublist, ParsePipeline, ParseCommand,
ParseSimple: These functions parse the corresponding nontermi-
nals. All of them take a pointer to internal_t as argument and
store their result through this pointer (see below for details on internal
representation).

• Parse(): This is the driver loop for the parser, which is called from the
shell’s main module.
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Chapter 17

Internal representation of
shell commands

17.1 What is the internal representation?

The internal representation is sort of an intermediary code which the parser
generates, and which is fed as input into the execution module which then
carries out the instructions it contains. There are at least two good reasons for
this approach:

1. When executing a loop, it would be a waste of time to have the shell parse
certain lists of commands over and over again. Instead, the shell simply
keeps a pointer to the internal representation of the list.

2. Certain shell constructs need to be parsed completely before the shell can
begin executing them. In such cases, the internal representation provides
a way for the shell to “remember” what it has already parsed.

Furthermore, future versions of the shell might implement a serialization
mechanism for the internal representation, so that entire shell scripts may be
precompiled, saved to a file on disk, and executed more efficiently later. Since
the internal representation does not contain any caclic structures, it would be
relatively easy to design and implement such a mechanism.

17.2 Specification of the internal representation

17.2.1 The structure

The data type for storing the internal representation is called internal_t and
is defined in internal.h, as follows:

typedef struct {
void *p1, *p2, *p3;
int i1, i2, i3;
int type;

}
internal_t;
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The semantics of the three pointers and the three integers depend on the
value of “type”, which is one of the constants defined in internal.h whose names
begin with IT (for internal type). The following subsections describe each of
the types currently supported. Note that these types correspond to some of the
nonterminals in the shell grammar, so the internal representation resembles a
parse tree.

17.2.2 Simple command

A simple command is represented by a node of type IT_SIMPLE. The p1 member
points to the name of the executable file to launch, and p2 points to the array
of command-line arguments to be passed to the program.

17.2.3 Pipeline

A pipeline is represented by a node of type IT_PIPELINE. p1 points to the
representation of the first command in the pipeline, and p2 points to the rest of
the pipeline (which is also a pipeline, or the NULL pointer if this node represents
the last command).

17.2.4 List

A list is represented by a node of type IT_LIST. The p1 member points to the
first element of the list, the p2 member points to the rest (which is itself a list,
or the NULL pointer if this node represents the last element). In addition, i1
specifies what type of list this is, meaningful types being the following constants:

• LT_SEQ: A sequence. The first element is executed and waited for, then
the rest is executed.

• LT_BG: A background sequence. The first element is executed in the back-
ground, then the rest is executed.

• LT_AND: A conjunction. The first element is executed, and the rest is
executed if and only if the first element returned an exit status of zero.

• LT_OR: A disjunction. Analogous to LT_AND, but the rest is executed if
and only if the first element returns a nonzero exit status.

17.2.5 If statement

An if statement is represented by a node of type IT_IF. p1 points to the condi-
tion, p2 points to the consequence, and p3 points to the alternative (if an else
clause was present in the if statement). Otherwise, p3 is the NULL pointer.

17.3 internal.c

The file internal.c defines utility functions useful for operating on internal rep-
resentations. The following functions are defined:
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• FreeInternal(p): When the parser constructs the internal representa-
tion, it calls the malloc() library function to allocate memory for its nodes.
FreeInternal() frees the memory thus allocated, by recursing down the tree
structure and calling free() for its various pointers.

• PrintInternal(p): This prints out a textual description of the internal
representation. I implemented this one mainly for debugging purposes, to
determine if the parser was working as expected.
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Chapter 18

Shell error handling

18.1 Purpose

I conclude this brief excursion into shell design with a very brief description of
the shell’s error handling mechanisms, which are implemented in errors.c. The
purpose of this module is to keep all error-related functions in one place, so
that the shell’s reactions to exceptional cases may be changed without having
to alter every module.

18.2 Interface and implementation

The interface consists of the following two functions:

• MemoryError(): This function is called by the parser when the system
runs out of memory, i.e. the malloc() library function returned NULL.
In this case there is no reasonable alternative but to print out an error
message and exit the current shell instance. This is due to the fact that
the shell allocates memory as sparingly as possible, i.e. all the allocated
memory is indeed needed, so the shell cannot solve memory shortage by
freeing unused memory blocks.

• ParseError(msg): This is called by the parser when it has encountered
a syntax error, such as a closing brace without a corresponding opening
one. The function prints an appropriate error message, calls the SkipLine()
function to cause the scanner to skip ahead to the next line, then returns
the parser to its initial state. Basically, the parser “forgets” what it was
doing and restarts its parsing process (see below for how this is accom-
plished). The string msg is printed out with %s replaced by a textual
description of the current token type. A reasonable value for msg would
be:

"Found %s where fi was expected."

The function ParseError() is an interesting example of when setjmp() and
longjmp() (see chapter 8) come in handy. Without these functions the recursive
descent parser would have no way of jumping out of its hierarchy of nested
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function calls back into the main driving loop. (The call to setjmp() takes place
in the Parser() function in parser.c, and the corresponding longjmp() is located
in errors.c.)
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