
EUS100LX
Industrial Control Unit
User Guide

Rev. 1.01 – June 2005

DSP&FPGA
Custom Design

 1.1 Key features
The EUS100LX is a low-cost standalone platform that enables users to evaluate and develop
applications for the ETRAX100LX processor and Spartan3 FPGA. Schematics, logic equations and
application notes are available to ease firmware development and reduce time to market.

The EUS100LX comes with a full complement of on board devices that suit a wide variety of
application environments. Key features include:

• ETRAX 100LX or ETRAX 100LX MCM4+16 processor

• 32MB SDRAM

• 8MB Flash memory

• FPGA Spartan 3 – XC3S400/1500, connected to the system bus and IRQ

• 16MB independent SDRAM connected to the FPGA

• MSP430 microcontroller for power management & watchdog

Figure 1: Block Diagram EUS100LX

XC3S
400-1500

ETRAX
100LX / MCM

32b / 16b

CONTROL BUS

ADDRESS BUS

DATA BUS 32bits

SDRAM
64MB

FLASH
64MB

2 x USB
V1.1

RJ45
Ethernet

UART
RS232

PHY

Char
LCD

ETRAX's GPIO, UARTs
3.3V, 5V tolerant

SDRAM
64MB

TFT LCD
Connector

18bits

3.3V / LVDS OIs PC104 / 3.3V IOs – 5V
Tolerant and protected

JTAG

Power
Management

Brightness &
Contrast
Control

DC/DC
Converter

Clock
Management

Reset, Watch-
dog, RTC and
Boot Module

MSP
JTAG

MSP's IOs

• PC104 format compliance

• 10/100Mb Ethernet port

• 2 x USB 1.1 port

• Up to four RS232 from ETRAX & MSP

• Four user LEDs

• Ethernet cable provides direct connection to the host system for initial configuration

• On-board JTAG connector – Xilinx parallel cable IV

• Character LCD support with digital contrast control

• 14 LVDS pairs or 28 LVTTL IOs

• 90 isolated FPGA's IOs, 5V tolerant. Used for PC104 or user configurable

• Shared IOs from ETRAX, MSP and FPGA (USB, Ethernet, Serial ports)

• Expansion connectors for daughter card use

• Single 5V power supply @ 500mA

• Low power modes are supported – less then 3μA

• Utility for FPGA boot & communication

• System provides update through FTP

• Board schematics and Linux source available from DSP&FPGA website

• All source code available under GPL or OHGPL

Figure 2: EUS100LX Board - Top Side

 1.2 Functional Overview
The processor ETRAX100LX on the EUS100LX board interfaces to on-board peripherals through
the 32-bit wide bus. The SDRAM, Flash and FPGA are each connected to one of the buses.
Input and output functions are implemented in the FPGA which resides between the processor and
the I/O connector.
A microcontroller MSP430 is used to configure the board by reading and writing to its internal
registers. Furthermore, the MSP controls resets, power management, power-up sequencing and
watchdog capability.
An 5V external power supply is used to power the board. On-board switching voltage regulators
provide the 1.2V FPGA core voltage, 3.3V FPGA I/O supplies and ETRAX100LX processor
voltage. The board also has an LDO regulator which provides +2.5V VCCaux and LVDS FPGA
voltage. The board is held in reset until these supplies are within operating specifications.
The EUS100LX includes 4 LEDs which can be used to provide the user with interactive feedback.
Two LEDs are accessing from the FPGA and two ones from the MSP.

 1.3 Memory Map
The ETRAX 100LX processor has a large byte addressable address space. Program code and data
can be placed anywhere in the unified address space. The memory map shows the address space of
the EUS board with specific details of how each region is used.
 Table 1: EUS100LX Memory Map

Name & Address Range Size Description

CSE0 – 0x00000000 – 0x03FFFFFF 64MB Flash memory 0

CSE1 – 0x04000000 – 0x07FFFFFF 64MB Flash memory 1 (not used)

CSR0 – 0x08000000 – 0x0BFFFFFF 64MB FPGA boot space

CSR1 – 0x0C000000 – 0x0FFFFFFF 64MB LCD Controller / ExtDMA0 (FPGA)

CSP0 – 0x10000000 – 0x13FFFFFF 64MB FPGA Registers and Statuses (FPGA)

CSP4 – 0x20000000 – 0x23FFFFFF 64MB Reserved

CSDx – 0x40000000 – 0x7FFFFFFF 1G SDRAM
 Note: Base address + 0x80000000 to bypass the cache

 1.4 Configuration Switch Settings
The EUS100LX has six 2 position configuration switches that allow users to control the operational
state of the board. The configuration switches are labeled J0 to J5. Switches J0-1 enable MSP430
programming. Switch J2 enables supply for back-up capacitor. J3 and J4 configure the boot mode
that will be used when the ETRAX starts executing. Switch J5 enables watchdog capability.

Mode J0 J1 J2 J3 J4 J5

MSP430 programming On On Off X X Off

Normal operation (default) Off Off On/Off On On Off

External watchdog timer Off Off On/Off X X On

Boot method J3 J4 Description

Parallel Off Off Isn't supported

Network Off On Receive an Ethernet packets 100/10Mb

Serial On Off Serial port 0 - 9600bps, 8 bits, no parity

Normal On On Execution starts at address 0x80000002

 1.5 Power Supply
The EUS100LX operates from a single +5V ±5% external power supply connected to the main
power input JP6. A power consumption is about 500mA.

 1.6 Programming the FPGA
The FPGA on the EUS100LX is programmed via the ETRAX processor. The Xilinx XC3S400-
1500 FPGA supports an 8-bit wide SelectMAP programming interface and the processor uses this
parallel interface to program the on board FPGA. In standard configuration the FPGA contents are
stored in the Flash -> /mnt/flash/*.mcs.

 1.7 FPGA Examples and templates
The board is provided with source codes. The source codes are placed in a FPGA_tmps directory
and divided into two sections – the common files (src) and the individual examples. Source
directory contains constrain file which defines a pin placement and IO standard definitions and
some vhdl files.

Table 2: VHDL Examples

Example
 dir

Name Description

Register register.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Second address
space returns 32 bit wide system timer value which is incremented every 20ns. The last
space returns constant value (0x01234567).

Distram distram.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Second address
space returns 32 bit wide system timer value which is incremented every 20ns. The last
address space is used for 32bits wide distributed RAM (32 x RAM64X1S). The RAM is
accessed by reading and writing to the CSP0 + 0x20000 address space. Provided example
supports only 32 bit wide accesses. A LEDx is accessed by reading and writing to the
FPGA register (reg_0).

Distram_
be

distram_be.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Second address
space returns 32 bit wide system timer value which is incremented every 20ns. The last
address space is used for 32bits wide distributed RAM (32 x RAM64X1S). The RAM is
accessed by reading and writing to the CSP0 + 0x20000 address space. Provided example
supports 8/16/32 bit wide accesses (aligned/unaligned). A LEDx is accessed by reading
and writing to the FPGA register (reg_0).

Bram Bram.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Second address

Example
 dir

Name Description

space returns 32 bit wide system timer value which is incremented every 20ns. The last
address space is used for block SelectRAM (RAMB16_S18_S18). The RAM is dual port
18 bit wide and accessed by reading and writing to the CSP0 + 0x20000 address space.
Provided example supports only 32 bit wide accesses. A LEDx is accessed by reading and
writing to the FPGA register (reg_0).

Ios Ios.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Second address
space returns 32 bit wide system timer value which is incremented every 20ns. The last
address space is used for reading 8 bit wide data form the input ports X(15:8). An output
port X(7:0) is accessed by writing to the FPGA register (reg_0(7:0)). A LEDx shows
negated value of input port X(8).

picoblaze Picoblaze.vhd Generate three 64kB address windows in CSP0. The first space contains three 32 bit wide
registers which are accessible from processor by reading and writing. Reg_0(0) is used as
a picoblaze reset (active high). Reg_1(7:0) is uses as an input port for piciblaze processor.
Reg_1(8) is used as an interrupt signal to picoblaze engine. The interrupt is edge sensitive
and reacts to a rising edge. Second address space returns 32 bit wide system timer value
which is incremented every 20ns. The last address space is used for writing 18 bit wide
data to picoblaze program memory. A LEDx shows picoblaze output port_4_0 status.

Generating FPGA bitstream

File which describes the project/s is file with an extension ise (register.ise).This file can be opened
by ISE software provided by Xilinx – www.xilinx.com. In the project window are placed project
files which contain source files with an extension vhd or v and user constrain file with extension
ucf. User can add or modify these files.

Figure 3: Project windows

For proper operation a user must have generate an appropriate configuration bitstream. The
bitstream is generated by promgen tool or simply by clicking to Generate PROM, ACE, or JTAG
file. The process generates files with extensions bit and mcs. The bit file can be downloaded to the
FPGA by JTAG parallel cable IV through a connector JP9. The mcs (intel hex) can be downloaded
by DSP&FPGA tools from an on-board flash or FTP client.

Recommended settings for bitgen/promgen are:
– unused iob pins: Float (other setting can cause a crash of the system)
– drive DONE pin: High (recommended not mandatory)
– fileFormat -value "mcs"
– swapBit -value "FALSE"
– fillValue -value "FF" or others
– attr dir -value "UP"

These settings are held in files with extension ipf.

http://www.xilinx.com/

Tools for FPGA

There are two basic tools handling FPGA. One for downloading the bitstream into a fabric and one
for basic communication with structures created inside the FPGA.

Downloading tool is called boot
boot [options] [file.mcs]
options:
-d dev device (default is /dev/virtex0)
-h print help
-p b don't boot, set only prog value to 'b' (1 or 0)
-v verbose mode (informs user about programming status, errors, etc)

Communication tool is called bus
bus [opts]
-a x set bus address
-b n set bus access width, one of 1, 2, 4 (default is 4)
-c n how many values to process
-f s copy data FROM hexa text file to memory
-h print help
-v verbose operation
-w x write value

The functions of the tools mentioned above will be shown at the examples. First of all we have to
boot the FPGA. This can be done by a boot tool or directly through FTP.

boot /mnt/flash/picoblaze.mcs -v

after execution: you see something like this:
boot: open design file /mnt/flash/picoblaze.mcs
boot: decoded 212392 bytes
boot: open device
boot: write configuration stream
boot: acknowledge startup
boot: success

or through FPT server
ftp <ip.address>
login
put picoblaze.mcs fpga

BTW: This process can be done by Total Commander or other FTP client.

Figure 4: Bitgen/promgen settings

By the bus tool you can read or write to the various address spaces. The FPGA examples are
mapped to the CSP0. The CSP0 space starts at address 0x90000000 (if the cache is bypassed).

bus -a 0x90000000 -c 3 (this command reads data from address 0x90000000, 0x90000004 and 0x90000008)
after execution might be observed:
00000001
22222222
33333333

Now you can write new value to the register 0:
bus -a 0x90000000 -w 0x12345678
then you can read it back
bus -a 0x90000000 and see
12345678

At address 0x90010000 you can read system timer ticks by:
bus -a 0x90010000 alternatively bus -a 0x90010000 -c 10

The last address space hides picoblaze program memory. One port (A) is used by the picoblaze
instruction side and the second port (B) is used by Etrax. This configuration enables a user change
content of the instruction memory and downloading new programs. For instance user can write new
program by typing bus -a 0x90020000 -f <program name.hex>. Before writing you have to reset
the processor.

The program sources are available at files:
basicpb.fmt – simple example with blinking LED (fixed delay)
basicpbi.fmt – simple example with blinking LED (delay is read from an input port)
int.fmt – example with blinking LED (delay is setting in the interrupt routine)

This programs must be compiled with Kcpsm3.exe compiler. The most important is a hex output
which is writable to the instruction BRAM by the bus utility. If you would build your own
programs and vhdl codes – don't forget add modified forms <ROM_form.vhd, ROM_form.v> to
your compiler directory.

Table 3: PicoBlaze program address space

Address Subentry Description

0x90000000 reg_0(0) PicoBlaze reset (active high)

0x90000004 reg_1(7:0) PicoBlaze input port 0

0x90000004 reg_1(8) PicoBlaze interrupt

0x90000008 reg_2(31 downto 0) Register

0x90010000 sys_cnt System timer

0x90020000 BRAM PicoBlaze instruction memory

	 1.1 Key features
	 1.2 Functional Overview
	 1.3 Memory Map
	 1.4 Configuration Switch Settings
	 1.5 Power Supply
	 1.6 Programming the FPGA
	 1.7 FPGA Examples and templates

