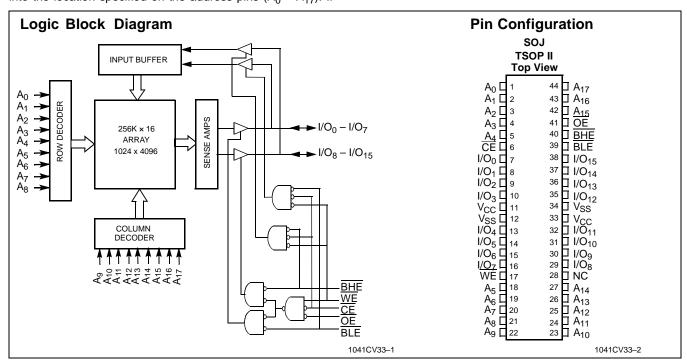


256K x 16 Static RAM

Features

- Pin equivalent to CY7C1041BV33
- · High speed
 - $-t_{AA} = 10 \text{ ns}$
- · Low active power
 - -324 mW (max.)
- · 2.0V data retention
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description


The CY7C1041CV3 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.

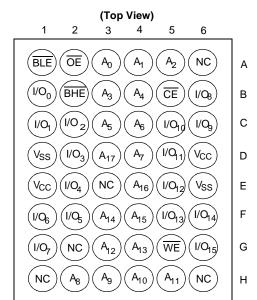
Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte LOW Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0 - I/O_7)$, is written into the location specified on the address pins $(A_0 - A_{17})$. If Byte HIGH Enable (BHE) is LOW, then data from I/O pins $(I/O_8 - I/O_{15})$ is written into the location specified on the address pins $(A_0 - A_{17})$.

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte LOW Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on $I/O_0 - I/O_7$. If Byte HIGH Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins $(I/O_0 - I/O_{15})$ are placed in <u>a</u> high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a Write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1041CV33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.

Selection Guide


		-8	-10	-12	-15	Unit
Maximum Access Time		8	10	12	15	ns
Maximum Operating Current	Commercial	100	90	85	80	mA
	Industrial	110	100	95	90	mA
Maximum CMOS Standby Current	Commercial/ Industrial	10	10	10	10	mA

Shaded areas contain advanced information.

Pin Configurations

48-ball Mini FBGA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......-55°C to +125°C

Supply Voltage on V_{CC} to Relative GND^[1] –0.5V to +4.6V

DC Voltage Applied to Outputs in High-Z State $^{[1]}$-0.5V to V

DC Input Voltage ^[1]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	-40°C to +85°C	

DC Electrical Characteristics Over the Operating Range

				•	-8	-10		-12		-15		
Parameter	Description	Test Condi					Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		2.4		2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4		0.4	V	
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V	
V_{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$	-1	+1	-1	+1	-1	+1	-1	+1	μΑ	
l _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Ou	$GND \leq V_{OUT} \leq V_{CC}, Output Disabled$			-1	+1	-1	+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	$V_{CC} = Max., f = f_{MAX} =$	Commercial		100		90		85		80	mA
	Supply Current	1/t _{RC}	Industrial		110		100		95		90	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$			40		40		40		40	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \underline{\text{Max.}} \ V_{\text{CC}}, \\ \hline \text{CE} \geq V_{\text{CC}} - 0.3 \text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \text{f} = 0 \end{array}$	Commercial/ Industrial		10		10		10		10	mA

Shaded areas contain advanced information.

Note:

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	8	pF
C _{OUT}	I/O Capacitance		8	pF

Note

^{1.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

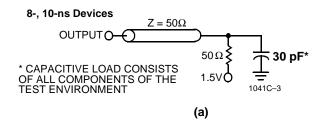
^{2.} Tested initially and after any design or process changes that may affect these parameters.

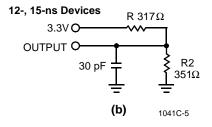
AC Switching Characteristics^[3] Over the Operating Range

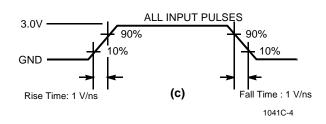
			-8	-10		-12		-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	4			1	II.	1	I.	1	I	
t _{power} ^[4]	V _{CC} (typical) to the first access	1		1		1		1		μs
t _{RC}	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address to Data Valid		8		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		8		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		4		5		6		7	ns
t _{LZOE}	OE LOW to Low-Z	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[5, 6]		4		5		6		7	ns
t _{LZCE}	CE LOW to Low-Z ^[6]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[5, 6]		4		5		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		8		10		12		15	ns
t _{DBE}	Byte Enable to Data Valid		4		5		6		7	ns
t _{LZBE}	Byte Enable to Low-Z	0		0		0		0		ns
t _{HZBE}	Byte Disable to High-Z		6		6		6		7	ns
Write Cycle [[]	7, 8]	•	•	•	•	•	•	•	•	
t _{WC}	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE LOW to Write End	6		7		8		10		ns
t _{AW}	Address Set-Up to Write End	6		7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		10		ns
t _{SD}	Data Set-Up to Write End			5		6		7		ns
t _{HD}	Data Hold from Write End			0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	3		3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[5, 6]		4		5		6		7	ns
t _{BW}	Byte Enable to End of Write	6		7		8		10		ns

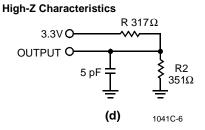
Shaded areas contain advanced information.

The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.


theorem gives the minimum amount of time that the power supply should be at typical Vcc values until the first memory access can be performed.

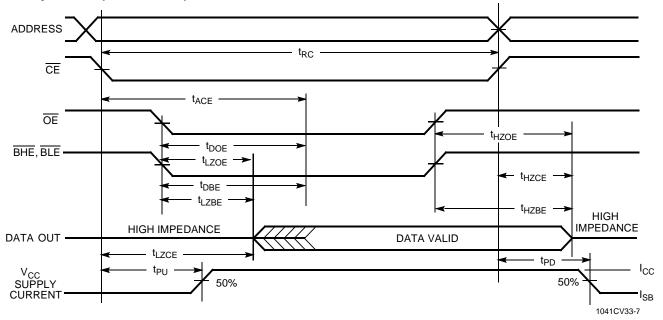

theorem theo



AC Test Loads and Waveforms[9]

Notes:

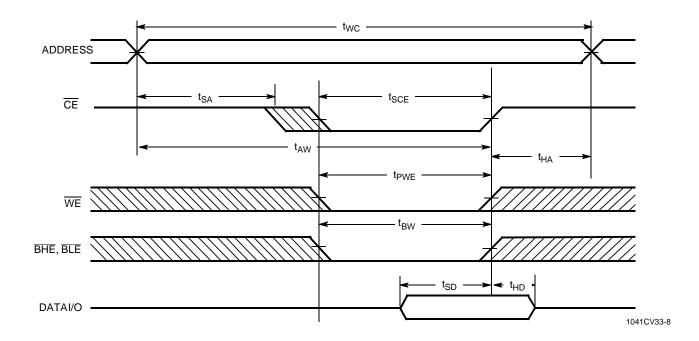
9. AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).


1041CV33-6

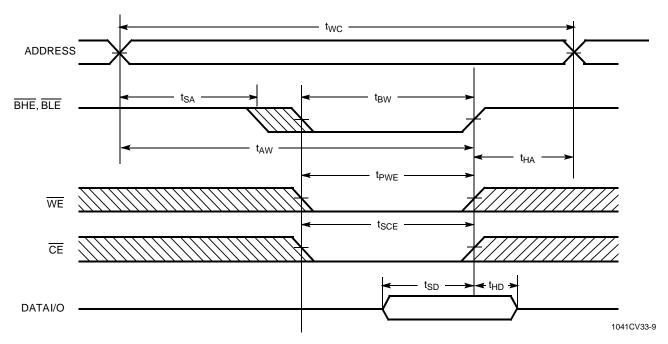
Switching Waveforms

Read Cycle No. 1[10, 11] t_{RC} **ADDRESS** $t_{\mathsf{A}\mathsf{A}}$ DATA OUT PREVIOUS DATA VALID DATA VALID

Read Cycle No. 2 (OE Controlled) [11, 12]


Notes:

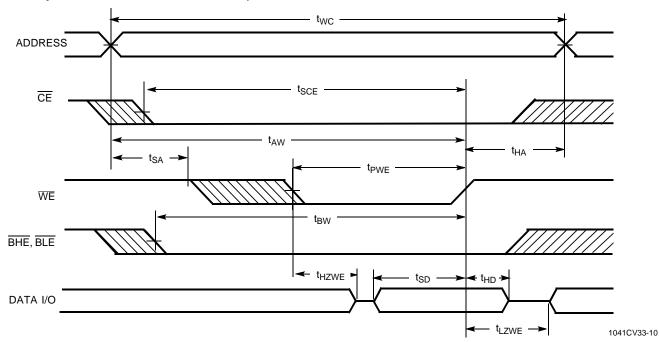
- 10. Device is continuously selected. OE, CE, BHE and/or BHE = V_{IL}.
 11. WE is HIGH for Read cycle.
 12. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^{13, 14]}

Write Cycle No. 2 (BLE or BHE Controlled)



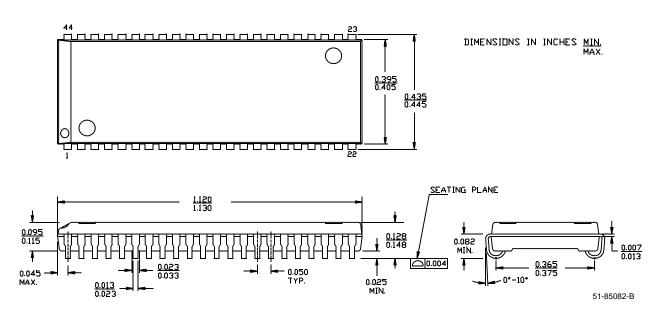
- 13. Data I/O is high-impedance if OE or BHE and/or BLE= V_{IH}.
 14. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

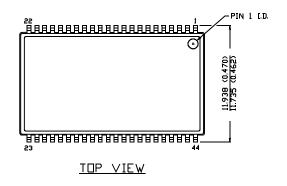
Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)

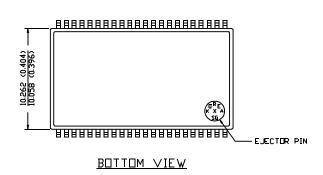
Truth Table

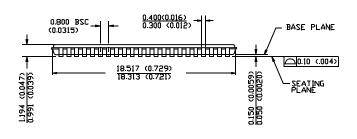
CE	OE	WE	BLE	BHE	HE I/O ₀ -I/O ₇ I/O ₈ -I/O ₁₅ Mode		Mode	Power
Н	Х	Χ	Χ	X	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Η	Data Out	High-Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Х	L	L	Η	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Χ	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

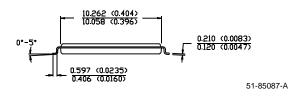

Ordering Information

Speed (ns)	Ordering Code	Package rdering Code Name Package Type		Operating Range	
10	CY7C1041CV33-10BAC	BA49	48-ball Fine Pitch BGA	Commercial	
	CY7C1041CV33-10VC	V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-10ZC	Z44	44-pin TSOP II Z44		
	CY7C1041CV33-10BAI	BA49	48-ball Fine Pitch BGA	Industrial	
	CY7C1041CV33-10VI	V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-10ZI	Z44	44-pin TSOP II Z44		
12	CY7C1041CV33-12BAC	BA49	48-ball Fine Pitch BGA	Commercial	
CY7C1041CV33-12VC		V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-12ZC	Z44	44-pin TSOP II Z44		
	CY7C1041CV33-12BAI	BA49	48-ball Fine Pitch BGA	Industrial	
	CY7C1041CV33-12VI	V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-12ZI	Z44	44-pin TSOP II Z44		
15	CY7C1041CV33-15BAC	BA49	48-ball Fine Pitch BGA	Commercial	
	CY7C1041CV33-15VC	V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-15ZC	Z44	44-pin TSOP II Z44		
	CY7C1041CV33-15BAI	BA49	48-ball Fine Pitch BGA	Industrial	
	CY7C1041CV33-15VI	V34	44-lead (400-mil) Molded SOJ		
	CY7C1041CV33-15ZI	Z44	44-pin TSOP II Z44		

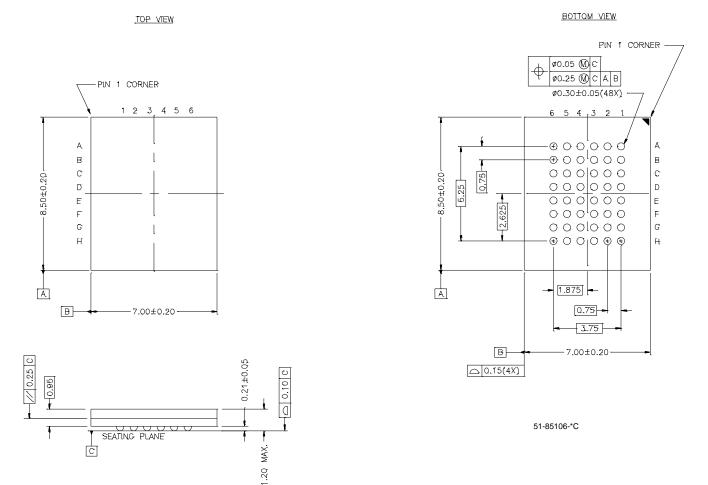

Package Diagrams


44-lead (400-mil) Molded SOJ V34




44-pin TSOP II Z44

DIMENSION IN MM (INCH) MAX MIN.



48-ball (7.00 mm x 8.5 mm x 1.2 mm) Thin BGA BA48B

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document Title: CY7C1041CV33 256K x 16 Static RAM Document Number: 38-05134							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	109513	12/13/01	HGK	New Data Sheet			
*A	112440	12/20/01	BSS	Updated 51-85106 from revision *A to *C			
*B	112859	03/25/02	DFP	Added CY7C1042CV33 in BGA package Removed 1042 BGA option pin ACC Final Data Sheet			