Gbps CRC generator in 0.35um
CMOS technology
implemented with standard
cells

José Maria Nadal Serrano
Lunds Tekniska Hogskola - Lund Institute of Technology

Version 0.6
June 11, 2002

Copyright © 2001 Joseé Maria Nadal Serrano.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being “VHDL Code”, with
Front-Cover Texts “Gbps CRC generator in 0.35um technology
implemented with standard cells, “José Maria Nadal Serrano”, and with no
Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

A mi familia y amigos,

que estan cerca a pesar de
que son muchos los kilémetros
gue nos separan.

Merci beaucoup a R.J. Glaise,
qui m’a aidé beaucoup avec les
matrices et m’a appris I’esprit
des ingenieurs qui aiment ce
qu’ils faisent. Merci beaucoup
pour votre temps!!

To my advisors for the project,

Prof. Peter Nilsson and Thomas Olsson
for their support and help during

the time | spent doing this project.

I would also like to acknowledge
the great help received by

Prof. Mats Cederwall, who gave me
some insight into CRCs.

Tack allihop!!

Table of contents

[TIntroductiod 1
: 2

21 __Awordon CvclicRedundancy Coded 2
B2 Specialconstraintd 2
B_The paper and pencil design 3
Bl Thealgorithnd 3
B.2 In-depth look at the alg%'glthnj 3

1 lendd ... 3

B.2.2 Hardwareconstraintd 5
4__Implementation: down to the problem 9
1 itsstructurd 9

K11 Twophaselogid 9

K2 Coding “policy’] 11
5__Measurements and testing 13
IAJLH.D.I_mda_oLLhe_QR.C_%me.Lamd 14
A1 _Filesdependencytred 14
A2 VHDLcodd e 14
[A21 input registersvhd 14

A22 input waitvhd 16
.............................. 18

W 21

1A2.5 gf_multiplier vhd 31

g XorVhd 36

A2.7 crc_top vhd . 37

A28 Testbench:inpuf wait tbwvhd, 39

-gf multiplier tbwvhd L 41

-big xor tbwvhd. 43

IA211 Testbench: CRC top tbvhd 46

B_1/Q inferfacd 49
B.1__Interfaces of the differentblockd 49
B.2_1/Qinterfaceofthechid, 49
B3 Packagd 50
IC__License of this world 52
CT_GNUGENERAL PUBLICTICENSH, 52
CTT Preambld 52

C12 _TERMSAND CONDITIONS]o oo 52
CI3_NOWARRANTY oot oo 55

IC2 GNU Free Documentafion Licensd v v v v oo v v 55
COT Preambld 55

IC2.2 Applicability and Definitiond 55

IC2.3 Verbatim Conving1 56

IcC24 Copyingin Quantity 56

IC25 Modificationdo 57

Table of contents

1 Intfroduction

1 Introduction

Nowadays the world of digital electronics is changing rapidly. Moreover, the latest tendencies
point in a direction where the more and more complex circuits are no longer being designed at
the transistor level, but instead some CAD tools and more high-level tools help the designer in
order to facilitate the response to customer’s necesities and also reduce the so-called “time to
market”.

Besides this, a general tendency is to integrate several modules in a single piece of silicon,
thus making huge chips that can be even made of pieces in which different technologies were
used.

These new SoC, or “Systems on Chip” need on the other hand to make the designer have
to think in a higher level of abstraction, and use now blocks with a more complex functionality.
This is the only way of being able to deal with the ever-growing complexity.

In this context is where the so-called IPs appear. They have nothing to do with the well
known internet protocol, but with patents. Those IPs (IP stands for “Intellectual Properties™)
are one step forward in the abstraction process. We were already used to the propietary cells
that could keep our hands clean and far away from the full custom design. Those cells were
mainly provided by the manufacturers in such a way that we could keep our design almost
manufacturer-independent, and at the same time the manufacturer could hide the details of his
technology. Now the concept is more or less the same one, but at a higher level of abstraction.
Somebody could sell us a more o less complex block that performed a specific algorithm
optimized for speed, area, comsumption... We will keep on building difficult and bigger and
bigger circuits, but we will be using complete “rooms” to build them, instead of just using
small “bricks”.

It is in this context where the CRC-generator makes sense. Probably none would like to
have a chip with such a circuit, since it is just worth if it is going to be used as a part of a bigger
circuit, as an ATM transmiter or as a OC-XXX speed link.

2 General description: the problem

2 General description: the problem
2.1 A word on Cyclic Redundancy Codes

As it is easily imaginable, we all would like to have no errors when transmiting data over
the Internet or any other media, but deffects in materials, interferences and other sources can
corrupt the data, so we have to provide the communication with ways of detecting and if
possible correcting those errors.

It could be highly desirable to be able to check this in an accurate and fast way, and
therefore many different strategies have been developed in the early years, but almost all were
based in performing some kind of mathematical operation over the bits we are transmitting.

In this way, the so-called CRC was rapidly widespread as a good way of checking errors.
A mathematical operation is performed over the data that is going to be sent, and the result is
appended at the end of the data, thus resulting the packet that will actually be sent. At the far
end of the channel, the same operation is made. If the result is the one expected (all 1’s in our
case) then there have not been problems. Else, the data is corrupted and something will have
to be made (this “something” is out of the scope of the CRC generator; it is usually an issue
corresponding to the upper layers of the communication protocol).

2.2 Special constraints

Our task consists in doing a CRC generator that could handle really high speeds and this is the
reason why we will have to implement it in hardware instead of in software, as most of the
CRC generators are done.

The final goal is to be able to achieve a 10Gbps data throughput. The standard polinomial
for Ethernet must be used to generate the 32 bit CRC, and the throughput is supposed to be
achieved in a 0.18um. However, we will have to deal with many problems derived from the
fact that we will have to use a 0.35um technology. Other issues as the way we will measure
the performance of the chip will be covered in later sections.

Latency

A.rfzaQ & Speed

7

Technology

Figure 1: Our problem

3 The paper and pencil design

3 The paper and pencil design
3.1 The algorithm

There are several ways of calculating a CRC? out of a block of data. We will name the most
important ones just before explaining in detail the one we will use.

A straightforward implementation of a CRC generator could be as simple as a shift regis-
ter in which the incoming bits are shifted in and XOR-ed with the polynomial that generates
the code (in our case, the Ethernet polynomial). However, this implementation is rapidly dis-
carded. Why? It is easy to think about the problems of making a GHz shift register in 0.35um
CMOS process. No way to implement this in a reasonable way. First conclusion then, we
should try to look for something that could take bytes or words instead of bits. This way we
will paralelize the architecture and therefore we will be able to reduce significantly the clock
speed.

Other approach is to use a table-driven implementation. It consists in indexing a table with
the result (or the so to speak WIP -"work in progress”- in the input register) and XOR-ing it
with the result of the search. There are several versions of this approach, but they all surpass by
far what is reasonable in on-chip memories. Even if the area is not our main problem, one of
the constraints was not to increase the area beyond a “reasonable amount”. Option discarded
again.

Although this could have been quite discouraging, there is another approach, which is
much closer to what we need and can be found in several papers2. This description is based
in what they call the “Galois Fields” and reduce the whole problem to some logic. This is
specially useful for us, since we will just have to try to modify the architecture in order to
speed it up. And besides that, isn’t that marvellous to be able to reduce the calculation of a
reminder to some cascaded XORs? It seems great to me!. | finally decided that so far this was
the best solution posible.

3.2 In-depth look at the algorithm
3.2.1 Galois and friends

It is strongly recommended for those who really want to understand how the circuit works to
have a look at the paper by Jacquart and Glaise, and for further details, to have a look at the
book by Peterson and Weldon?3.

The polynomial used in Ethernet and ATM is the same as the one we will use in our
generator. It is the next one:

$=£L‘32+$26+$23+$22+$16+$12+$11+$10+$8+Z‘7+$5+$4+$2+$+1

This polynomial has several advantages, such as the fact that it is irreducible, that is, it is
like a “prime” polynomial. Besides that, if we recall the main property of a Galois Field:
ad®al = ai+jmad(232fl)
we will have that, provided our polynomial is an element of the Galois Field, the shift* we will
have to do will then just be a multiplication by a™, where = is the length of the word we are
using (it has to be smaller than 32 bits, or o®!). For convenience, we chose a n = 16, which

allows us to lowen the speed of the clock to about 10GHz/16 = 625M H z in a first approach
(we will see that this is not that true -we will not be able to process one word per clock cycle-,

A good introduction on CRCs can be found at/http://www.repairtag.org/filipg/LINK/F_crc_v3T.html

2|t is specially recomended to have a look at this paper: Fast CRC calculation, R. J. Glaise and X.
Jacquart, IBM CER La Gaude (France) dep. TNN Hardware development

3“Error correcting codes”, Peterson and Weldon, the MIT Press, 2nd edition 1972

“What we are doing here is to change the straight forward implementation into something more useful
in our “hardware world”. The description for this can be found in many places. If the reader needs to
recall this, a good reference to start with is the one available in the Internet.

http://www.repairfaq.org/filipg/LINK/Fprotect T1	extunderscore crcprotect T1	extunderscore v31.html

3.2 In-depth look at the algorithm

but I didn’t realize of this “bug” in these early stages of the design). Anyway this is a good
register lenght, since it provides us with a good clock speed reduction and it does not increase
the area too much either.

Taking n = 16 then, we have that:

CRC(T +1) = CRC(T) ® a® & InputWord(T + 1)

In practice, the operation above corresponds to this next scheme:

Input
v v
@\%’ 16
o
<<\
©
O’Z}O

716 716

16 [2-input XORs |
| 16
| CRC out |
. '3

Figure 2: Straight forward schematic

Once we have the general idea of what we are going to do, the next step is to find the
so-called ““H-matrix”’, which is the core of the Galois Field multiplier itself. That matrix is the
one that makes the multiplication by ®. This matrix is not very difficult to generate (if one
knows how to do it) but it is very tedious. The matrix to compute 16 bits at a time is included
here:

3.2 In-depth look at the algorithm

1111 .11 1 |
e e e |
e I 5 e b s e |
s 5 e s 5 e e |
e e 5 e s e |
e e I e I 5 s e |
e e e I 0 e e |
s s s s s s e e I
I s s s s A s s e I
A1.0.01111 011l I
B I e e e e e |

It is now straightforward to convert this matrix into the logic that implements it. As the ad-
ditions are XORs in Galois Field arithmetic, what we have to do is to convert the 1" into XORs.
This way, the CRC(T+1)[31] = CRC(T) 31]® CRC(T) [27] & CRC(T) [25] ® CRC(T) [24] ®
CRC(1y[21] ® CRC(1)[15]. We can easily expand the whole matrix into this new form and
then implement the hardware directly. If we then have a look at what we have, we will see that
we have a 10-XOR delay (maximum) in the Galois Field multiplier. This is quite a lot, but it
is much smaller that in the case of computing 32 bits at a time. The price we will have to pay
for the simplicity will probably be the latency as we will see.

The last consideration that must be made is that in order to be compliant with the Ethernet
standard, we have to set the initial CRC to a well defined value (H'46 AF'6449). This element
is the one that once multiplied by a3! yields the all one pattern.

3.2.2 Hardware constraints

Once we have gone through the first “hardware extraction” of the circuit we have to think
about what we really have and how demanding our problem is, in order to be able to adapt this
first implementation so that it meets all the requirements. And it is therefore here where the
technology dependent decisions come, since the delays in the gates and the wires condition the
whole design. We have to keep in mind that we have to make our design run very, very fast.

As we said before, if we have a look at the matrix we will see that the longest delay is 10
XORs. It is not possible to have such a big critical path if we want the circuit to run at several
hundred megahertz. Therefore partitions must be made. And this means introducing pipeling
and two phase logic in our circuit as well as some other problem-generators.

A good advantage of this architecture is the fact that the multiplier is completely “pipeline-
able”, reducing in this way the critical path to one gate plus wires. This is the preferable
architecture for our 0.35um process. Why? Because if we take the data provided by the
manufacturer and we take into account the load seen by the gate (just the input of one flip-flop,
in this highly-pipelined process) we have the possibility to have a rather high clock frequency
(in theory, up to 1GHz). If we used two gates as the maximum critical path, we wouldn’t be
able to handle the incoming data.

However, in a more modern process this last case (several gates per pipelining stage) could
me more desirable, because the delay due to the gates and the wires is potentially smaller. It is
possible that the reader thinks that this all is a little bit bizarre...

Why are we taking such low-level considerations into account? Well, let me explain that.
We will describe the chip with VHDL, which in theory is used to get the designer rid of all
those considerations. However, as this application is speed-critical, | thought that the best thing
was to describe the hardware thinking in the final layout, so to speak, a full-custom, VHDL
described (=with standard cells) chip. Even if this does not sound good, this is exactly what
we will do.

We also have to ensure that the input arrives at the “big XOR” (the one we have just before
the final register) at the same time as the processed -multiplied- data. This basically means
that we will also have to include some pipelining at the input. The registers in this part will
just delay the moment in which the signal arrives at the big XOR, and it will also sinchronize
it with the data coming from the multiplier. The general sketch of the circuit can be seen in
figure B

3.2 In-depth look at the algorithm

Input

y Pipeline registers i] 6
/

,,, N E—

! 16 16
16 Big XOR (16 2-input XORs) |
| 16

32
CRC Output

Figure 3. General scheme of the CRC generator

And when it comes to the multiplier, we will not be able to just include the registers to
pipeline the outputs of the XORs (this is what | call the “WIP registers”, where WIP stands for
“Work In Progress™), but also some others that will have to carry the original data (we need it
in order to feed the inputs of the gates properly). We will have increased the size of some of
the registers to 64 bits, but the increase in area is still affordable. The structure can be seen in
figure@

The rest of the generator (the big XOR and the final register) does not have big problems
when it comes to its design, but the parts also pipelined in order to keep the one-gate critical
path (see figure B). Special care has to be taken in order to respect the timing, for the output
and for the feedback. And it is here where our problems start again.

The feedback and the pipelining. This is the most difficult part of the whole design, and
since -1 will have to admit that- | did not notice that there could be some problems because of
this, the “errors” (looses in performance, actually) due to the feedback were the last ones to be
discovered.

These errors (better said “features™) make the circuit have one fifth the throughput it should
have, this is, 2Gbps measured at the input or 4Gbps at the output (we generate 32bits for each
word of 16 bits). Sad but true.

Why does this happen?® Well, if we think a little bit, we will see that we just achieve a
correct multiplication every five samples (it takes four clock cycles to compute a multiplication,
and we get the result in the fifth one). The rest of the clock cycles are necessary, but provide us
with no valid data. What to do, then? Well, the question arises much faster than the answer. It
could be posible to increase the two phase logic to a multiphase logic, for instance, four phase
logic, with the same clock frequency. This solution, besides the difficulties to generate the
clock signal and the problems derived of the skew in the circuit (we depend on the automatic

5The interested reader is encouraged to have a look at the timing in the “Implementation” section in
order to understand the details of the explanation.

3.2 In-depth look at the algorithm

Vi Original data : WIP stage n

o ‘

g RSy

) . .

@ ||| ~{ Combinational P
! (Logic

g ||] ot

8 | {

w Original data (unchanged) WIP stage (n+1)

Figure 4: Structural scheme of the registers in the Galois Field multiplier

Last stage of the Galois Field Multiplier Last stage of the Input

i
‘ ! ‘< 77777777777777777777
i

W, e o
B W@i@%@ o,

‘ CRC generaﬁtor output register ‘

32
Feedback—e—
output | 32

Figure 5: Output stage

3.2 In-depth look at the algorithm

place and route, so we cannot guarantee an H-shaped clock lines plus the fact of having really
high clock frequencies, which turns out in smaller skew margins) does not solve our problem.
More solutions... maybe try to increase the clock signal so that we have 625Mhz per word
(data) and therefore a clock of 3.125 GHz. This is not possible nowadays. If so, just in the
0.18um version, but not in this technology (we cannot do fine-grain pipelining and break the
gates, but even in that case we would not be improving anything).

The last chance is to try to use the algebraic properties of the multiplier and all the op-
erations we are using. In that case, the aim should be to paralelize the whole architecture,
including minimal changes in the rest of the modules, and thus achieving the high throughput
required. This means increasing the area of the chip at least five times in order to have one
valid output at a time, and then making some operation to get the valid output at any time.

Due to lack of time (and why not to say it, deep knowledge on the topic) | could not come
up with an idea that could solve these problems, because all the attempts where useless.

Then, the CRC generator design will be able to run (at most) at 4Gbps (output), faster if
we used a better technology. The input will therefore consist of one word of data each five
clock cycles, in the way that is shown in figure B

CLK
%eeggcg : [/>1>:< D2 x: sz: D4>E< D5>E< D6>E< D7>E< D8>E<
: = (Sl Wil

= T W

QU) DlX oo>;< oo>;< oo>;< 00 D2>;< oo>;< ooX

Figure 6: Input data flow

The idle clock cycles will contain zeros, but could contain anything else. The output
should be also synchronized to get the parallel output each five clock cycles.

4 Implementation: down to the problem

4 Implementation: down to the problem

4.1 The design and its structure

We will describe the CRC generator now from an architecture perspective, from the high level,
almost-functional architecture, to the low level architecture (mainly timing and connections).

If we have a look at figure [we will see the architecture that should be familiar by now.
Four main blocks are part of the CRC generator, the Galois Field multiplier, which is the
biggest one and has the heaviest functional load, the input block, with the pipelining stages we
mentioned, and then the two small blocks, one consisting of 16 XORs and the other one, the
output stage, which consists of a register. These two are put together in the “big_xor” block.
The bus widths are also shown.

reset Input
2 —
¢ ¢ @ 16 ¢2
input input
p o 9 o ¢ p
reset o g reset
gf_multiplier input_wait
output_fcs output_xor output
16 16 ﬂ 16
of_input fcs_input ¢2 reset input_input
big_xor
32
fcs out

Figure 7: Block structure of the generator

4.1.1 Two phase logic

We will use the so-called strict two-phase design criterion. We will therefore use a square wave
clock with two non-ovelapping phases (see figure B).

Thus, the general scheme for both ¢, and - is shown in figurefeffigure:impl-phil2.

Then, to have a balanced tree (so that the signals get to the big XOR at the same time)
we have to design the timing for the whole chip as shown in the figure 0 This design allows
us to keep the power consumption controlled, because the number of the switchings remains
somewhat controlled (we have separated the switching in two different times).

It is also interesting to have a look at the pipelining registers, in the input side and in the
multiplier side. They are all represented in the figure where the general scheme for the timing
is shown.

4.1 The design and its structure

10

InEminiy
igEnEnE

(0]

Figure 8: Two non-overlapping clock phases

"Active"
2

y Combinational
¢2 logic

Figure 9: General two phase design scheme

-
/ ¢2
Combinational IanIt Active with
logic I . (I)
14 | 2
-'_'_'_'_'_'_'_'_I'_'_' 17 Active with
v =) v ¢1
I | I |
L"""L'_'_;"_'_'_'_'_'_'_\ Foeoeoo- :""""I
I ttld v
I | $
R s S L
I | I
s S
I S migxoR
I |

Output

Figure 10: Detailed timing scheme of the whole design

4.2 Coding “policy”

11

Once the algorithm in the previous sections has been understood, there is not much to
explain besides the timing.

4.2 Coding “policy”

When reading the coding, it is very important to say that it has not been writing as an exam-
ple of the best coding possible (particulary the use of parameters could make it smaller and
smarter), but just bearing in mind that the final aim is to describe hardware with a high level
tool but thinking at the same time in the final layout, much more than one usually does.

And this all causes a fairly weird coding style, with very small blocks (in functionality
and also in area), as well as an important amount of signals. Big care has been put so that the
names of the signals are self-explaining. However, the figures showing how the connections
are made should help to clarify any doubt.

Input

16

716 716
161 [2-inputXORs |
716

l CRC out |
32

Figure 11: Structural block model showing connections and interfaces

input

btwland2

btw2and3

btw3and4

btw4and5

btw5and6

btw6and7

btw7and8

output

Figure 12: Detailed block diagram of the input block

4.2 Coding “policy”

________________ gf_xor_1x

________________ gf_xor_2x

________________ gf_xor_3x

---------------- gf xor_4x

................ gf_xor_5x

................ gf_xor_6x

________________ gf_xor_7x

................ gf_xor_8x

btw2_ 3
GF2_phil --
btw3 4
GF3_phi2 - -
btw4 5
GF4_phil --
btw5 6
GF5_phi2 --
btw6_7
GF6_phil - -
btw7_8
GF7_phi2 - -
btw8 9
GF8_phil --
btw9 10
GF9_phi2 --

GF10_phil ----------------

Figure 13: Detailed block diagram of the Galois Field multiplier

5 Measurements and testing

13

Figure 14: Detailed block diagram of the output block

5 Measurements and testing

Every design shall provide a test vector to be able to test if the functionality is the expected
one and to be able to see if the fabrication process was optimum.

In our case, there is a test vector that should give an all-1’s output. This is due to the fact
that this vector was generated with a CRC generator compliant with the Ethernet standard.
Then, what we will actually be doing is to make our CRC generator act as a receiver, instead
of as a transmiter when there has not been any corruption in the channel. The output that we
will get will therefore be all-1’s.

The input vector is:

96-BIT TEST VECTOR:

MSB
00001101000000110000000000000000
11111111111111111010101111001101
10101100111011101100111010001101

LSB

This vector has proven to be a good test vector, since it tests the functionality of the chip,
and at the same time, it gets a good node stuck-at error coverage.

It is also important to remark that even if the testing is esential in this design it could
not be taken to the extreme. This means that there are no special devices to observe/control
all the nodes, we just have the input and the output. This is dangerous, but in these kind of
projects it is not affordable to do two circuits, one thinking in the testability and the next one
thinking in speed, because it is difficult to include testing hardware without seriously affecting
the capabilities of the circuit.

Some of the designs sent for fabrication were requested to have the fastest packaging of
the available ones (QFP), and not to pack the rest.

Therefore, the use of special probes (low-inductance, low-capacitance) will be mandatory
in the measuring phase. The use of analog PADs for the inputs increases the risk of failure due
to static discharge, so additional protections will have to be used in order to be able to handle
the die without breaking it.

As it can be seen, all precautions must be extremed during the test phase, since we are near
the limits of this technology (if we are not trying to surpase them).

A VHDL code of the CRC generator 14

A VHDL code of the CRC generator

A.1 Files dependency tree

Different files and different levels in the hierarchy have been used in the description of the
CRC generator for the sake of clearness.
The structure is graphically represented in figure [[9

gf_multiplier_tb

CRC top_tb

\ /

Q /
CRC_top

input_wait_tb

\
\

<linput_wait | |gf_mu|tipﬁer| big_xor| g
N

input_registers
of registers

Figure 15: Hierarchy of the design and VHDL files

A.2 VHDL code
A.2.1 input_registers.vhd

-- File : input_registers.vhd

-- Author : José Maria Nadal

-- Date : Mar, 2001

-- Description : The two types of registers used in the input block for the
-- pipelining.

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

A.2 VHDL code 15

library IEEE;

use IEEE.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- We first describe the entities of the two types of registers used in the
-- pipelining.

entity input_phil_register is

port (
reset : in std_logic;
phil : in std_logic;
input : in std_logic_vector (15 downto 0);

output : out std_logic_vector(15 downto 0));
end input_phil_register;
architecture behavior of input_phil_register is
begin -- behavior
-- purpose: Pipelining register activated by phil
-- type : sequential
-- inputs : phil, reset, input (16 bits)

-- outputs: output (16 bits)
p_input_phil_register : process (phil, reset)

begin -- process
if reset = ’0’ then -- asynchronous reset (active low)
output <= (others => ’07);
elsif phil’event and phil = ’1’ then -- rising clock edge
output <= input;
end if;

end process;

end behavior;

library IEEE;
use JEEE.std_logic_1164.all;

entity input_phi2_register is

port (
reset : in std_logic;
phi2 : in std_logic;
input : in std_logic_vector (15 downto 0);

output : out std_logic_vector (15 downto 0));
end input_phi2_register;

architecture behavior of input_phi2_register is

A.2 VHDL code 16

begin -- behavior

-- purpose: Pipelining register activated by phi2
-- type : sequential

-- inputs : phi2, reset, input (16 bits)

-- outputs: output (16 bits)
p_input_phi2_register: process (phi2, reset)

begin -- process p_input_phi2_register
if reset = ’0’ then -- asynchronous reset (active low)
output <= (others => 20’);
elsif phi2’event and phi2 = ’1’ then -- rising clock edge
output <= input;
end if;

end process p_input_phi2_register;

end behavior;

A.2.2 input_wait.vhd

-- File : input_wait.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : This file contains the code for the '"wait states" of the in
-- put. It is also one of the three main blocks of the generator.

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;
use JEEE.std_logic_1164.all;

entity input_wait is port (

phil : in std_logic; -- Two phase discipline
phi2 : in std_logic;

reset : in std_logic; -- #RESET

input : in std_logic_vector (15 downto 0);

-- The serial/parallel conversion has
-- been made somewhere else
output : out std_logic_vector (15 downto 0));

end input_wait;

A.2 VHDL code 17
architecture structural of input_wait is
component input_phil_register
port (
reset : in std_logic; -- #RESET
phil : in std_logic; -- Clock
input : in std_logic_vector(15 downto 0);
output : out std_logic_vector(15 downto 0));
end component;
component input_phi2_register
port (
reset : in std_logic; -- #RESET
phi2 : in std_logic; -- Clock
input : in std_logic_vector(15 downto 0);
output : out std_logic_vector(15 downto 0));
end component;
signal btwland2 : std_logic_vector (15 downto 0);
signal btw2and3 : std_logic_vector(15 downto 0);
signal btw3and4 : std_logic_vector(15 downto 0);
signal btw4and5 : std_logic_vector(15 downto 0);
signal btwband6 : std_logic_vector(15 downto 0);
signal btw6and7 : std_logic_vector(15 downto 0);
signal btw7and8 : std_logic_vector(15 downto 0);
begin -- structural
Inputl: input_phi2_register port map (reset => reset, phi2 => phi2,
input => input, output => btwland2);
Input2: input_phil_register port map (reset => reset, phil => phil,
input => btwland2, output => btw2and3);
Input3: input_phi2_register port map (reset => reset, phi2 => phi2,
input => btw2and3, output => btw3and4);
Input4: input_phil register port map (reset => reset, phil => phil,
input => btw3and4, output => btw4andb);
Inputb: input_phi2_register port map (reset => reset, phi2 => phi2,
input => btwé4andb, output => btwband6);
Input6: input_phil register port map (reset => reset, phil => phil,
input => btwband6, output => btw6and7);
Input7: input_phi2_register port map (reset => reset, phi2 => phi2,
input => btw6and7, output => btw7and8);
Input8: input_phil_register port map (reset => reset, phil => phil,
input => btw7and8, output => output);

end structural;

configuration cfg_input_wait_structural of input_wait is

A.2 VHDL code

for structural
for Inputl : input_phi2_ register
use entity work.input_phi2_register (behavior);
end for;

for Input2 : input_phil_register
use entity work.input_phil_register(behavior);
end for;

for Input3 : input_phi2_register
use entity work.input_phi2_register (behavior);
end for;

for Input4 : input_phil_register
use entity work.input_phil_register(behavior);
end for;

for Inputbd : input_phi2_register
use entity work.input_phi2_register (behavior);
end for;

for Input6 : input_phil_register
use entity work.input_phil_register (behavior);
end for;

for Input7 : input_phi2_register
use entity work.input_phi2_register (behavior);
end for;

for Input8 : input_phil_register
use entity work.input_phil_register (behavior);
end for;
end for;

end cfg_input_wait_structural;

A.23 df registers.vhd

-- File : gf_registers.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : The different types of registers needed for the pipelining
- are described here.

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

A.2 VHDL code 19

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;
use IEEE.std_logic_1164.all;

entity gf_phil_register_out is

port (
reset : in std_logic; -- #RESET
phil : in std_logic; -- Clock
input_wip : in std_logic_vector(31 downto 0);

output_final : out std_logic_vector(31 downto 0));

end gf_phil_register_out;

architecture behavior of gf_phil_register_out is
begin -- gf_phil_register_out
-- purpose: This is the final register in the GF multiplier.
-- It is coded as a different entity since it is much smaller than the

-- "standard" ones

p_gf_phil_register_out: process (phil, reset)

begin -- process p_gf_phil_register_out
if reset = 20’ then -- asynchronous reset (active low)
output_final <= (others => ’0’);
elsif phil’event and phil = ’1’ then -- rising clock edge
output_final <= input_wip;
end if;

end process p_gf_phil_register_out;
end behavior;

library IEEE;
use IEEE.std_logic_1164.all;

entity gf_phil_register is

port (
reset : in std_logic; -- #RESET
phil : in std_logic; -- Clock
input_wip : in std_logic_vector(Sl downto 0); -- The incoming WIP

input_fcs : in std_logic_vector(31 downto 0);
-- The original data for that step. As we are using
-- pipelining we have to grant that we will have the original
-- FCS data available.
output_wip : out std_logic_vector(31 downto 0);
-- The modified data -our "WIP"-
output_fcs : out std_logic_vector(31 downto 0));
-- The original data is kept untouched

A.2 VHDL code 20

end gf_phil_register;

architecture behavior of gf_phil_register is
begin -- behavior

-- purpose: 63 bit pipeline register
-- type : sequential
-- inputs : phil, reset, input_fcs, input_wip
-- outputs: output_fcs, output_wip
p_gf_phil_register: process (phil, reset)
begin -- process p_gf_phil_register
if reset = ’0’ then -- asynchronous reset (active low)
output_fcs <= (others => ’07);
output_wip <= (others => ’07);
elsif phil’event and phil = ’1’ then -- rising clock edge
output_fcs <= input_fcs;
output_wip <= input_wip;
end if;
end process p_gf_phil_register;

end behavior;

library IEEE;
use JEEE.std_logic_1164.all;

entity gf_phi2_register is

port (
reset : in std_logic; -- #RESET
phi2 : in std_logic; -- Clock
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP

input_fcs : in std_logic_vector(31 downto 0);
-- The original data for that step. As we are using
-- pipelining we have to grant that we will have the original
-- FCS data available.
output_wip : out std_logic_vector(31 downto 0);
-- The modified data -our "WIP"-
output_fcs : out std_logic_vector(31 downto 0));
-- The original data is kept untouched

end gf _phi2_ register;

architecture behavior of gf_phi2_register is
begin -- behavior

-- purpose: 63 bit pipeline register

-- type : sequential

-- inputs : phi2, reset, input_fcs, input_wip
-- outputs: output_fcs, output_wip
p_gf_phi2_register: process (phi2, reset)
begin -- process p_gf_phi2_register

A.2 VHDL code 21

if reset = 0’ then -- asynchronous reset (active low)
output_fcs <= (others => ’07);
output_wip <= (others => ’07);

elsif phi2’event and phi2 = ’1’ then -- rising clock edge
output_fcs <= input_fcs;
output_wip <= input_wip;

end if;

end process p_gf_phi2_register;

end behavior;

A.24 df xorvhd

-- File : gf _xor.vhd

-- Author : José Maria Nadal

-- Date : Mar, 2001

-- Description : Codification of the combination logic in each pipelining
-- stage

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.all;

entity gf_xor_input is
port (
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));
end gf_xor_input;

architecture behavior of gf_xor_input is

begin -- behavior

A.2 VHDL code 22

-- purpose: GFix

-- type : combinational
-- inputs : input_fcs

-- outputs: output_wip

p_gf_xor_input: process (input_fcs)

begin -- process p_gf_xor_input
output_wip(31) <= (input_fcs(31) xor input_fcs(27));
output_wip(30) <= (input_fcs(30) xor input_fcs(26));
output_wip(29) <= (input_fcs(29) xor input_fcs(25));
output_wip(28) <= (input_fcs(28) xor input_fcs(24));
output_wip(27) <= (input_fcs(27) xor input_fcs(23));
output_wip(26) <= (input_fcs(26) xor input_fcs(22));
output_wip(25) <= (input_fcs(31) xor input_fcs(27));
output_wip(24) <= (input_fcs(30) xor input_fcs(26));
output_wip(23) <= (input_fcs(31) xor input_fcs(29));
output_wip(22) <= (input_fcs(30) xor input_fcs(28));
output_wip(21) <= (input_fcs(29) xor input_fcs(26));
output_wip(20) <= (input_fcs(28) xor input_fcs(25));
output_wip(19) <= (input_fcs(31) xor input_fcs(27));
output_wip(18) <= (input_fcs(31) xor input_fcs(30));
output_wip(17) <= (input_fcs(30) xor input_fcs(29));
output_wip(16) <= (input_fcs(29) xor input_fcs(28));
output_wip(15) <= (input_fcs(31) xor input_fcs(28));
output_wip(14) <= (input_fcs(31) xor input_fcs(30));
output_wip(13) <= (input_fcs(30) xor input_fcs(29));
output_wip(12) <= (input_fcs(31) xor input_fcs(29));
output_wip(11) <= (input_fcs(31) xor input_fcs(30));
output_wip(10) <= (input_fcs(30) xor input_fcs(29));

output_wip(9) <= (input_fcs(29) xor input_fcs(28));
output_wip(8) <= (input_fcs(28) xor input_fecs(27));
output_wip(7) <= (input_fcs(31) xor input_fcs(26));
output_wip(6) <= (input_fcs(30) xor input_fcs(27));
output_wip(5) <= (input_fcs(29) xor input_fcs(26));
output_wip(4) <= (input_fcs(31) xor input_fcs(28));
output_wip(3) <= (input_fcs(31) xor input_fcs(30));
output_wip(2) <= (input_fcs(30) xor input_fcs(29));
output_wip(1) <= (input_fcs(29) xor input_fcs(28));
output_wip(0) <= (input_fcs(28) xor input_fcs(26));

end process p_gf_xor_input;
end behavior;

library IEEE;

use JEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.all;

entity gf_xor_2x is

port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);

output_wip : out std_logic_vector(31 downto 0));

A.2 VHDL code

23

end gf_xor_2x;

architecture behavior of gf_xor_2x is

begin

-- behavior

p_gf_xor_2x: process (input_fcs,
begin

-- process p_gf_xor_2x
output_wip(31) <=
output_wip(30) <=
output_wip(29) <=
output_wip(28) <=
output_wip(27) <=
output_wip(26) <=
output_wip(25) <=
output_wip(24) <=
output_wip(23) <=
output_wip(22) <=
output_wip(21) <=
output_wip(20) <=
output_wip(19) <=
output_wip(18) <=
output_wip(17) <=
output_wip(16) <=
output_wip(15) <=
output_wip(14) <=
output_wip(13) <=
output_wip(12) <=
output_wip(11) <=
output_wip(10) <=

input_wip)

(input_wip(31)
(input_wip (30)
(input_wip (29)
(input_wip(28)
(input_wip (27)
(input_wip (26)
(input_wip(25)
(input_wip(24)
(input_wip(23)
(input_wip(22)
(input_wip(21)
(input_wip (20)
(input_wip(19)
(input_wip(18)
(input_wip(17)
(input_wip(16)
(input_wip (15)
(input_wip(14)
(input_wip(13)
(input_wip(12)
(input_wip(11)
(input_wip (10)

Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor

input_£fcs(25));
input_fcs(24));
input_fecs(23));
input_fcs(22));
input_fecs(21));
input_£fcs(20));
input_fcs(24));
input_£fcs(23));
input_fcs(25));
input_fcs(27));
input_fcs(25));
input_fcs(24));
input_fcs(24));
input_fcs(26)) ;
input_fcs(25));
input_fcs(24));
input_fcs(25));
input_£fcs(27));
input_£fcs(26));
input_£fcs(28));
input_fcs(28));
input_fecs(25));

output_wip(9) <=

output_wip(8) <

output_wip(7) <=
output_wip(6) <=
output_wip(5) <=
output_wip(4) <=
output_wip(3) <=
output_wip(2) <=
output_wip(1) <=
output_wip(0) <=

(input_wip(9)
(input_wip(8)
(input_wip(7)
(input_wip(6)
(input_wip(5)
(input_wip(4)
(input_wip(3)
(input_wip(2)
(input_wip (1)
(input_wip (0)

Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor

input_fecs(27));
input_fcs(26));
input_fcs(24));
input_fcs(24));
input_fcs(23));
input_fecs(27));
input_fcs(26));
input_fcs(25));
input_£fcs(27));
input_£fcs(25));

end process p_gf_xor_2x;

end behavior;

library IEEE;

use
use
use
use

IEEE.
IEEE.
IEEE.
work.

std_logic_1164.all;
std_logic_arith.all;
std_logic_unsigned.all;
all;

entity gf_xor_3x is

port (
input_wip : in
input_fcs : in

std_logic_vector(31
std_logic_vector(31 downto 0);

downto 0);

A.2 VHDL code

24

output_wip :

end gf_ xor_3x;

out

architecture behavior of gf_ xor_3x is

begin

-- behavior

p_gf_xor_3x: process (input_fcs, input_wip)

begin

-- process p_gf_xor_3x

output_wip(31)
output_wip(30)
output_wip(29)
output_wip(28)
output_wip(27)
output_wip(26)
output_wip(25)
output_wip(24)
output_wip(23)
output_wip(22)
output_wip(21)
output_wip(20)
output_wip(19)
output_wip(18)
output_wip(17)
output_wip(16)
output_wip(15)
output_wip(14)
output_wip(13)
output_wip(12)
output_wip(11)
output_wip(10)
output_wip(9)
output_wip(8)
output_wip(7)
output_wip(6)
output_wip(5)
output_wip(4)
output_wip(3)
output_wip(2)
output_wip(1)
output_wip(0)

end process p_gf_xor_3x;

end behavior;

library IEEE;
use
use
use

use work.all;

IEEE.std_logic_1164.all;
IEEE.std_logic_arith.all;
IEEE.std_logic_unsigned.all

entity gf_xor_4x is

port (

= (input_wip(31)

(input_wip (30)
(input_wip (29)

= (input_wip(28)
= (input_wip(27)
= (input_wip(26)

(input_wip(25)

= (input_wip(24)
= (input_wip(23)
= (input_wip(22)

(input_wip(21)
(input_wip (20)
(input_wip(19)
(input_wip (18)
(input_wip (17)
(input_wip(16)
(input_wip (15)
(input_wip(14)

= (input_wip(13)

(input_wip(12)
(input_wip(11)
(input_wip (10)
(input_wip(9)
(input_wip(8)
(input_wip(7)
(input_wip(6)
(input_wip(5)
(input_wip(4)
(input_wip(3)
(input_wip(2)
(input_wip (1)
(input_wip (0)

Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor

Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor
Xor

std_logic_vector(31 downto 0));

input_fcs(24));
input_fecs(23));
input_fcs(22));
input_fcs(21));
input_£fcs(20));
input_fcs(19));
input_fcs(19));
input_fcs(18));
input_fcs(22));
input_fcs(25));
input_fcs(21));
input_£fcs(20));
input_fcs(23));
input_fcs(23));
input_fcs(22));
input_fcs(21));
input_fcs(24));
input_fcs(24));
input_fecs(23));
input_fecs(25));
input_fcs(25));
input_fcs(21));

input_fcs(25));
input_fcs(24));
input_fcs(23));
input_fcs(23));
input_fcs(22));
input_fcs(24));
input_£fcs(25));
input_fcs(24));
input_fcs(25));
input_fcs(22));

A.2 VHDL code 25

input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));

end gf_xor_4x;

architecture behavior of gf_xor_4x is
begin -- behavior

p_gf_xor_4x: process (input_fcs, input_wip)

begin -- process p_gf_xor_4x
output_wip (31) <= (input_wip(31) xor input_fcs(21));
output_wip (30) <= (input_wip(30) xor input_fcs(20));
output_wip (29) <= (input_wip(29) xor input_fcs(19));
output_wip (28) <= (input_wip(28) xor input_fcs(18));
output_wip (27) <= (input_wip(27) xor input_fcs(17));
output_wip (26) <= (input_wip(26) xor input_fcs(16));
output_wip (25) <= (input_wip(25) xor input_fcs(18));
output_wip (24) <= (input_wip(24) xor input_fcs(17));
output_wip (23) <= (input_wip(23) xor input_fcs(17));
output_wip (22) <= (input_wip(22) xor input_fcs(16));
output_wip (21) <= (input_wip(21) xor input_fcs(5));
output_wip (20) <= (input_wip(20) xor input_fcs(4));
output_wip (19) <= (input_wip(19) xor input_fcs(19));
output_wip (18) <= (input_wip(18) xor input_fcs(22));
output_wip (17) <= (input_wip(17) xor input_fcs(21));
output_wip (16) <= (input_wip(16) xor input_fcs(20));
output_wip (15) <= (input_wip(15) xor input_fcs(23));
output_wip (14) <= (input_wip(14) xor input_fcs(23));
output_wip (13) <= (input_wip(13) xor input_fcs(22));
output_wip (12) <= (input_wip(12) xor input_fcs(22));
output_wip (11) <= (input_wip(11) xor input_fcs(20));
output_wip (10) <= (input_wip(10) xor input_fcs(19));
output_wip (9) <= (input_wip(9) xor input_fcs(21));
output_wip (8) <= (input_wip(8) xor input_fcs(20));
output_wip (7) <= (input_wip(7) xor input_fcs(21));
output_wip (6) <= (input_wip(6) xor input_fcs(22));
output_wip (5) <= (input_wip(5) xor input_fcs(21));
output_wip (4) <= (input_wip(4) xor input_fcs(22));
output_wip (3) <= (input_wip(3) xor input_fcs(24));
output_wip (2) <= (input_wip(2) xor input_fcs(23));
output_wip (1) <= (input_wip(1) xor input_fcs(23));
output_wip (0) <= (input_wip(0) xor input_fcs(16));

end process p_gf_xor_4x;

end behavior;

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.all;

entity gf_xor_bx is

A.2 VHDL code 26

port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));

end gf_xor_5bx;
architecture behavior of gf_xor_bx is
begin -- behavior

p_gf_xor_bx: process (input_fcs, input_wip)

begin -- process p_gf_xor_bx
output_wip (31) <= (input_wip(31) xor input_fcs(15));
output_wip (30) <= (input_wip(30) xor input_fcs(14));
output_wip (29) <= (input_wip(29) xor input_fcs(13));
output_wip (28) <= (input_wip(28) xor input_fcs(12));
output_wip (27) <= (input_wip(27) xor input_fcs(11));
output_wip (26) <= (input_wip(26) xor input_fcs(10));
output_wip (25) <= (input_wip(25) xor input_fcs(9));
output_wip (24) <= (input_wip(24) xor input_fcs(8));
output_wip (23) <= (input_wip(23) xor input_fcs(16));
output_wip (22) <= (input_wip(22) xor input_fcs(6));
output_wip (21) <= (input_wip(21));
output_wip (20) <= (input_wip(20));
output_wip (19) <= (input_wip(19) xor input_fcs(3));
output_wip (18) <= (input_wip(18) xor input_fcs(18));
output_wip (17) <= (input_wip(17) xor input_fcs(17));
output_wip (16) <= (input_wip(16) xor input_fcs(16));
output_wip (15) <= (input_wip(15) xor input_fcs(21));
output_wip (14) <= (input_wip(14) xor input_fcs(22));
output_wip (13) <= (input_wip(13) xor input_fcs(21));
output_wip (12) <= (input_wip(12) xor input_fcs(21));
output_wip (11) <= (input_wip(11) xor input_fcs(19));
output_wip (10) <= (input_wip(10) xor input_fcs(18));
output_wip (9) <= (input_wip(9) xor input_fcs(20));
output_wip (8) <= (input_wip(8) xor input_fcs(19));
output_wip (7) <= (input_wip(7) xor input_fcs(19));
output_wip (6) <= (input_wip(6) xor input_fcs(21));
output_wip (5) <= (input_wip(5) xor input_fcs(20));
output_wip (4) <= (input_wip(4) xor input_fcs(20));
output_wip (3) <= (input_wip(3) xor input_fcs(23));
output_wip (2) <= (input_wip(2) xor input_fcs(22));
output_wip (1) <= (input_wip(1) xor input_fcs(22));
output_wip (0) <= (input_wip(0));

end process p_gf_xor_bx;

end behavior;

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.all;

A.2 VHDL code 27

entity gf_xor_6x is

port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));

end gf_xor_6x;

architecture behavior of gf_xor_6x is
begin -- behavior

p_gf_xor_6x: process (input_fcs, input_wip)
begin -- process p_gf_xor_6x
output_wip (31)
output_wip (30)
output_wip (29)
output_wip (28)
output_wip (27)
output_wip (26)
output_wip (25)
output_wip (24)
output_wip (23)
output_wip (22)
output_wip (21)
output_wip (20)
output_wip (19)
output_wip (18)
output_wip (17)
output_wip (16)
output_wip (15)
output_wip (14)
output_wip (13)
output_wip (12)
output_wip (11)

= input_wip(31);

= input_wip(30);

input_wip(29);

input_wip(28);

= input_wip(27);

input_wip(26) ;

input_wip(25);

= input_wip(24);

(input_wip(23) xor input_fcs(7));

input_wip(22);

= input_wip(21);

input_wip(20);

input_wip(19);

= (input_wip(18) xor input_fcs(2));

(input_wip(17) xor input_fecs(1));

(input_wip(16) xor input_fcs(0));

= (input_wip(15) xor input_fcs(20));

= (input_wip(14) xor input_fcs(20));

(input_wip(13) xor input_fcs(19));

(input_wip(12) xor input_fcs(20));

(input_wip(11) xor input_fcs(17));
output_wip (10) (input_wip(10) xor input_fcs(16));
output_wip (9) <= (input_wip(9) xor input_fcs(18));
output_wip (8) <= (input_wip(8) xor input_fcs(17));
output_wip (7) <= (input_wip(7) xor input_fcs(18));
output_wip (6) <= (input_wip(6) xor input_fcs(20));
output_wip (5) <= (input_wip(5) xor input_fcs(19));
output_wip (4) <= (input_wip(4) xor input_fcs(19));
output_wip (3) <= (input_wip(3) xor input_fcs(19));
output_wip (2) <= (input_wip(2) xor input_fcs(18));
output_wip (1) <= (input_wip(1) xor input_fcs(17));
output_wip (0) <= input_wip(0);

end process p_gf_xor_6x;

II/\/\/\/\/\/\/\/\/\/\/"\/\/\/\/\/\/\/\/\/\/\/\

end behavior;

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

A.2 VHDL code 28

use work.all;
entity gf_xor_7x is

port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));

end gf_xor_7x;
architecture behavior of gf_xor_7x is
begin -- behavior

p_gf_xor_7x: process (input_fcs, input_wip)

begin -- process p_gf_xor_7x
output_wip (31) <= input_wip(31);
output_wip (30) <= input_wip(30);
output_wip (29) <= input_wip(29);
output_wip (28) <= input_wip(28);
output_wip (27) <= input_wip(27);
output_wip (26) <= input_wip(26);
output_wip (25) <= input_wip(25);
output_wip (24) <= input_wip(24);
output_wip (23) <= input_wip(23);
output_wip (22) <= input_wip(22);
output_wip (21) <= input_wip(21);
output_wip (20) <= input_wip(20);
output_wip (19) <= input_wip(19);
output_wip (18) <= input_wip(18);
output_wip (17) <= input_wip(17);
output_wip (16) <= input_wip(16);
output_wip (15) <= (input_wip(15) xor input_fcs(19));
output_wip (14) <= (input_wip(14) xor input_fcs(19));
output_wip (13) <= (input_wip(13) xor input_fcs(18));
output_wip (12) <= (input_wip(12) xor input_fcs(18));
output_wip (11) <= (input_wip(11) xor input_fcs(16));
output_wip (10) <= input_wip(10);
output_wip (9) <= (input_wip(9) xor input_fecs(17));
output_wip (8) <= (input_wip(8) xor input_fcs(16));
output_wip (7) <= (input_wip(7) xor input_fcs(16));
output_wip (6) <= (input_wip(6) xor input_fcs(18));
output_wip (5) <= (input_wip(5) xor input_fecs(17));
output_wip (4) <= (input_wip(4) xor input_fcs(18));
output_wip (3) <= (input_wip(3) xor input_fcs(18));
output_wip (2) <= (input_wip(2) xor input_fcs(17));
output_wip (1) <= (input_wip(1) xor input_fcs(16));
output_wip (0) <= input_wip(0);

end process p_gf_xor_7x;

end behavior;

library IEEE;
use JEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

A.2 VHDL code 29

use IEEE.std_logic_unsigned.all;
use work.all;

entity gf_xor_8x is

port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));

end gf_ xor_8x;
architecture behavior of gf_xor_8x is
begin -- behavior

p_gf_xor_8x: process (input_fcs, input_wip)
begin -- process p_gf_xor_8x
output_wip (31)
output_wip (30)
output_wip (29)
output_wip (28)
output_wip (27)
output_wip (26)
output_wip (25)
output_wip (24)
output_wip (23)
output_wip (22)
output_wip (21)
output_wip (20)
output_wip (19)
output_wip (18)
output_wip (17)
output_wip (16)
output_wip (15)
output_wip (14)
output_wip (13)
output_wip (12)
output_wip (11)

input_wip(31);

input_wip(30);

= input_wip(29);

input_wip(28);

input_wip(27);

= input_wip(26);

input_wip(25);

input_wip(24);

= input_wip(23);

input_wip(22);

input_wip(21);

= input_wip(20);

input_wip(19);

input_wip(18);

= input_wip(17);

input_wip(16) ;

input_wip(15);

= (input_wip(14) xor input_fcs(18));

= (input_wip(13) xor input_fcs(17));

= (input_wip(12) xor input_fcs(17));

= input_wip(11);
output_wip (10) <= input_wip(10);
output_wip (9) <= input_wip(9);
output_wip (8) <= input_wip(8);
output_wip (7) <= input_wip(7);
output_wip (6) <= (input_wip(6) xor input_fecs(17));
output_wip (5) <= (input_wip(5) xor input_fcs(16));
output_wip (4) <= (input_wip(4) xor input_fcs(16));
output_wip (3) <= (input_wip(3) xor input_fcs(17));
output_wip (2) <= (input_wip(2) xor input_fcs(16));
output_wip (1) <= input_wip(1);
output_wip (0) <= input_wip(0);

end process p_gf_xor_8x;

HWAAAAAANAANAANAANAANAANAANAANANANANAANAANAANANANNA

end behavior;

library IEEE;
use JEEE.std_logic_1164.all;

A.2 VHDL code

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

use work.all;
entity gf_xor_9x
port (

input_wip
input_£fcs

output_wip :

end gf_ xor_9x;

is

: in
: in
out

architecture behavior of gf_xor_9x

begin

-- behavior

p_gf_xor_9x: process (input_fcs,

begin

output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip
output_wip

end process p_gf_xor_9x;

end behavior;

-- process p_gf_xor_9x

(31)
(30)
(29)
(28)
(27)
(26)
(25)
(24)
(23)
(22)
(21)
(20)
(19)
(18)
(17)
(16)
(15)
(14)
(13)
(12)
(11)
(10)
(9)
(8)
(N
(6)
(5)
(4)
(3)
(2)
(1)
(0)

HWAAAAANAANAANAANAANAANAANAANAANANANANANAANANAANANNA

is

input_wip)

= input_wip(31);
input_wip(30);
= input_wip(29);
= input_wip(28);
= input_wip(27);
input_wip(26) ;
input_wip(25);
= input_wip(24);
input_wip(23);
input_wip(22);
= input_wip(21);
input_wip(20) ;
input_wip(19);
= input_wip(18);
input_wip(17);
input_wip(16) ;
= input_wip(15);
input_wip(14);
input_wip(13);
= (input_wip(12)
= input_wip(11);
= input_wip(10);
input_wip(9);
= input_wip(8);
input_wip(7);
input_wip(6);
input_wip(5);
input_wip(4);
= input_wip(3);
= input_wip(2);
= input_wip(1);
input_wip(0);

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

xor input_fcs(16));

A.2 VHDL code 31

A.2.5 ¢of multiplier.vhd

File : gf _multiplier.vhd
Author : José Maria Nadal
Date : Mar, 2001

Description : Connection of the lower levels in the hierarchy
Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1ib
use
use
use
use

ent

p

rary ieee;

ieee.std_logic_1164.all;
ieee.std_logic_arith.all;
ieee.std_logic_unsigned.all;
work.all;
ity gf_multiplier is
ort (
reset : in std_logic; -- #RESET
phil : in std_logic;
phi2 : in std_logic;
input : in std_logic_vector(31 downto 0);
-- Input to the Galois Field multiplier.
-- It comes from the feedback of the FCS
output_fcs : out std_logic_vector(15 downto 0); -- LS Word
- "inout" to be able to read the signal (feedback)
output_xor : out std_logic_vector(15 downto 0)); -- MS Word

end gf_multiplier;

arc

C

hitecture structural of gf_multiplier is

- The output register is half the size of the rest

omponent gf_phil_register_out

port (
reset : in std_logic; -- #RESET
phil : in std_logic; -- Clock
input_wip : in std_logic_vector (31 downto 0);

output_final : out std_logic_vector(31 downto 0));

end component;

A.2 VHDL code 32

component gf_phil_register

port (
reset : in std_logic; -- #RESET
phil : in std_logic; -- Clock
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP

input_fcs : in std_logic_vector(31 downto 0);
-- The original data for that step. We are using pipelining
-- so we have to grant that we will have the original FCS
-- available.

output_wip : out std_logic_vector(31 downto 0);
-- The modified data -our "WIP"-

output_fcs : out std_logic_vector(31 downto 0));
-- The original data is kept untouched

end component;

component gf_phi2_register

port (
reset : in std_logic; -- #RESET
phi2 : in std_logic; -- Clock
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP

input_fcs : in std_logic_vector(31 downto 0);
-- The original data for that step. We are using pipelining
-- we have to grant that we will have the original FCS data
-- available.

output_wip : out std_logic_vector(31 downto 0);
-- The modified data -our "WIP"-

output_fcs : out std_logic_vector(31 downto 0));
-- The original data is kept untouched

end component;

-- These components below are the best example of bad VHDL coding

component gf_xor_2x
port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));
end component;

component gf_xor_3x
port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));
end component;

component gf_xor_4x
port (
input_wip : in std_logic_vector(31 downto 0);
input_fcs : in std_logic_vector(31 downto 0);
output_wip : out std_logic_vector(31 downto 0));
end component;

component gf_ xor_b5x
port (
input_wip : in std_logic_vector(31 downto 0);

A.2 VHDL code

33

input_£fcs
output_wip :
end component;

in
out

component gf_xor_6x

port (
input_wip
input_=fcs
output_wip :
end component;

in
in
out

component gf_xor_7x

port (
input_wip
input_fcs
output_wip :
end component;

in
in
out

component gf_xor_8x

port (
input_wip
input_=fcs
output_wip :
end component;

in
in
out

component gf_xor_9x

port (
input_wip
input_£fcs
output_wip :
end component;

in
in
out

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

-- The XOR right after the input is smaller
component gf_xor_input

port (
input_fcs
output_wip :

end component;

-- We now declare all the signals needed to comunicate the

in
out

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0));

-- different components

btw2_3
btw3_4
btw4_5
btwb_6
btw6_7
btw7_8
btw8_9
btw9_10

signal
signal
signal
signal
signal
signal
signal
signal

btwlx_2
btw2_2x
btw2x_3
btw3_3x
btw3x_4
btwéd_4x
btwédx_5

signal
signal
signal
signal
signal
signal
signal

downto 0); --

std_logic_vector(31
std_logic_vector(31
std_logic_vector(31
std_logic_vector(31
std_logic_vector(31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31

: std_logic_vector(31
: std_logic_vector(31
: std_logic_vector(31
: std_logic_vector(31
: std_logic_vector(31
: std_logic_vector(31
: std_logic_vector(31

downto
downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto
downto

0);
0;
0;
0;
0);
0);
0);

0);
0);
0;
0;
0;
0;
0

Original
Original
Original
Original
Original
Original
Original
Original

WIP
WIP
WIP
WIP
WIP
WIP
WIP

data
data
data
data
data
data
data

data
data
data
data
data
data
data
data

A.2 VHDL code 34

signal btwb_56x : std_logic_vector(31 downto 0); -- WIP data
signal btwbx_6 : std_logic_vector(31 downto 0); -- WIP data
signal btw6_6x : std_logic_vector(31 downto 0); -- WIP data
signal btw6x_7 : std_logic_vector(31 downto 0); -- WIP data
signal btw7_7x : std_logic_vector(31 downto 0); -- WIP data
signal btw7x_8 : std_logic_vector(31 downto 0); -- WIP data
signal btw8_8x : std_logic_vector(31 downto 0); -- WIP data
signal btw8x_9 : std_logic_vector(31 downto 0); -- WIP data
signal btw9_9x : std_logic_vector(31 downto 0); -- WIP data
signal btw9x_10 : std_logic_vector(31 downto 0); -- WIP data
begin -- structural

GF1x : gf_xor_input port map (input_fcs => input, output_wip => btwilx_2);

GF2 : gf_phil register port map (reset => reset, phil => phil,
input_wip => btwlx_2, input_fcs => input,
output_wip => btw2_2x, output_fcs => btw2_3);

GF2x : gf_xor_2x port map (input_wip => btw2_2x, input_fcs => btw2_3,
output_wip => btw2x_3);
GF3 : gf_phi2_register port map (reset => reset, phi2 => phi2,
input_wip => btw2x_3, input_fcs => btw2_3,
output_wip => btw3_3x, output_fcs => btw3_4);

GF3x : gf_xor_3x port map (input_wip => btw3_3x, input_fcs => btw3_4,
output_wip => btw3x_4);
GF4 : gf_phil register port map (reset => reset, phil => phil,
input_wip => btw3x_4, input_fcs => btw3_4,
output_wip => btwé4_4x, output_fcs => btw4_5);

GF4x : gf_xor_4x port map (input_wip => btw4_4x, input_fcs => btwd_5,
output_wip => btwédx_5);
GF5 : gf_phi2_register port map (reset => reset, phi2 => phi2,
input_wip => btw4x_5, input_fcs => btw4_5,
output_wip => btwb_b5x, output_fcs => btwb_6);

GF5x : gf_xor_bx port map (input_wip => btwb_bx, input_fcs => btwb_6,
output_wip => btwbx_6);
GF6 : gf_phil register port map (reset => reset, phil => phil,
input_wip => btwbx_6, input_fcs => btwb_6,
output_wip => btw6_6x, output_fcs => btw6_7);

GF6x : gf_xor_6x port map (input_wip => btw6_6x, input_fcs => btw6_7,
output_wip => btw6x_7);
GF7 : gf_phi2_register port map (reset => reset, phi2 => phi2,
input_wip => btw6x_7, input_fcs => btw6_7,
output_wip => btw7_7x, output_fcs => btw7_8);

GF7x : gf_xor_7x port map (input_wip => btw7_7x, input_fcs => btw7_8,
output_wip => btw7x_8);
GF8 : gf_phil_register port map (reset => reset, phil => phil,
input_wip => btw7x_8, input_fcs => btw7_8,
output_wip => btw8_8x, output_fcs => btw8_9);

GF8x : gf_xor_8x port map (input_wip => btw8_8x, input_fcs => btw8_9,
output_wip => btw8x_9);
GF9 : gf_phi2_register port map (reset => reset, phi2 => phi2,

A.2 VHDL code 35

input_wip => btw8x_9, input_fcs => btw8_9,
output_wip => btw9_9x, output_fcs => btw9_10);

GF9x : gf_xor_9x port map (input_wip => btw9_9x, input_fcs => btw9_10,
output_wip => btw9x_10);
GF10 : gf_phil_register_out port map (reset => reset, phil => phil,
input_wip => btw9x_10,
output_final (15 downto 0) => output_xor,
output_final (31 downto 16) => output_fcs);

end structural;

configuration cfg_gf multiplier of gf multiplier is

for structural

for GF1x : gf_xor_input use entity work.gf_xor_input(behavior); end for;
for GF2 : gf_phil_register

use entity work.gf_phil_register(behavior); end for;
for GF2x : gf_xor_2x

use entity work.gf_xor_2x(behavior); end for;
for GF3 : gf_phi2_register

use entity work.gf_phi2_register(behavior); end for;
for GF3x : gf_xor_3x

use entity work.gf_xor_3x(behavior); end for;
for GF4 : gf_phil_register

use entity work.gf_phil register(behavior); end for;
for GF4x : gf_xor_4x

use entity work.gf_xor_4x(behavior); end for;
for GF5 : gf_phi2_register

use entity work.gf_phiZ_register(behavior); end for;
for GFbx : gf_xor_bx

use entity work.gf_xor_bx(behavior); end for;
for GF6 : gf_phil _register

use entity work.gf_phil_register(behavior); end for;
for GF6x : gf_xor_6x

use entity work.gf_xor_6x(behavior); end for;
for GF7 : gf_phi2 register

use entity work.gf_phi2 register(behavior); end for;
for GF7x : gf_xor_7x

use entity work.gf_xor_7x(behavior); end for;
for GF8 : gf_phil_register

use entity work.gf_phil_register(behavior); end for;
for GF8x : gf_xor_8x

use entity work.gf_xor_8x(behavior); end for;
for GF9 : gf_phi2_register

use entity work.gf_phi2_register(behavior); end for;
for GF9x : gf_xor_9x

use entity work.gf_xor_9x(behavior); end for;
for GF10 : gf_phil_register_out

use entity work.gf_phil_register_out(behavior); end for;

end for;

end cfg_gf _multiplier;

A.2 VHDL code 36

A.2.6 big_xorvhd

-- File : big_xor.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Defines the output stage
-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity big_xor is

port (
reset : in std_logic;
-- This reset is more a "set" to the initial FCS value
phi2 : in std_logic;
input_input : in std_logic_vector (15 downto 0);
fcs_input : in std_logic_vector(15 downto 0); -- LS Word
gf_input : in std_logic_vector(15 downto 0); -- MS Word
output : out std_logic_vector(31 downto 0));

end big_xor ;
architecture behavior of big_xor is

signal output_xor : std_logic_vector (15 downto 0);
-- Intermediate signal between the XOR and the FCS register

begin -- behavior

-- purpose: This is the final part of the generator. The input and the
-- output from the multiplier are XOR-ed in order to obtain the final value.
-- type : sequential
-- inputs : phi2, reset, input_input, fcs_input, gf_input
-- outputs: output
p_big_xor_register: process (phi2, reset)
begin -- process p_big_xor_register
if reset = ’0’ then -- asynchronous reset (active low)
output <= X"46AF6449";

A.2 VHDL code

37

elsif phi2’event and phi2 = ’1’ then -- rising clock edge
output (15 downto Q) <= output_xor (15 downto 0);
output (31 downto 16) <= fcs_input(15 downto 0);

end if;

end process p_big_xor_register;

p_big_xor_combinational: process (gf_input, input_input)
begin -- process p_big_xor_combinational

output_xor <= gf_input xor input_input;
end process p_big_xor_combinational;

end behavior;

A.2.7 crc_top.vhd

-- File : CRC_top.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Top level file

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is
-- modify it under
-- as published by
-- of the License,

-- This program is
-- but WITHOUT ANY
-- MERCHANTABILITY

free software; you can redistribute it and/or
the terms of the GNU General Public License
the Free Software Foundation; either version 2
or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
or FITNESS FOR A PARTICULAR PURPOSE. See the

-- GNU General Public License for more details.

-- You should have
-- along with this

-- Foundation, Inc.

received a copy of the GNU General Public License
program; if not, write to the Free Software
, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;

use IEEE.std_logic_1164.all;
entity CRC_top is
port (
phil : in std_logic;
-- We will use the two phase discipline
-- which we don’t generate.
phi2 : in std_logic;
reset : in std_logic; -- #RESET
input : in std_logic_vector (15 downto 0);

-- The serial/parallel conversion has
-- been made somewhere else

fcs_out : out std_logic_vector(31 downto 0));
-- "inout" because we have to read this value (feedback to the multiplier)

end CRC_top;

A.2 VHDL code 38

architecture structural of CRC_top is

component input_wait

port (
reset : in std_logic;
phil : in std_logic;
phi2 : in std_logic;

input : in std_logic_vector(15 downto 0);
output : out std_logic_vector(15 downto 0));
end component;

component gf_multiplier

port (
reset : in std_logic;
phil : in std_logic;
phi2 : in std_logic;
input : in std_logic_vector(31 downto 0);
output_fcs : out std_logic_vector(15 downto 0); -- LS Word
-- "inout" since we have to read this value (feedback)
output_xor : out std_logic_vector(15 downto 0)); -- MS Word

end component;

component big_xor

port (
reset : in std_logic;
phi2 : in std_logic;
input_input : in std_logic_vector(15 downto 0);
fcs_input : in std_logic_vector (15 downto 0);
gf_input : in std_logic_vector (15 downto 0);
output : out std_logic_vector(31 downto 0));

end component;

component ff_reset is

port (
phi2 : in std_logic;
reset_glitch : in std_logic;
reset_clean : out std_logic);

end component;

signal wait_intermediate : std_logic_vector(15 downto 0);
-- Connects the input_wait component with the big_xor one
signal fcs_intermediate : std_logic_vector(15 downto 0);
-- Connects the multiplier with the output register
signal xor_intermediate : std_logic_vector(15 downto 0);
-- Connects the multiplier with the final XOR

signal fcs_out_read : std_logic_vector (31 downto 0);

-- This signal will avoid the use of "inout" ports

signal reset_intermediate : std_logic;

-- Clean reset to feed the whole circuit

begin

ff_reset_1 : ff_reset port map (phi2 => phi2, reset_glitch => reset,
reset_clean => reset_intermediate);

input_wait_1 : input_wait port map (reset => reset_intermediate, phil => phil,

A.2 VHDL code 39

phi2 => phi2, input => input,
output => wait_intermediate);

gf_multiplier_1 : gf_multiplier port map (reset => reset_intermediate,
phil => phil, phi2=> phi2,
input => fcs_out_read,
output_xor => xor_intermediate,
output_fcs => fcs_intermediate);

big_xor_1 : big_xor port map (reset => reset_intermediate, phi2 => phi2,
input_input => wait_intermediate,
fcs_input => fcs_intermediate,
gf_input => xor_intermediate,
output => fcs_out_read);

fcs_out <= fcs_out_read;
end structural;
configuration cfg_CRC_top_structural of CRC_top is

for structural
for input_wait_1 : input_wait use entity work.input_wait(structural);
end for;
for gf _multiplier_1 : gf _multiplier use entity work.gf_multiplier(structural);
end for;
for big_xor_1 : big_xor use entity work.big_xor(behavior); end for;
for ff_reset_1 : ff_reset use entity work.ff_reset(behavior); end for;
end for;

end cfg_CRC_top_structural;

A.2.8 Test bench: input_wait_tb.vhd

-- File : input_wait_tb.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Test bench file for input_wait.vhd
-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

A.2 VHDL code

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

-- synopsys synthesis on

library STD;

use STD.TEXTIO.all;

-- synopsys synthesis off

entity input_wait_tb is end input_wait_tb;

architecture structural of input_wait_tb is

component input_wait

port (
phil : in std_logic;
phi2 : in std_logic;
reset : in std_logic;
input : in std_logic_vector (15 downto 0);

output : out std_logic_vector (15 downto 0));
end component;

signal phil, phi2, reset : std_logic;
signal input : std_logic_vector(15 downto 0);
signal output : std_logic_vector(15 downto 0);

-- We also specify the files used to get the data and to put the data back
file file_read : text is in "/var/tmp/data/data_input_in.dat";
file file_out : text is out "/var/tmp/data/data_input_out.dat";

begin -- structural

-- Important: These parameters have been calculated for a 500MHz
-- relative clock -2 ns per stage-
p_phil: process
begin -- process p_phil
phil <= ’1?, 70’ after 2.1 ns;
wait for 4.2 ns;
end process p_phil;

p_phi2: process

begin -- process p_phi2
phi2 <= 1, 70’ after 0.3 ns, ’1’ after 1.8 mns;
wait for 4.2 ns;

end process p_phi2;

p_reset: process

begin -- process p_reset
reset <= 0’ after 10 ns, ’1’ after 30 ns;
wait;

end process p_reset;

p_input: process (phil)
variable input_file : bit_vector(15 downto 0);
variable line : line;

A.2 VHDL code

begin -- process p_input
if phil’event and phil=’1’ then
if (not (endfile(file_read))) then
readline (file_read, line);
read(line, input_file);
input <= To_StdLogicVector(input_file);
end if;
end if;
end process p_input;

p_output: process (phil)
variable output_file : bit_vector(15 downto 0);
variable line : line;
begin -- process p_output
if phil’event and phil = ’1’ then -- rising clock edge
output_file:=To_BitVector (output) ;
write(line,output_file);
writeline(file_out,line);
end if;
end process p_output;

input_wait_1 : input_wait port map (phil => phil, phi2 => phi2,
reset => reset, input => input,
output => output);
end structural;
configuration cfg_input_wait_structural of input_wait_tb is
for structural
for input_wait_1: input_wait use entity work.input_wait(structural);
end for;

end for;

end cfg_input_wait_structural;

A.2.9 Test bench: gf_multiplier_tb.vhd

-- File : gf_multiplier_tb.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Test bench file for gf_multiplier.vhd
-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License

A.2 VHDL code 42

-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

-- synopsys synthesis on

library STD;

use STD.TEXTIO.all;

-- synopsys synthesis off

entity gf_multiplier_tb is end gf _multiplier_tb;

architecture structural of gf multiplier_tb is

component gf_multiplier

port (
phil : in std_logic;
phi2 : in std_logic;
reset : in std_logic;
input : in std_logic_vector(31 downto 0);

output_fcs : inout std_logic_vector(15 downto 0);
output_xor : out std_logic_vector(15 downto 0));
end component;

signal phil, phi2, reset : std_logic;

signal input : std_logic_vector(31 downto 0);
signal output_fcs : std_logic_vector(15 downto 0);
signal output_xor : std_logic_vector(15 downto 0);

-- We also specify the files used to get the data and to put the data back

file file_read : text is in "/var/tmp/data/data_multiplier_input.dat";
file file_out_fcs : text is out "/var/tmp/data/data_multiplier_fcs_out.dat";
file file_out_xor : text is out "/var/tmp/data/data_multiplier_xor_out.dat";
begin -- structural

-- Important: These parameters have been calculated for a 500MHz
-- relative clock -2 ns per stage-
p_phil: process
begin -- process p_phil
phil <= ?1’, 70’ after 2.1 ns;
wait for 4.2 ns;
end process p_phil;

p_phi2: process

begin -- process p_phi2
phi2 <= ’1?, 70’ after 0.3 ns, ’1’ after 1.8 ns;
wait for 4.2 ns;

end process p_phi2;

p_reset: process
begin -- process p_reset
reset <= ’0’ after 10 ns, ’1’ after 30 ns;

A.2 VHDL code 43

wait;
end process p_reset;

p_input: process (phi2)
variable input_file : bit_vector(31 downto 0);
variable line : line;
begin -- process p_input
if phi2’event and phi2=’1’ then
if (not (endfile(file_read))) then
readline (file_read, line);
read(line, input_file);
input <= To_StdLogicVector(input_file);
end if;
end if;
end process p_input;

p_output: process (phil)
variable output_file_fcs : bit_vector (15 downto 0);
variable output_file_xor : bit_vector(15 downto 0);
variable line_fcs : line;
variable line_xor : line;
begin -- process p_output
if phil’event and phil = ’1’ then -- rising clock edge
output_file_fcs:=To_BitVector (output_fcs);
write(line_fcs,output_file_fcs);
writeline(file_out_fcs,line_fcs);

output_file_xor:=To_BitVector (output_xor) ;
write(line_xor,output_file_xor);
writeline(file_out_xor,line_xor);
end if;
end process p_output;

gf_multiplier_1 : gf_multiplier port map (phil => phil, phi2 => phi2,
reset => reset, input => input,
output_fcs => output_fcs,
output_xor => output_xor);
end structural;
configuration cfg_gf multiplier_tb_structural of gf _multiplier_tb is
for structural
for gf _multiplier_1: gf multiplier use entity work.gf multiplier(structural);
end for;

end for;

end cfg_gf_multiplier_tb_structural;

A.2.10 Test bench: big_xor_tb.vhd

-- File : big_xor_tb.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Test bench file for big_xor.vhd

A.2 VHDL code 44

-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

-- synopsys synthesis on

library STD;

use STD.TEXTIO.all;

-- synopsys synthesis off

entity big_xor_tb is end big_xor_tb;

architecture structural of big_xor_tb is

component big_xor

port (
phi2 : in std_logic;
reset : in std_logic;
input_input : in std_logic_vector (15 downto 0);
fcs_input : in std_logic_vector (15 downto 0);
gf_input : in std_logic_vector (15 downto 0);
output : out std_logic_vector(31 downto 0));

end component;

signal phi2, reset : std_logic;
signal input_input : std_logic_vector (15 downto 0);

signal fcs_input : std_logic_vector(15 downto 0);
signal gf_input : std_logic_vector(15 downto 0);
signal output : std_logic_vector(31 downto 0);
signal phiil : std_logic;

-- Necessary to be able to run the process that generates phil

-- We also specify the files used to get the data and to put the data back
file file_read_input : text is in "/var/tmp/data/data_xor_input.dat";

file file_read_fcs : text is in "/var/tmp/data/data_xor_fcs.dat";
file file_read_gf : text is in "/var/tmp/data/data_xor_gf.dat";
file file_out : text is out "/var/tmp/data/data_xor_out.dat";

begin -- structural

A.2 VHDL code 45

-- Important: These parameters have been calculated for a 500MHz
-- relative clock -2 ns per stage-
p_phil: process
begin -- process p_phil
phil <= ?1’, ’0’ after 2.1 ns;
wait for 4.2 ns;
end process p_phil;

p_phi2: process

begin -- process p_phi2
phi2 <= 1, ’0’ after 0.3 ns, ’1’ after 1.8 ns;
wait for 4.2 ns;

end process p_phi2;

p_reset: process

begin -- process p_reset
reset <= ’0’ after 10 ns, ’1’ after 30 ns;
wait;

end process p_reset;

p_input: process (phil)
variable line_input : line;
variable line_fcs : line;
variable line_gf : line;
variable file_input : bit_vector (15 downto 0);
variable file_fcs : bit_vector(15 downto 0);
variable file_gf : bit_vector (15 downto 0);
begin -- process p_input
if phil’event and phil=’1’ then
-- We just verify the end of a file (the files will be done of the same length)
if (not (endfile(file_read_input))) then
readline (file_read_input, line_input);
read(line_input, file_input);
input_input <= To_StdLogicVector(file_input);

readline (file_read_fcs, line_fcs);
read(line_fcs, file_fcs);
fcs_input <= To_StdLogicVector(file_fcs);

readline (file_read_gf, line_gf);
read(line_gf, file_gf);
gf_input <= To_StdLogicVector(file_gf);
end if;
end if;
end process p_input;

p_output: process (phi2)
variable output_file : bit_vector(31 downto 0);
variable line : line;
begin -- process p_output
if phi2’event and phi2 = ’1’ then -- rising clock edge
output_file:=To_BitVector (output) ;
write(line,output_file);
writeline(file_out,line);
end if;
end process p_output;

A.2 VHDL code 46

big_xor_1 : big_xor port map (phi2 => phi2, reset => reset, gf_input => gf_input,
input_input => input_input, fcs_input => fcs_input,
output => output);
end structural;
configuration cfg_big_xor_structural of big_xor_tb is
for structural
for big_xor_1: big_xor use entity work.big_xor(behavior); end for;

end for;

end cfg_big_xor_structural;

A.2.11 Test bench: CRC_top_tb.vhd

-- File : CRC_top_tb.vhd
-- Author : José Maria Nadal
-- Date : Mar, 2001

-- Description : Test bench file for CRC_top.vhd
-- Copyright (C) 2001 José Maria Nadal <chema@scouts-es.org>

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License

-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

-- synopsys synthesis on
library STD;

use STD.TEXTIO.all;

-- synopsys synthesis off

entity CRC_top_tb is end CRC_top_tb;
architecture structural of CRC_top_tb is
component CRC_top

port (

phil : in std_logic;
phi2 : in std_logic;

A.2 VHDL code 47
reset : in std_logic;
input : in std_logic_vector(15 downto 0);

fcs_out : out std_logic_vector(31 downto 0));
end component;

signal phil, phi2, reset : std_logic;
signal input : std_logic_vector(15 downto 0);
signal fcs_out : std_logic_vector(31 downto 0);

-- We also specify the files used to get the data and to put the data back
file file_read : text is in "/var/tmp/data/data_in.dat";
file file_out : text is out "/var/tmp/data/data_out.dat";

begin -- structural

-- Important: These parameters have been calculated for a 500MHz
-- relative clock -2 ns per stage-
p-phil: process
begin -- process p_phil
phil <= ?1?, 70’ after 2.1 ns;
wait for 4.2 ns;
end process p_phil;

p_phi2: process

begin -- process p_phi2
phi2 <= 1, 70’ after 0.3 ns, ’1’ after 1.8 mns;
wait for 4.2 ns;

end process p_phi2;

p_reset: process

begin -- process p_reset
reset <= ’0’ after 10 ns, ’1’ after 30 ns;
wait;

end process p_reset;

p_input: process (phil)
variable input_file : bit_vector(15 downto 0);
variable line : line;
begin -- process p_input
if phil’event and phil=’1’ then
if (not (endfile(file_read))) then
readline (file_read, line);
read(line, input_file);
input <= To_StdLogicVector(input_file);
end if;
end if;
end process p_input;

p_output: process (phi2)
variable output_file : bit_vector(31 downto 0);
variable line : line;
begin -- process p_output
if phi2’event and phi2 = ’1’ then -- rising clock edge
output_file:=To_BitVector (fcs_out);
write(line,output_file);
writeline(file_out,line);

A.2 VHDL code 48

end if;
end process p_output;

CRC_1 : CRC_top port map (phil => phil, phi2 => phi2, reset => reset,
input => input, fcs_out => fcs_out);

end structural;
configuration cfg_CRC_top_tb_structural of CRC_top_tb is
for structural
for CRC_1: CRC_top use entity work.CRC_top(structural); end for;

end for;

end cfg_CRC_top_tb_structural;

B I/0O interface

B 1/0O interface

B.1 Interfaces of the different blocks

input —~=| X input —=
1 é& 64(32) §\ 16 fcs_input
#reset — 7/ %, output #reset — \§ ?OUtpUtg of xor
— Q — 1 _
1 Q& 1
2 2
input_xor —#=
32 <
__O
#reset —| .7 32 output
—
i —=
2

input —~=|
16
tput
CRC_top - oupu
#reset —=
%é
—=
2

Figure 16: The three main blocks and their interfaces

B.2 1/0 interface of the chip

The PADs have been selected so that a maximum 1/O speed could be reached. In this way, we
will have 57 PADs:

e 51 of them will be 1/0 PADs, 16 for the data input, 3 for reset and the clock (two phases)
and other 32 for the output.

e 6 PADs will be devoted to power (1) and ground (5).

Special care has been put on the placement of the PADs. The inputs are sorrounded by DC
lines, in an attempt to minimize the coupling between the rest of the PADs and them.

When it comes to the choice of the PADs, we have to say that it is remarkable the fact that
be will use analog PADs for the inputs, since they can reach much better performance in speed.
However, this is achieved at the cost of the reduction of protective elements and buffers, so we
will have to hadle the chip with care to avoid destruction due to static discharges.

The output PADs have been kept digital, since they just delay the output and we do need
the buffers within them to be able to measure the outputs with reasonable levels.

The PADs are named as follows:

e A PADIO0..15]: Input PADs (analog).
e B _PADIO0..31]: Output PADs (digital).
e PWR1: Input, Vdd.

B.3 Package 50

e PWR2: Input, GND.
e PWR3: Input, GND.
o |1: Input, 1.

e 12: Input, 2.

e 13: Input, reset.

e GND1: Input, GND.
¢ GND2: Input, GND.
e GND3: Input, GND.

The location of the PADs in the circuit can be seen in figure [

Q'u'o'v'v'v'v'v'v'v'v'w'w'w'w
B_PAD[11] B_PAD[27]
B_PAD[10] B_PAD[28]
o] I qilont
B_PAD[8] N B_PAD[30]
B_PAD[7] — — B_PAD[31]
B_PAD[6] — . —— PWR3
B_PAD[5] — | — ——__PWR2
B_PAD[4] /E " PWR1
B_PAD[3] — — :g
B PAD|[2

-PADIZ] LT 11
B_PAD[1] GND3
B_PADI[0] GND2
A_PAD[15] GND1
A_PAD[14] L

o N T e Y-
STIS885885083S
TIIITTITTITTIT
B Y 2 2y 2y 2y Ay Ay A A A

Figure 17: Distribution of the PADs in the chip. 1/O interface

B.3 Package

In order not to decrease much the performance of the chip we will have to choose carefully
the package of the chip. In this way, we chose a standard QFP package, which was the best
one available for this kind of purpose. However, some chips were also requested not to have
package. This way we will be able to test the chip in different conditions, from “full speed”
(with special probes in the lab and no package) to the lower speed but easier to test packaged
version.

B.3 Package

51

Inany case, if we ever planned to release this circuit as a conventional one, we would have
to choose a better packaging, for example ball grid array packages.

Figure 18: Layout of the physical chip

C License of this work

C License of this work

C.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

C.1.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibili-
ties for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

C.1.2 TERMS AND CONDITIONS..

(..FOR COPYING, DISTRIBUTION AND MODIFICATION)

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and the
output from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

C.1 GNU GENERAL PUBLIC LICENSE

53

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as part
of a whole which is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute correspond-
ing source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a

C.1 GNU GENERAL PUBLIC LICENSE

54

designated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipi-
ent automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-

C.2 GNU Free Documentation License

ing the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

C.1.3 NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

C.2 GNU Free Documentation License
Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

C.2.1 Preamble

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. 1t complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

C.2.2 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,

C.2 GNU Free Documentation License

56

refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a hamed appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup has been designed to thwart or discourage subsequent modification by readers
is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, IATEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

C.2.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

C.24 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally

C.2 GNU Free Documentation License

57

prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

C.2.5 Modifications

You may copy and distribute a Modified \Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

o Listonthe Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

o State on the Title page the name of the publisher of the Modified Version, as the publisher.
o Preserve all the copyright notices of the Document.

o Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

¢ Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

e Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

e Include an unaltered copy of this License.

o Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

e Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You

C.2 GNU Free Documentation License

58

may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

¢ Inany section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

o Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

o Do not retitle any existing section as “Endorsements” or to conflict in title with any Invari-
ant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties — for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

C.2.6 Combining Documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various origi-
nal documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

C.2.7 Collections of Documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

C.3 Future Revisions of This License

59

C.2.8 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an “aggregate”, and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate. Other-
wise they must appear on covers around the whole aggregate.

C.2.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

C.2.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

C.3 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-

sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

C.3.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (¢) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, \Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the In-
variant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

LTH, Elektrovetenskap, Lund 2002

	Introduction
	General description: the problem
	A word on Cyclic Redundancy Codes
	Special constraints

	The paper and pencil design
	The algorithm
	In-depth look at the algorithm
	Galois and friends
	Hardware constraints

	Implementation: down to the problem
	The design and its structure
	Two phase logic

	Coding ``policy''

	Measurements and testing
	VHDL code of the CRC generator
	Files dependency tree
	VHDL code
	input_registers.vhd
	input_wait.vhd
	gf_registers.vhd
	gf_xor.vhd
	gf_multiplier.vhd
	big_xor.vhd
	crc_top.vhd
	Test bench: input_wait_tb.vhd
	Test bench: gf_multiplier_tb.vhd
	Test bench: big_xor_tb.vhd
	Test bench: CRC_top_tb.vhd

	I/O interface
	Interfaces of the different blocks
	I/O interface of the chip
	Package

	License of this work
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS..
	NO WARRANTY

	GNU Free Documentation License
	Preamble
	Applicability and Definitions
	Verbatim Copying
	Copying in Quantity
	Modifications
	Combining Documents
	Collections of Documents
	Aggregation With Independent Works
	Translation
	Termination

	Future Revisions of This License
	ADDENDUM: How to use this License for your documents

