[image: image6.png]Ge ia
Fozh

==

GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering

Arish Alreja
ECE 4902: Special Problems

Real Time OFDM engine for High Speed Wireless Applications
 Project Specifications and Progress report

	Author
	Date
	Reviewed by

	Arish Alreja
	2/26/2006
	

	Arish Alreja
	5/7/2006
	

TABLE OF CONTENTS

3List of Figures

1. Introduction
4
2. Architecture
5
I.
MOD/DEMOD Engine:
5
II.
FFT/IFFT Processor Architecture:
6
III. Cyclic Prefix Insertion Extraction Engine (CPIE)
10
3. Reference
11

List of Figures

6Figure 1. OFDM Engine Architecture block diagram

Figure 2. Flow Graph for a 64 point FFT
7
Figure 3. The FFT Processor Data Path
8
Figure 4. Complex Butterfly
9
Figure 5. Butterfly Processor Data-path
9
Figure 6. Memory-Mapping scheme
10

1. Introduction

A critical part of designing a communication system is the transmission technique used. Most of the available options are trade offs between speed and reliability (channel errors). OFDM – Orthogonal Frequency Division Multiplexing, is a transmission technique, which offers both speed and reliability, but comes with the caveat of being hard to implement.

Using OFDM, data is transmitted on multiple orthogonal frequencies at the same time. This provides many advantages over competing transmission techniques, the most significant of which are

1. High spectral efficiency

2. Resistance to multi-path fading

3. Relative ease of equalization (frequency-domain equalization)

4. Combats ISI with the use of guard intervals

This project aims to implement a real time OFDM engine on an FPGA, which will serve as a building block for different high-speed wireless applications. Operation will be supported in both the transmitter and receiver configurations.

2. Architecture

The OFDM engine will have 3 basic components.

1. A MOD/DEMOD module

2. A FFT Processor

3. A Cyclic Prefix Insertion/Extraction Engine

These building blocks will be sharing a block of memory, which will hold the data read from the backend, while the OFDM engine is operating on the data. The architecture is designed to allow smooth operation in transmitter as well as receiver mode.

The following schematic is a block diagram representation of the system.

[image: image6.png]
Figure 1. OFDM Engine Architecture block diagram
We discuss each of these components mentioned above in detail

I. MOD/DEMOD Engine:

The modulation/demodulation engine will bed tasked with performing a serial to parallel conversion (writing data to memory) in transmit mode, and it will perform a parallel to serial conversion (reading data from memory) in receive mode. The input data is 32 bit, 16 bit real and 16 imaginary.

II. FFT/IFFT Processor Architecture:

The FFT processor will calculate a 64-point FFT on incoming data. For the radix 8 algorithm, the first 3 stages of the flow graph involve choosing every 8th term to yield 8 octets, and for the last 3 stages, every successive octet makes up the input the FFT processor. The following is the flow graph for the decimation in frequency algorithm.

[image: image1.emf]
Figure 2. Flow Graph for a 64 point FFT

The FFT data-path is as shown below, from the point data enters the processor module from memory, to the point where it is written back to memory. Red lines represent the control signals and their delayed versions. A ‘D’ is prefixed to represent the delayed versions of the original signal, each D signifies a clock delay. The pipeline is 4 stages long, and completes 3 stages of the FFT calculation before writing the data the data back to memory. Another point to note is that data is always written out to the memory from Register Bank 2, and it is always read to Register bank 1. The two register banks allow 2 octets to be in the pipeline at any given time. In place computations make it a simplified design. The outputs of the FFT computation are in bit-reversed order, and need to be shuffled back into normal order. The results of butterfly computations are scaled down by a factor of 2 to avoid arithmetic overflow. The 64 point FFT takes a total of 196 cycles. Clocking the processor at 40 MHz will result a latency of about 2 microseconds.

Figure 3. The FFT Processor Data Path

The FFT processor has a modular design and comprises of 3 modules.

1. Butterfly Processor

2. Address Generation Unit (AGU)

3. Micro-Coded State Machine (MCSM)

1. Butterfly Processor: The Butterfly processor’s task is to carry out the complex butterfly computation.
[image: image2.wmf]
Figure 4. Complex Butterfly

[image: image3.wmf]

[image: image4.wmf]
Where
[image: image5.wmf].

Figure 5. Butterfly Processor Data-path

To avoid using a complete digital multiplier to carry out multiplication with the twiddle factors, we used CSD (canonical signed digit multiplication, using shifts and adds). The results desired multiplication is controlled by 2 stages of multiplexing feeding into the CSD’s. The butterfly processor has two pipelined stages. The data-path of the butterfly processor is shown below.

2. Address Generation Unit (AGU): The address generation unit controls the address bus going to memory. The FFT processor reads and writes from and to the 8 dual port memory banks concurrently (each address is 3 bits). The address mapping scheme ensures that no memory location is read from and written to at the same time. There are 8 read address buses, and 8 write address buses. The computations are in place, which simplifies the address generation unit.

	Bank 0
	Bank 1
	Bank 2
	Bank 3
	Bank 4
	Bank 5
	Bank 6
	Bank 7

	0
	1
	2
	3
	4
	5
	6
	7

	15
	8
	9
	10
	11
	12
	13
	14

	22
	23
	16
	17
	18
	19
	20
	21

	29
	30
	31
	24
	25
	26
	27
	28

	36
	37
	38
	39
	32
	33
	34
	35

	43
	44
	45
	46
	47
	40
	41
	42

	50
	51
	52
	53
	54
	55
	48
	49

	57
	58
	59
	60
	61
	62
	63
	56

Figure 6. Memory-Mapping scheme

3. Micro-coded State Machine: The Micro-coded state machine stores and generates all the control signals for the FFT processor’s operation at every, its progression is controlled by the clock. A reset signal en_fft resets the state machine counter and signals the beginning of a new 64-point FFT calculation. Upon completion the FFT processor asserts a done_fft signal to communicate the completion of the 64-point FFT. The number of states is 196

To perform an Inverse Fast Fourier Transform, all we need to do is swap the real and imaginary parts.

III. Cyclic Prefix Insertion Extraction Engine (CPIE)

 In transmit mode, the CPIE Engine will insert a cyclic prefix and perform parallel to serial conversion. In receive mode, the CPIE Engine will extract the cyclic prefix and perform serial to parallel conversion. This part remains to be implemented.

3. Reference

1. Discrete Time Signal Processing, Second Ed., Oppenheim, Schafer and Buck

2. A 64 point Fourier Transform Chip for High Speed Wireless LAN applications using OFDM (Maharatna et al, 2004).

OFDM2FRONTEND

Scheduler/Memory or Bus Arbiter

Memory

MOD

/DEMOD

FFT/

IFFT

CPIE

FRONTEND2 OFDM

Backend2OFDM

OFDM2Backend

DDD_ChooseDestBank

DDD_Input Register Select

ChooseMemReg

DDD_RS2

DDD_RS1

DDD_RS2

DDD_RS1

RS2

RS1

RS2

RS1

Register Bank 2

Register Bank 1

Input Register Select

Mem Out

Mem In

Butterfly Processor

B

CSD 12

CSD10

CSD11

Wire

Reset

Clk

CSDB2

2 bit

32

32

32

32

CSD8

CSD6

CSD 4

CSD2

CSD 7

CSD 5

CSD3

(A-B)w

A+B

Wire

Carry

Look ahead

Adder

Carry

Look ahead

Adder

A

CSDB1 3 bit

2

_1082357085.unknown

_1202777676.vsd
Memory Bank #2

Memory Bank #1

Address Generation Unit (AGU)

FFT Controller

clk

reset

en_fft

Complex Butterfly Processor

cos/sin ROM

Data Path (DP)

Address Bus #1

Address Bus #2

Data Bus #1

Data Bus #2

W

A

B

D=(A+B)/2

E=(A-B)W/2

Complex Butterfly Processor

cos/sin ROM

0 1

mem1_wdata

mem2_wdata

a_sel, b_sel

res1_sel, res2_sel

0 1

twdl_addr

mem1_rdata

mem2_rdata

wr_w, wr_a, wr_b

wr_res1, wr_res2

0 1

0 1

clk

reset

x[30]

X[49]

X[05]

X[45]

X[19]

X[59]

x[05]

x[10]

x[15]

x[20]

x[25]

x[32]

x[00]

X[15]

X[31]

X[63]

X[47]

X[33]

X[17]

X[29]

x[35]

x[40]

x[45]

x[50]

x[55]

x[60]

x[16]

x[62]

x[11]

x[63]

x[61]

W0

W1

W2

W5

W4

W3

W6

W7

W8

W9

W10

W11

W12

W13

W14

W15

W16

W17

W18

W19

W20

W21

W22

W23

W24

W25

W26

W27

W28

W29

W30

W31

x[12]

x[13]

x[14]

x[01]

x[02]

x[03]

x[04]

x[06]

x[07]

x[08]

x[09]

X[61]

W0

W2

W4

W6

W8

W10

W12

W14

W16

W18

W20

W22

W24

W26

W28

W30

x[33]

x[34]

x[46]

x[47]

x[48]

x[49]

x[31]

x[36]

x[37]

x[38]

x[39]

W0

W2

W4

W6

W8

W10

W12

W14

W16

W18

W20

W22

W24

W26

W28

W30

W0

W4

W8

W12

W16

W20

W24

W28

W0

W4

W8

W12

W16

W20

W24

W28

W0

W4

W8

W12

W16

W20

W24

W28

W0

W4

W8

W12

W16

W20

W24

W28

x[17]

x[18]

x[19]

x[21]

x[22]

x[23]

x[24]

x[26]

x[27]

x[28]

x[29]

x[41]

x[42]

x[43]

x[44]

x[51]

x[52]

x[53]

x[54]

x[56]

x[57]

x[58]

x[59]

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W8

W16

W24

W0

W16

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W16

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

X[03]

X[35]

X[09]

X[41]

X[25]

X[57]

X[37]

X[21]

X[53]

X[13]

X[51]

X[11]

X[43]

X[27]

X[07]

X[39]

X[23]

X[55]

X[40]

X[20]

X[60]

X[10]

X[38]

X[30]

X[01]

X[00]

X[02]

X[52]

X[12]

X[44]

X[28]

X[32]

X[16]

X[48]

X[08]

X[24]

X[56]

X[04]

X[36]

X[62]

X[34]

X[18]

X[50]

X[42]

X[26]

X[58]

X[06]

X[22]

X[54]

X[14]

X[46]

 N =0:7

_1082357300.unknown

_1082356850.unknown

