FT816 Floating Point Accelerator

Robert Finch — rob<remove>@finitron.ca

Overview:
FT816 floating pointaccelerator consists of two ninety-six bit floating pointaccumulators
between which floating point or fixed point operations occur. Basicoperationsinclude ADD,
SUB, MUL, DIV, FIX2FLT, FLT2FIX, SWAP, NEG and ABS. The floating pointaccumulators operate
as amemory mapped device placed by default between SFEA200 and SFEA2FF. The floating
pointacceleratorcommunicates through a byte wide data portand twenty-fourbitaddress
port. Itwas intended for use primarily with smaller byte oriented cpu’s like the 65xx, 68xx series
inorder to provide them with some floating point capability.

Floating Point Representation:
The floating point representationistriple precision (3x a 32 bit float) and consists of a 16 bit
exponent, and eighty bit mantissa. Note that the representationisanon-standard one. The
mantissaisrepresented asatwocomplementnumber. The mantissa hasone binary digit before
the decimal point. The exponentis alsorepresented as a two’s complement numberbut with an
inverted sign bit.

95 80 | 79 0
SEEEEEEEEEEEEEEE | SM.MMMMMM......... MMMMMMMM

Range
Exponentrangesfrom-32768 to + 32767. The rangeisrepresented based at zero.
SEEEEEE.... Exponent
field
FFFF 32767 maximum exponent
8000 0
0000 -32768 minimum exponent

There are 79 bitsin the mantissa plusasign bit. So the range is -2279 to +2/79 (approximately
24 digits of precision). The mantissais representedintwo’s complementform.

1|Page

Operations Supported

Floating point calculations are performed by loading the floating point accumulators with values
thensettingan operation code ina command register.

Operation Opcode

ADD 1 FAC1=FAC2+ FAC1

SUB 2 FAC1=FAC2-FAC1

MUL 3 FAC1=FAC2* FAC1

DIV 4 FAC1=FAC2/FAC1

FIX2FLT 5 FAC1 = convertto float(FAC1)
FLT2FIX 6 FAC1 = convertto fixed(FAC1)
ABS 7 FAC1=ABS(FAC1)

NEG 16 FAC1=-FAC1

SWAP 17 FAC1isswapped with FAC2
FIXED_ADD 81h FAC1=FAC1+ FAC2
FIXED_SUB 82h FAC1=FAC1-FAC2
FIXED_MUL 83h FAC1=FAC1* FAC2
FIXED_DIV 84h FAC1=FAC2/FAC1
FIXED_ABS 87h FAC1=ABS(FAC1)

Afterthe opcodeissetin the command register, the operation status may be read from the
statusregister. The mostsignificant bit of the status registerindicates a busy status.

Operation
Values are transferred toand from the FACregisters using cpu load and store instructions. Once
values have beenloadedintothe FACregisters an operation may be performed by loading the
command register with one of the given operations. Before the next operation can begin the

status register must be polled to make sure that the FPU isn’t busy. If the FPU is busy and
anotheroperationis specifieditwillbe ignored.

2|Page

Registers
Registers are mappedintothe memory space of the system. The defaultis to map registers
between SFEA200 and SFEA2FF. This mappingis controllable by optionally settinga parameter
for the core.

SFEA200 FAC1 LSB of manitssa

SFEA209 FAC1 MSB of mantissa
SFEA20A FAC1 LSB of exponent
SFEA20B FAC1 MSB of exponent

SFEA20F Command / status register

SFEA210 FAC2 LSB of manitssa

SFEA219 FAC2 MSB of mantissa
SFEA21A FAC2 LSB of exponent
SFEA21B FAC2 MSB of exponent

Command Register
The command registeris write-only and shared with the status register whichisread-only. It
acceptsan eight bitcommand value. The commands supported are listed under the Operations
Supportedsection.

Status Register
The status registerlocated at SFEA20F has the following format:

[Busy | o | o | w1t | EQ | &t | zF | VF |

Busy— 1 =indicatesthatan FPU operationisin progress. 0 means the operationis complete.
LT —indicatesthat FAClislessthan FAC2

EQ - indicates thatthe FAC's are equal

GT —indicatesthat FAClis greaterthan FAC2

ZF —indicatesthat FAClis zero (typically FAC1 holds the result of an operation)

VF - indicates that overflow occurred during the operation.

3|Page

Performance

Size

The performance of the floating point unitis atleast several times what a software solution
could accomplish. Performanceis somewhat dependent on the data. Below isa sample.

FIX2FLT: 114 clock cyclesto convert 100.0 to floating point from fixed
MUL: 176 clock cyclesto multiply 100.0 * 8.0.

SUB: 33 clock cycles to subtract 100.0-8.0.

ADD: 16 clock cyclesto add 100.0+8.0

DIV: 93 clock cyclesto divide 100.0/ 8.0

Multiply works at a rate of one biteverytwo clock cycles. So it takes 160 clock cyclesto process

multiplication of the mantissa. There is also overhead for adjusting the sign of the operands and
result.

Divide works at a rate of one bit perclock cycle. It takes 80 clock cycles to process the mantissa.
Thereisalso overhead foradjustingthe signs of the operands and result.

The core is estimated to be approximately 2300 4-LUTs in size (orabout 2050 logiccells).

Clocks

The floating point unit uses asingle clock whichisalso used as the clock for bus interfacing. The
core may be clocked with arelatively high frequency clock.

4|Page

Module Ports
module FT816Float(rst, clk, vda, rw, ad, db, rdy);

Signal | In/Out | Size | Active Purpose

rst I 1 high synchronous | resetsthe core

clk I 1 positive edge clocksthe core

vda I 1 high indicates avalid dataaddressis present
rw I 1 high high for read, low forwrite cycle

ad I 24 high address bus

db I/0 8 high bi-directional databus

rdy 0O 1 high highwhen bus transferisready

For a write cycle the core performs adata transferwithin the current clock cycle and no wait-

statesare incurred.
For a read cycle there are two wait-statesinserted to allow the core to transfer datafrom

internal registers, beforeready becomes active.
IF the core is not addressed thenthe ready signal will be high allowingitto be wire-and’ed with

otherreadysignals.

Parameters
Name DefaultValue
plOAddress SFEA200 This parameter controls where inthe memory space the core
appears. The core reservesablock of 256 consecutive
addresses.
pRdyStyle 1 This parameter controls the value of the ready signal when
the core is not selected. It should be 1or 0.

5|Page

Kudoos
The core originated as a direct translation of the floating point routines written in 6502
assemblercode presentedin Dr. Dobb's Journal, August 1976, pages 17-19. It has since been

extendedto higherprecision and optimized for better performance. It bears little resemblance
to the original code.

Floating Point Routines for the 6502
by Roy Rankin, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305
(415) 497-1822
and
Steve Wozniak, Apple Computer Company
770 Welch Road, Suite 154

Palo Alto, CA 94304
(415) 326-4248

6|Page

