
FACULTY OF COMPUTING AND ELECTRICAL ENGINEERING

DEPARTMENT OF COMPUTER SYSTEMS

Heterogenerous IP Block

Interconnection (HIBI)

version 3

Reference Manual

Author:

Erno Salminen,

Timo Hämäläinen

Updated:

15th November 2011

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Contents

1 Introduction 5

1.1 Main points . 5

1.2 Versions . 6

2 HIBI topology 7

2.1 Example of hierarchical topology . 7

2.2 Switching . 8

3 Data transfer operations 8

3.1 HIBI Basic Transaction Motivation 10

4 Addressing 11

4.1 HIBI destination addresses and channels 12

4.2 Implementing flow control . 13

4.3 Example: Overlapping and breaking transfers 13

5 Wrapper structure 14

5.1 Bus-side signals . 15

5.2 IP-side signals . 16

5.3 Variants of IP interface . 17

5.4 Signal naming in VHDL . 18

5.5 Cycle-accurate timing . 19

6 Arbitration 22

6.1 Detailed timing example . 23

6.2 Performance implications . 24

7 Commands 25

8 Buffering and signaling 25

9 Configuration 27

9.1 Generic parameters in VHDL . 27

9.2 Clocking . 29

9.3 Runtime reconfiguration . 29

10 Performance and resource usage 31

10.1 HIBI wrapper structure . 31

10.2 Resource usage . 31

10.3 Simulated performance . 32

1 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

11 Usage examples 33

11.1 Transmission with dual-port memory buffer and DMA controller . . . 33

11.2 Reception with dual-port memory buffer and DMA controller 33

11.3 Example: use source specific addresses 36

11.4 SW interface to DMA . 36

12 Summary 37

2 TUT

List of Figures

1 Conceptual structure of system-on-chip 5

2 Example of a hierarchical HIBI network with multiple clock domains

and bus segments . 6

3 Example of read and write operations. 9

4 Basic transactions are write and read. 9

5 Logical steps that IP does during transaction. 10

6 Relation between addresses and channels. 12

7 The transfers may get intereleaved due to arbitration. 14

8 Structure of HIBI v.2 wrapper and configuration memory 14

9 Structure of HIBI v.2 wrapper and configuration memory 16

10 The signals between IP and wrapper 17

11 There are 4 variants of IP interface. There are two selectable fea-

tures, namely separations of hi/lo-prior data and separate/multiplexed

addressing. 18

12 The naming convention of ports . 19

13 Examples of timing at IP interface. 20

14 Example FSM of an IP . 20

15 Example timing in 3 arvitration policies. 22

16 Various arbitration schemes for 8-agent single bus and uniform random

traffic. The differences become evident on highly utilized bus. 23

17 Relative performance of arbitration algorithms in MPEG-4 encoding [4] 24

18 Structure of the wrapper’s configuration memory 27

19 Example of runtime configuration 30

20 HIBI R3 wrapper block diagram . 32

21 HIBI R3 in Quartus’ chip planner tool 33

22 Performance with 1024-word transfers. 34

23 Example how CPU sends using DMA. 34

24 Example how CPU receives data usign DMA. 35

25 Example mapping between incoming address and buffer in dual-port

memory. 35

26 Example how CPU instructs the IP block where to put result data. . . 36

27 Examples of timing at IP interface. 40

List of Tables

1 The signals at bus side, i.e. between the wrappers, in v.2 and v.3 . . . 15

2 The signals at wrapper’s IP interface 17

3 The command codes in HIBI v.3 . 26

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

4 The command codes in HIBI v.2 . 26

5 Properties of HIBI v.1 and v.2. 28

6 Resource usage of wrapper R3, with 32b data, multiplxed address and

5b command. v.2 and v.3 . 32

7 The SW macros for accessing the DMA controller’s registers 37

8 The SW functions for using the DMA 38

9 Properties of HIBI v.3 . 39

4 TUT

1 Introduction

This data sheet presents the third version of Heterogeneous IP Block Interconnection

(HIBI). HIBI is intended for integrating coarse-grain components such as intellectual

property blocks that have size of thousands of gates, see [10] for examples. Topology,

arbitration and data transfers are presented first. After that, data buffering and the struc-

ture of wrapper component are discussed. Finally, the developed runtime configuration

is presented followed by comparison to the previous version of HIBI.

HIBI is a communication network designed for System-on-Chips. It can be used

both in FPGA and ASIC designs (field-programmable gate-array, application-specific

integrated circuit). Fig. 1 shows an example SoC at conceptual level. There are many

different types of IP blocks (intellectual property), namely CPU (central processing

unit) for executing software, memories and IP blocks that are either fixed function

accelerators or interfaces to external components. All these are connected using an

on-chip network.

1.1 Main points

The major design choices for HIBI were

• IP-block granularity for functional units

• Application independent interface to allow re-use of processors and IP-blocks

• Communication and computation separated

• Communication network used in all transfers, no ad-hoc wires between IPs

• support local clock domains for IP granularity

A parameterizable HW component, called HIBI wrapper, is used to construct mod-

ular, hierarchical bus structures with distributed arbitration and multiple clock domains

IP-BLOCKCPU

MEMORY

Wrapper

Wrapper Wrapper

CPU

Wrapper

IP-block MEMORY

Wrapper Wrapper

On-Chip network

Figure 1: Conceptual structure of system-on-chip

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Clock Clock domainsdomains

HIBI

Wrapper

IP BLOCK

HIBI

Wrapper

IP BLOCK IP

HIBI

Wrapper

HIBI

Wrapper

HIBI

Wrapper

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI

Wrapper

HIBI

Wrapper

IP

HIBI
Wrapper

IP

HIBI

Wrapper

HIBI

Wrapper

IP

HIBI

Wrapper

IP

HIBI
Wrapper

IP

HIBI
Wrapper

IPIP

HIBI
Wrapper

H
IB

I

W
ra

p
p

e
r

H
IB

I

W
ra

p
p

e
r

B
ri

d
g

e

Seg A Seg B
Seg C

Seg D

Figure 2: Example of a hierarchical HIBI network with multiple clock domains and

bus segments

as shown in Fig 2 (explained later in detail). This simplifies design and allows reuse

since the same wrapper can always be utilized. Configuration takes place both at syn-

thesis time (e.g. data width and buffer sizes) and on runtime (arbitration parameters).

In addition, since we are targeting also FPGAs, there are some additional con-

straints

• keep the number of wires low - to avoid exhausting routing resources

• avoid global connections - to avoid long combinatorial routing delays

• avoid 3-state wires - to simplify testing and synthesis (most FPGAs allow three-

state logic onlu in I/O pins)

1.2 Versions

The development of HIBI [5–7,9] started in 1997 in Tampere University of Technology.

Currently, there are 3 versions of HIBI, denoted as v1-v.3. However, certain basics have

remained unchanged. Hence, in the remainder the version number is omitted unless, it

is necessary.

In version 2, the biggest changes were removing tri-state logic and increasing mod-

ularity and configurability.

For version 3, address decoder logic was modified to simplify usage. Furthermore,

the tx and rx state machines were re-factored, which also necessitated minor change in

bus timing. These latter FSM changes do not affect the IP, though.

6 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

2 HIBI topology

The topology in HIBI is not fixed, but configurable by the designer. HIBI network con-

sists of wrappers, bus segments, and bridges. These are the basic building blocks from

which the whole network is constructed and configured. All wrappers in the system

are instantiated from the same parameterizable HDL (HW description language) entity

and bridges are constructed by connecting two wrappers together. If the connected

segments use different data widths, the bridges are responsible for the data width adap-

tation.

All wrappers can act both as a master and a slave. Masters can initiate transfers

and slaves can only respond. In many buses, most units operate in on mode only

and only few in both modes. In the most simple case, there is only segment and the

topology is hence single shared bus. However, HIBI network can have multiple seg-

ments which form a hierarchical bus structure. Segments are connected together using

bridges. Bridges increase latency but, on the other hand, hierarchical structure allows

multiple parallel transactions. Bridge are simply constructed from 2 wrappers.

For the IP, the wrapper offers FIFO-based (first in, first out) interface, as depicted

in Fig. In network side, all signals inside a segment are shared between wrappers

and no dedicated point-to-point signals are used. Arbitration decides which wrapper

(or bridge) controls the segment and the utilized arbitration algorithms distributed to

wrappers without any central controller.

2.1 Example of hierarchical topology

Bus performance can be scaled up by using bridges. Segments having only simple

peripheral devices can have a slow and narrow bus while the main processing parts

have higher capacity buses.

Fig. 2 depicts an irregular HIBI network. The example has a point-to-point link

(SegA), hierarchical bus (SegB and SegC), and multibus topology (SegC and SegD).

Furthermore, SegB is wider than other segments and thus offers greater bandwidth. In

the multibus configuration, each IP must decide which bus to use while sending. Note

that SegA could be implemented without wrappers since there is no need for arbitration.

The example shows four clock domains. Agents in SegA and SegB are inside one

domain and HIBI wrappers on SegC are in one domain. However, two IPs in the top

right corner use different clock than the wrappers of SegC. The IPs in the bottom right

corner and all wrappers in SegD are in one domain. The number of clock domains is

not otherwise restricted but all wrappers in one bus segment must use the same clock.

Handshaking between the clock domains is done in the IP-wrapper interface or inside

the bridge [2, 3]. This allows the construction of GALS systems. The example shows

only one bridge but HIBI does not restrict either the number of bridges or hierarchy

7 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

levels in contrast to many bus architectures.

2.2 Switching

Transfers inside a bus segment are circuit-switched and use a common clock due to

(current) implementation of the distributed arbitration. However, HIBI bridges uti-

lize switching principle that resembles packet-switching so that bus segments are not

circuit-switched together. Instead, the data is stored inside the bridge until it gets an

access to the other segment. The data is forwarded to next segment as soon as possible

like in wormhole routing. However, no guarantees are given for the minimum length of

continuous transfer. If the bridge cannot buffer all the data, the transfer is interrupted

and the source segment is free for other transfers. The interrupted wrapper will con-

tinue the transfer on its next turn. It is also possible that a bridge buffers parts from

multiple transfers.

3 Data transfer operations

In HIBI, all transfers are bursts. In practice, there is always 1 address word followed

by n data words. The max. n is wrapper-specific arbitration parameters. HIBI v2. used

multiplexed address and data lines, but HIBI v.3 allows transmitting them in parallel.

Due to multiplexed addr/data lines, it is beneficial to send many data into single ad-

dress. This is quite different from “traditional” memory accesses, with address and

data at the same time. Hence, the destination IP should keep track of received data

count, e.g. TUT’s SDRAM controller can do this to avoid excess transmitting addr +

data pairs

The transfers are pipelined with arbitration, and hence the next transfer can start

immediately when the previous ends. The protocol on the bus side is optimized so that

there no wait cycles are allowed during a transfer. This means that is sender runs out

of data or the receiver does not accept it fast enough, the transfer is interrupted. On the

next arbitration turn, the wrapper it continues automatically. Note that IP may transfer

data at pace it wishes. IP has only to ensure that there is space in TX FIFO while

writing and that RX FIFO is not empty while reading.

In order to increase bus utilization, HIBI uses so called split-transactions in read

operation. It means that single read operation is split into two phases: request and

response. The bus segment is released while the addressed IP handles the read request

and prepares its response. The other wrappers may use bus during that period and this

increases the overall performance, although a single read becomes a little slower due

additional arbitration round.

Write operation

• Includes destination address

8 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

av

cmd

data/addr

t

rq addr ret addr w dataw addr ret addr rq data ...

split transaction

w data

rd rd wrwr wr wr ...wr

Legend:

Colors denote
different IP blocks

rd =read request

rq = request

ret =return

wr= write

HIBI bus signals

Figure 3: Example of read and write operations.

HIBI wrapper

HIBI command,

des�na�on address,

[return address]

[Data]

HIBI wrapper

HIBI command,

des�na�on address,

[return address]

[Data]

Rx

FIFO

Tx

FIFO

Tx

FIFO

Rx

FIFO

Dst

addr
Data

Write

Data

Read

Return

addr

1.

Dst

addr

2. n.

1. 2.

Figure 4: Basic transactions are write and read.

• Data is sent in words (=HIBI bus width)

• Several words can follow: all will be sent to the same destination address

Read operation

• Includes exactly two words: destination address and return address (where to put

the data)

• Data is received in words

• Several words can be received (all to same return address)

– No handshaking: data is transmitted/received when bus, sender, or receiver

are available

– No acknowledgements or flow control

9 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Figure 5: Logical steps that IP does during transaction.

Figs. 3 and 4 depict the two basic transfers: sending the read request, write, and

the response to read. IP can send multiple read requests before the previous ones

have completed. It is the responsibility of the requestor to keep track which response

belongs to which request. This can be implemented with appropriate use of return

addresses. The reader does not get data any faster but the advantage is that the shared

medium is available for other agents in the middle of the transmission process and

consequently the achieved total throughput increases. In packet-switched networks the

split-transactions are commonly used and also in modern bus protocols, such as AMBA

Since there is exactly one path between each source and destination, all data is

guaranteed to arrive in-order and hence no reordering buffers are needed at the receiver.

Data can be sent with different relative priorities. High priority data, such as control

messages, bypass the normal data transfers inside the wrappers and bridges resulting

in smaller latency. This does not change the timing of bus reservations, but it selects

what is transferred first.

3.1 HIBI Basic Transaction Motivation

HIBI was motivated by streaming applications where continuous flow of data is trans-

mitted between IPs. Destinations are merely ports than random accessed memory lo-

cations. Hence, HIBI is not natively a processor memory bus but can be used for it as

well.

HIBI does not implement end-to-end flow control but the IPs must do not explicitly.

The FIFO buffers and rx and tx side may get full if the receiver does not eject data

fast enough, and this will throttle the transmitter as well. The wrappers takes care of

retransmission at the link level. (HIBI v.1 dropped data if the receiving buffer got full

but usage of v.1 is not recommended anymore).

Fig. 5 shows the steps that IP needs to take when communicating using HIBI. On

the left, IP sends data when the TX FIFO is not full. It must assign data, address valid

10 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

(strobe), command, and write enable signals at the same time. When receiving data, IP

first checks is the incoming value address or data word. This is done by examining the

address valid signal. One word is removed from the FIFO on every clock cycle when

receiver assigns read enable signal. Next, IP must check is the operation write or read.

In case of write, it stores the incoming data to location defined by the address. In case

of read, the second word denotes the return address. It is the address, where the read

data word must be transmitted.

4 Addressing

All IP-blocks have unique address and register space defined at design time and every

transfer starts with single destination address. Source identification not included in

basic transfer and hence

a) Use data payload to define source, e.g. first world in a data packet

b) Use unique address inside IP block for each source (IP knows from the destina-

tion address the sender)

Every wrappers has a set of addresses and they set with a VHDL generic (automatic

by Kactus). Wrappers may have varying address space sizes, e.g. simple UART has

only 2 addresses whereas memory has 16K addresses. Incoming Addresses go through

the receiving wrapper to the receiving IP and it can identify the incoming data by

its address. For example, the uppermost bits define which IP is addressed and the

lowermost define the register of that IP.

There are wo ways to set addresses 1. manually

2. A generator script in Kactus tool does this automatically according to system

specification

IP may write arbitrarily long bursts to wrapper. Perhaps only one address in the

beginning followed by arbitrary number of data words. Moreover, IP writes data in

arbitrary pace to wrapper. There can be any number of idle cycles between data words.

Therefore, the bursts sent by the IP do not necessarily have the same length in the bus

(between wrapper). For example, wrapper may split long IP-transfer into multiple bus

transfers if the arbitration algorithms gives ownership to another wrapper in the middle.

Each part of the transfer starts with the same address as previous. On the other hand, a

wrapper may send many short IP-transfers consecutively at one turn.

These properties have two consequences:

1. Bursts from multiple source IP will be interleaved

2. Destination may get different number of addresses than sender.

Note that the destination IP does not know the sender unless it is separately encoded

into data or address

11 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

HIBI wrapper

HIBI write/read

transfers

HIBI wrapper

HIBI read/write

transfers

Tx

FIFO

Rx

FIFO

Channel 1

Channel 2

Channel 3

IP block “IP1”

Channel 4

Channel 5

Channel 6

Channel

#

Global

address

Destina

tion IP-
block

Source

IP-
block

Meaning

1 0xA01 IP3 IP1 ”Processed data out to IP3”

2 0xB01 IP2 IP1 ”Control output to IP2”

3 0xB02 IP2 IP1 ”Status output to IPX”

4 0xC01 IP1 IP2 ”Raw data input from IP2”

5 0xC02 IP1 IP3 ”Status messages from IP3”

6 0xC03 IP1 IPX ”Control input from IPX”

Figure 6: Relation between addresses and channels.

4.1 HIBI destination addresses and channels

In HIBI v.2, all transfers are bursts, i.e. address is transmitted only in the beginning of

the transfer and it is followed by one or more data words. The maximum burst length is

wrapper-specific. HIBI uses mainly two-level addressing scheme: the upper bits of the

address identify the target terminal (e.g. destination0) whereas the lower bits define the

additional identifier. This identifier can be used either as an address to local memory,

to select the correct reception channel on DMA, to identify the source of the data, or to

select requested service. Certain packet-switched networks (at least those implemented

in this work) allow only one address per terminal. In that case, the second level address

must increase the header length.

HIBI destination addresses are

1. internal registers

2. ports (to/from IPs internal logic)

3. IPs memory locations transparent to outside

Burst transfers use channels (or ports) and IP block must perform addressing (incre-

ment) internally since all data is sent to one address. If IP’s memory is transparent, the

address seen outside includes also IP-block address (e.g. in address 0xB100, oxB000

defines the target IP and 0x100 internal memory)

HIBI transfers can be abstracted as channels at IP-block side (but not formally

specified how). Easiest way to separate channels is to use unique HIBI addresses.

It is IP/System level design issue is to give meaning to the channels. For example,

accelerator receives data from CPU0 via channel 0 and from CPU1 via channel 1 and so

on. Basic HIBI transactions are used to handle possible flow control and handshaking

12 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

in addition to transfers. Fig. 6 shows an example with 6 channels (addressing style of

HIBI v.2) .

Note that all incoming channels 4-6 have the same 4 upper bits in their addresses.

In other words, the example uses a convention that the base address of IP1 is 0xC00

and therefore its uppermost address is implcitly 0xCFF. The channels can be easily

distinguished from the lowest address bits. In HIBI v.3 the addressing defined using

two parameters: start and end address. Designer can use the same addresses as in HIBI

v.2 based systems, but this scheme allows more freedom is address definitions, which

especially beneficial in hierarchical systems

4.2 Implementing flow control

Flow control and handshaking must be implemented in IP-blocks. In practise leads to

IP-block specific methods which must be carefully specified at design time. Minimum

issues to be agreed

1. Sender identification (e.g. unique channel address ties Ip block and purpose

together)

2. Transfer size

3. Size unit in addressing(bytes/words)

4. Are byte enables utilized

5. Messages for non-posted transactions (Acknowledgements to write/read)

4.3 Example: Overlapping and breaking transfers

It was noted that the transfers may split due to arbitration. Example in Fig. 7 clarifies

the phenomenon. Let us assume that IP 1 and IP 2 send data to IP 3. We notice that

IP 1 gets the first turn in the bus its two first data words arrive to IP 3. However, after

that IP 3 gets two consecutive words from IP 2, then from IP 1 and so on. Note that

in realistic case, the arbitration happens less frequently but the example highlights the

issue.

As a conclusion

1. Data is transferred in order through FIFO

2. If tx is interrupted in bus, wrapper re-sends address and continues tx of rest of

data to destination

3. Sender tx FIFO can not be cleared once written

4. Receiver can identify to which channel data is coming based on address

13 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

hibi_wrapper

bus side

hibi_wrapper ... hibi_wrapper

IP 2 IP 3IP 1

Data 4

Data 3

Data 2

Data 1

Addr IP_3_1

Data D

Data C

Data B

Data A

Addr IP_3_2

Addr IP_3_1

Data 1

Data 2

Addr IP_3_2

Data A

Data B

Addr IP_3_1

Data 3

Data 4

Addr IP_3_2

Data C

Data D

IP writes

to
wrapper
tx FIFO

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

IP

receives
data from
its

wrapper
rx FIFO

1.

2.

3.

4.

5.

Source

specific
address
for IP 3

Source Target

Figure 7: The transfers may get intereleaved due to arbitration.

Configura�on

memory

bus signals out bus signals in

IP’s tx signals IP’s rx signals

Tx state machine

Message

tx FIFO

(high priority)

tx FIFO

(normal

priority)

Message

rx FIFO

(high priority)

rx FIFO

(normal

priority)

Mux Demux

Address

decoderRx state machine

High prior

data is

op�onal

Figure 8: Structure of HIBI v.2 wrapper and configuration memory

5 Wrapper structure

HIBI network is constructed using parameterizable builgin blocks called wrappers. The

wrappers take care of arbitration, link-level transmission, data buffering, and optional

clock-domain crossing. All signals on both sides of the wrapper are unidirectional. For

example, there are separate multibit signals data_in and data_out. Let us first consider

the bus side, i.e. the signals between wrappers.

The structure of the HIBI v.2 wrapper is depicted in Fig 8. The modular wrapper

structure can be tuned to better meet the application requirements by using different

versions of the internal units or leaving out properties that are not needed in a particular

application.

On IP side, there can be separate interfaces for every data priority or they can be

multiplexed into one interface. Furthermore, the power control signals can be routed

out of the wrapper if the IP block can utilize them.

The main parts are buffers for transferring and receiving data and the corresponding

controllers. The transfer controller takes care of distributed arbitration. The configu-

ration memory stores the arbitration parameters. Relative data priority is implemented

by adding extra FIFOs. A (de)multiplexer is placed between the FIFOs and the cor-

14 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 1: The signals at bus side, i.e. between the wrappers, in v.2 and v.3

Signal Width Dir. Meaning

data generic i+o Data and address are multiplexed into single set of wires

av 1 i+o Address valid. Notifies when address is transmitted

cmd 3 i+o Command: read or write, data or conficuration etc.

full 1 i+o Target wrapper is full and acannot accept the data. Current transfer will be repeated later

lock 1 i+o Bus is reserved

responding controller so that the controller operates only on a single FIFO interface.

The separate (de)multiplexer allows adding FIFOs to support priorities in excess of

two without changing the control. Currently, transmit multiplexer uses pre-emptive

scheduling.

HIBI v.2 has multiplexed address and data lines whereas HIBI v.1 uses separate

address and data lines. Multiplexing decreases implementation area because signal

lines are removed and less buffering capacity is needed for the addresses. This causes

overhead in control logic but that is less than the saving in buffering. Having fewer

wires allows wider spacing between wires and hence lower coupling capacitance. On

the other hand, the saved wiring area can be used for wider data transfers to increase the

available bandwidth. The HIBI protocol does not require any specific control signals,

but message-passing is utilized when needed. HIBI v.1 assumes strictly non-blocking

transfers and omits handshake signals to minimize transfer latency but one handshake

signal Full was added to HIBI v.2 to avoid FIFO overflow at the receiver. As a result,

blocking models of computation can be used in system design and, in addition, the

depths of FIFOs can be considerably smaller than in HIBI v.1.

5.1 Bus-side signals

All outputs from wrappers are “ORed” together and OR-gates’ outputs are connected

to all wrappers’ inputs. This scheme avoids the tri-state logic that was used in HIBI

v.1. Table 1 lists the bus side signals and Fig. 9 illustrates the connection between

wrapper and OR-gates. The cycle-accurate bus timing is omitted from this used guide

for brevity. All bus side outputs come directly from register except the handshaking

signal full.

The number of data bits can be freely chosen. This is beneficial, for example, when

error correcting or detecting codes are added to data and the resulting total data width

is not equal to any power of two. Active master asserts Lock signal when it reserves the

bus. Handshaking is done with the Full signal. When Full is asserted, the data word

15 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Figure 9: Structure of HIBI v.2 wrapper and configuration memory

on the bus must be retransmitted by the wrapper. To improve modularity, all signals

are shared by all wrappers within a segment and no point-to-point signaling is required.

Consequently, the interface of a wrapper does not depend on the number of agents and

the wrapper can be reused more easily. An OR network was selected for bus signal

resolution.

The HIBI implementation pays special attention on minimizing the transfer latency

by removing empty cycles from the arbitration process by pipelining. Empty cycles are

here defined as cycles when at least one wrapper has data to send but the bus segment

is not reserved. An optimized protocol allows lower frequency, and hence lower power,

for certain performance level than inefficient protocol. Empty cycles appear also when

bus utilization is low as distributed round-robin arbitration takes one cycle per agent.

If only one agent is transmitting, it has to wait a whole round-robin cycle between

transfers. In such cases, the priority-based arbitration is useful.

5.2 IP-side signals

The signals at IP interface are mostly the same signals as in the bus side. Interface

signals are connected to FIFO buffers inside the wrapper and all output signals of the

wrapper come from registers.

Most signals are driven by both IP and wrapper

• Command

• Address / Address valid

• Data

– May have high (message) and low (data) priotities (depends on wrapper

type)

– Priority is defined by transmissting IP-block (source)

16 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

IP (= agent) HIBI wrapper

Data (/ addr)

address valid

write enable

full

Data (/addr)

address valid

read enable

empty

Tx signals: IP

sends data

to network

Rx signals: IP

receives data

from

network

bus

n

n

3 cmd

n (addr)

3cmd

n(addr)

Op onal,

see

wrapper

types

Figure 10: The signals between IP and wrapper

Table 2: The signals at wrapper’s IP interface

Signal Width Dir. Meaning

rst_n 1 i Active low reset

clk 1 i Clock, active on rising edge. Same for all wrappers inside one segment

data generic i+o Data and address are multiplexed into single set of wires

av 1 i+o Address valid. Notifies when address is transmitted

cmd 3 i+o Command: read or write, data or conficuration etc.

re 1 i Read enable. Wrapper can remove the first data from FIFO

we 1 i Write enable. Adds the data from IP to TX FIFO

full 1 o TX FIFO is full

empty 1 o RX FIFO is empty

one_p 1 o TX FIFO has one place left, i.e. almost full

one_d 1 o RX FIFO has one data left, i.e. almost empty

On the other hand, the FIFO access control signals depend on the direction. Both

control signals Write enable and Read enable and driven by wrapper. The status signals

are driven by wrapper. There are always at least two status signals FIFO full and FIFO

empty. In addition, the FIFO buffers developed for HIBI offer two others: One data

left at FIFO and One place left at FIFO, which may simplify the logic IP.

The address signals at IP side offer few choices that described next.

Fig 10 depicts the signals between IP and wrapper and Table 2 list their details.

5.3 Variants of IP interface

There are 4 variants of the IP interface depending on how to handle

17 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

hibi_wrapper_r1

hi lo hi lo

hibi_wrapper_r2

lo lo

data

av

cmd empty
one_d

re

data

addr

cmd empty
one_d

re

hibi_wrapper_r3

hi lo hi lo

hibi_wrapper_r4

lo lo

data cmd empty
one_d

re

data

addr

cmd empty
one_d

re

av

r4 is the most used

in TUT

All wrapper types

contain r1 inside

them

IP-block

IP-block

IP-block

IP-block

HIBI BUS

Figure 11: There are 4 variants of IP interface. There are two selectable features,

namely separations of hi/lo-prior data and separate/multiplexed addressing.

a) high/low priority data: one or two interfaces

b) address and data: separate interfaces or one multiplexed

The different wrapper are denoted with postfix _r < x >

r1: a) 2 interfaces hi+lo; b) muxed a/d

r2: a) 1 interface hi/lo; b) separate a+d

r3: a) 2 interfaces hi+lo; b) separate a+d

r4: a) 1 interface hi/lo; b) muxed a/d

Since these options affect only the IP side, different wrapper types can co-exist in

the same system, and the wrappers’ bus side interface is always the same. Furthermore,

the addresses work directly between wrapper types. However, hi-priority data cannot

bypass lo-prior data in wrapper types r2 and r4. However, all data is always transmitted

For example, Nios subsystems utilize commonly r4 but SDRAM utilizes r3. This is

because SDRAM ctrl distinguishes DMA configuration and memory data traffic with

priority of incoming data. It also prevents dead-lock. Fig 11 depicts variants of wrap-

per’s IP side signals. Interface type r1 is the “native” interface that is used inside all

other variants.

5.4 Signal naming in VHDL

The side and direction are marked into signal name in HIBI wrapper VHDL, for exam-

ple

1. agent_data_in, agent_data_out,

2. bus_data_in, bus_data_out

18 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

IP (=agent)

hibi_wrapper

bus side

IP side

agent_data_in agent_data_out

bus_data_inbus_data_out

Figure 12: The naming convention of ports

Fig. 12 clarifies the naming scheme.

5.5 Cycle-accurate timing

For brevity, only the IP side timing is explained. It is actually very simple. The timing

when transmitting is depicted in Fig 1) IP checks that tx FIFO is not full 2) IP sets data,

command, addr/av, and write_enable=1 for one clk cycle

The timing when receiving is depicted in Fig 1) IP checks that rx FIFO is not empty

2) IP captures data, command, and addr/av 3) IP sets read_enable=1 for one clk cycle

Notes on signal timing

1. Very easy to write/read on every other cycle

2. Almost as easy to write/read on every cycle. Needs a bit more care with checking

empty and full

3. IP may keep we=1 and re=1 continuously and just change/store data according

to full/empty

4. Signal FIFO full comes from register. It goes high on the next cycle after the

write, if at all. In the Tx example, writing value 0xacdc filled the FIFO

5. Setting we=1 when FIFO is full has no effect

6. Setting re=1 when FIFO is empty has no effect

7. Received data, addr/av and command appear to interface, if FIFO was empty

before. IP can use them directly. They are “removed” only when read enable is

activated o Checking empty==0 ensures validity

19 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

1st data written to TX FIFO
2nd data written to TX FIFO,

FIFO becomes full
FIFO is now full, nothing written

3rd data written to TX FIFO

Signal names refer to HIBI wrapper

Addr/AV not shown in figure

(a) IP sends.

1st data arrives

1st data removed from

rxFIFO, FIFO becomes empty

2nd data arrives and IP
sets re combinatorially

3rd data arrives and it is

read immediately, FIFO is
now empty again

Signal names refer to HIBI wrapper

Addr/AV not shown in figure

(b) IP receives data

Figure 13: Examples of timing at IP interface.

start verify_resultsend_lines done

Write the destination address Send test data to ”XOR”-IP block Read the results

always

alwaysnot (two_lines_sent)

not (OK)

Do nothing

two_lines_sent

OK and not (all read)OK and all_read

Figure 14: Example FSM of an IP

8. Data and command values are undefined when FIFO is empty. Most likely the

old values remain

A Simple example VHDL code can be found in SVN /release_1/lib/hw_lib/ips/computation/image_xor/tb/tb_image_xor_lin

It shows how to send address and data.

Fig. 14 shows the simple example FSM of the IP.

Sometimes the output registers of the IP may cause unexpected behavior for novices.

20 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Even if FIFO appears “not full”, IP cannot necessarily write new data. That happens if

it was already writing and there was only one place left at the FIFO. Hence, remember

to check if IP is already writing!

The following code snippet should clarify correct writing

Example code of IP’s sending control

i f (we_r = ’1 ’ and one_p_ in = ’1 ’) or f u l l _ i n = ’0 ’ then

we_r <= ’ 0 ’ ; / / FIFO i s becoming or a l r e a d y f u l l

e l s e

we_r <= ’ 1 ’ ; / / There i s room in FIFO

d a t a _ r <= new_value ;

end i f ;

HIBI wrapper shows the data as soon as it comes from the bus. Same data might

get used (counted) twice, if IP only checks the empty signal. Remember to check if IP

is already reading! The following code snippet should clarify correct reading

Example code of IP’s reception handling

i f (r e _ r = ’1 ’ and one_d_ in = ’ 1 ’) or em pty_ in = ’1 ’ then

r e _ r <= ’ 0 ’ ; / / S top r e a d i n g

e l s e

r e _ r <= ’ 1 ’ ; / / S t a r t or c o n t i n u e r e a d i n g

end i f ;

i f r e _ r = ’1 ’ then

i f h i b i _ a v _ i n = ’0 ’ then

/ / h a n d l e t h e incom ing a d d r e s s

e l s e

/ / h a n d l e t h e incom ing d a t a

end i f ;

end i f ;

Common pitfalls

• Not noticing that tx FIFO fills while writing. Consequence: Some data are lost

(not written to FIFO)

• Write enable remains 1 for one cycle too long. Undefined data written to FIFO,

or the same data is written twice o In both of above, the likely cause is not

acocunting to output register of the IP

• Not noticing that rx FIFO goes empty while reading. Data consumed by IP is

undefined

• Read enable remains 1 for one cycle too long. Next data is accidentally read

away from the FIFO unless FIFO was empty

• Not noticing that rx data changes only after the clock edge when re=1. IP uses

the same data twice

21 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

A3A2

A3
A1

allocated time slot

A1
competition

A3 A2 A3 A1 A3

time frame

t

A1 A2 A1 A3 A1

A1 A2 A3

Priority

Round-robin

A1 A2 A3 t

tA2 A3 A1

time frame

competition

Figure 15: Example timing in 3 arvitration policies.

6 Arbitration

A distinct feature in HIBI is that arbitration is distributed to wrappers, meaning that

they can decide the correct time to access the bus by themselves. Therefore, no central

arbiter is required. In practice, Bus is “offered” to one wrapper on each cycle. The

wrapper reserves the bus using signal lock if has data to send.

Multiple policies are supported

1. Fixed priority, Round-robin

2. Dynamically adaptive arbitration (DAA)

3. Time-division multiple access (TDMA)

4. Random

5. Combination of above

A scheme called Dynamically Adaptive Arbitration (DAA) was presented in [4]. In

most cases, designers should use round-robin or DAA. If there is minor performance

bottleneck, one can easily configure the arbitration parameters.

Fig. 15 shows an example of different policies. A two-level arbitration scheme,

a combination of time division multiple access (TDMA) and competition, is used in

HIBI. In TDMA, time is divided into repeating time frames. Inside frames, agents are

provided time slots when they are guaranteed an access to the communication channel.

This way the throughput of each wrapper can be guaranteed. The worst-case response

time for a bus access through TDMA is the interval of the adjacent time slots. TDMA

in HIBI supports two flavors for handling the slots when there is no data send: keeping

them or releasing the bus for competition.

Competition is based either on round-robin or non-pre-emptive priority arbitration.

The second level mechanism is used to arbitrate the unassigned or unused time slots. If

the agent does not have anything to send in the beginning of its time slot, the time slot

can be given away to allow maximal bus utilization. Priority arbitration as a second

level method attempts to guarantee a small latency for high priority agents whereas

22 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

lock (7)

lock (6)

lock (5)

lock (4)

lock (3)

lock (2)

lock (1)

lock (0)

iii)i) ii) iv) v)

(a) Low contention (send probability 4% per agent).

lock (7)

lock (6)

lock (5)

lock (4)

lock (3)

lock (2)

lock (1)

lock (0)

iii)i) ii) iv) v)

(b) High contention (send probability 30% per agent).

Figure 16: Various arbitration schemes for 8-agent single bus and uniform random

traffic. The differences become evident on highly utilized bus.

round-robin provides a fair arbitration scheme. When the bus is freed and priority

scheme is utilized, the agent with the highest priority can reserve the bus on the first

cycle. If the bus has been idle for two cycles, the agent with the second highest priority

may reserve it and so on. The maximum transfer length is restricted with runtime con-

figurable parameter max_send. For round-robin, the maximum wait time for accessing

the bus is obtained by summing all max_send values. For priority-based arbitration,

the maximum wait time can be defined only for the two highest priorities. This means

that the low-priority agents may suffer starvation and system may end up in deadlock.

Therefore, using only priority arbitration is not recommended.

6.1 Detailed timing example

Fig. 16 shows the differences in various arbitration policies and two traffic loads (low

and high contention). HIBI is configured as single bus with 8 agents. Agent 0 performs

dynamic reconfiguration (time instants i− v) and other agents generate uniformly dis-

tributed random traffic. The reconfiguration changes the arbitration policy at runtime.

The exact configuration procedure is explained in more detail later The utilized arbi-

tration policies are

i) round-robin

ii) combination of priority and round-robin

iii) priority

23 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

0.0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

0 % 20 % 40 % 60 % 80 %

Bus utilization

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

Best alg. (all tx)
Worst alg., tx>49

Worst alg., tx=25
Worst alg., tx=10
Worst alg., tx=5

Figure 17: Relative performance of arbitration algorithms in MPEG-4 encoding [4]

iv) random

v) round-robin (again).

Round-robin offers fair arbitration (each agent has its share) whereas priority favors the

highest priority agents and leads to starvation of others. Their combination switches

between them at user-defined intervals. Arbitration policy does not play a major role

when bus is lightly loaded, as illustrated in Fig. 16(a). The differences are clear with

higher load, Fig. 16(b).

6.2 Performance implications

Various arbitration methods of HIBI were compared in [4]. The test case was MPEG-

4 encoding on MPSoC. HIBI has 6 arbitrated components: 4 CPUs, SDRAM, and

performance monitor; all operating at 50MHz frequency. The maximum transfer length

was varied from 5 words (denoted as tx = 5) to non-limited. Transfer length has major

impact but all lengths of 50 words or over (tx>49) resulted in equal performance. The

bus frequency was set to 1,2,5, or 50 MHz in order to achieve varying bus utilization

(75%,56%,26%, and 3%, respectively) with single application. The best and worse

algorithms vary case by case but DAA performed well in general.

Fig. 17 plots the relative encoding performance between the worst and best algo-

rithms. The curves denote different transfer lengths, and 1.0 is the best algorithm for

each case. Tx lengths over 49 are joined for clarity because they yield practically the

same results. With short transfers, the worst algorithm at 1 MHz HIBI (75% utiliza-

tion) offers only 0.62x the performance of the best, at 2 MHz 0.73x, at 5 MHz 0.98x,

and at 50 MHz there are no differences.

24 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

7 Commands

Source IP sets the command and most commands are forwarded to the receiving IP.

The most common commands are:

• Write data - regular send operation, so called posted write

• Read request - split-transaction, the requested data is returned later with regular

write command

The other, less common commands are

• Idle - IPs never use this command, but this appears on the bus when no-one sends

anything

• High priority - bypasses normal data in the wrappers, otherwise just like regular

operation, can be added to many commands

• Write and read config - access the configuration memories inside the wrappers.

Not forwarded to the IP at the receiving end

• Multicast - send the same data to multiple targets (only in HIBI v.2)

• Non-posted write - Receveir IP must provide some response (ACK or NACK)

(v.3 only)

• Linked read + conditional write - to perform read-modify-write (v.3 only)

• Exclusive access - reserve the whole path to the destination, read, write, and

remove the lock (v.3 only)

HIBI v.3 has 5 command bits and v.2 had only 3 bits,see Tables 3 and 4.

8 Buffering and signaling

The model of computation used in HIBI design approach assumes bounded first-in-

first-out (FIFO) buffers between processes. A simple FIFO interface can be adapted to

other interfaces such as the OCP (Open Core Protocol) [8]. Consequently, IP compo-

nents use only OCP protocol and are isolated from the actual network implementation.

Ideally, network can be chosen freely without affecting the IPs. However, not all fea-

tures of HIBI, such as relative data priorities or dynamic reconfiguration, can be used

with OCP directly but only the basic transfers.

To avoid excess buffering or retransfers, the received data must be read from the

FIFO as soon as possible, for example by using a direct memory access controller. As

a result, the receiver buffer space is not dictated by the amount of transferred data,

but the latency of reading data from the wrapper. This scheme resembles wormhole

routing, but the links are not reserved if the receiver is stalled.

25 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 3: The command codes in HIBI v.3

Cmd Code Code Meaning

[4:0] [decimal]

idle 0 0000 0 Appears on the bus when it is free

<reserved> 0 0001 1 not used, most unused codes hidden from the table

wr data 0 0010 2 Regular write

wr data hi-prior 0 0011 3 - “ - w/ high priority

rd data 0 0100 4 Request of the split-transaction

rd data hi-prior 0 0101 5 - “ - w/ high priority

rd data linked 0 0110 6

rd d. linked hi-p 0 0111 7 - “ - w/ high priority

wr data non-post 0 1000 8 Write that expects response

wr d. non-post hi-p 0 1001 9 - “ - w/ high priority

wr conditional 0 1010 10 Write that follows rd linked

wr cond. hi-p 0 1011 11 - “ - w/ high priority

excl. lock 0 1101 13 Locks the path to the destination

excl. wr 0 1111 15 Exclusive write, must follow excl.lock

excl. rd 1 0001 17 Exclusive read request, must follow excl.lock

excl. release 1 0011 19 Removed the lock from the path

wr config 1 0101 21

rd config 1 0111 23

<reserved> 1 1xxx 24-31 not used

Table 4: The command codes in HIBI v.2

Cmd Code [2:0] Meaning

idle 000 Appears on the bus when it is free

wr config data 001 Updates config mem inside the wrapper

wr data 010 Regular write

wr data hi-prior 011 High-priority data bypasses the regualr one

rd data 100 Request of the split-transaction

rd config data 101 Requests a value from wrapper’s config mem

multicast data 110 Sends to all wrappers whose uppemost addr bits match

multicast config 111 Same as above for high-priority data

26 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Time slot

logic

Curr

conf

values

Curr page

Conf page

Time

slot

signals

New

conf

values

D
e

m
u

x Mux

Cycle counter

Figure 18: Structure of the wrapper’s configuration memory

9 Configuration

HIBI is both modular and configurable. At design time: structural and functional set-

tings are made, whereas at run-time, one can modify data transfer properties (arbitra-

tion types, wrapper specific QoS settings).

Fig. 18 shows the structure of the configuration memory.

9.1 Generic parameters in VHDL

HIBI has a large set of generic parameters. They are categorized as follows

1. Stuctural

• Widths of interface ports: data, command, debug port

• Widths of internal signals: address, wrapper identifier field, counters

• Sizes of tx and rx FIFOs, both lo and hi priorities

• Use 0, 2, 3 etc.

• Run-time configuration: number of cfg pages, num of app-specific extra

registers

2. Synchronization

• Type of the synchronizing FIFO buffers

• Relative frequencies of IP and bus

3. Functional

• Identifier, own address

• For bridges: base identifier, inverted address space

• Arbitration: type, priority, how many words to at one turn, number of

agents in the same segment

• For TDMA: number of time slots, how to handle unused slots (keep/give

away)

27 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 5: Properties of HIBI v.1 and v.2.

Generic and VHDL default Category Subcategory Type Value range Descrip!on

1 addr_width_g : integer := 32; Structural Bus widths Bits less than or equal

data_width_g if muxed

address (bus) width

2 data_width_g : integer := 32; Structural Bus widths Bits posi!ve integer width of data bus (which can be

mul!plexed with address)

3 comm_width_g : integer := 5; Structural Bus widths Bits prac!cally always 3 width of command bus

4 counter_width_g : integer := 8; Structural Bus widths Bits greater or equal than

(log(max_send)

width if the internal counters in a

wrapper

5 debug_width_g : integer := 0 Structural Bus widths Bits posi!ve integer width of debug port (for special

monitors)

6 rx_fifo_depth_g : integer := 5; Structural FIFO Words 0,2,3… Rx fifo depth

7 rx_msg_fifo_depth_g : integer := 5; Structural FIFO Words 0,2,3… Rx message (high-priority) fifo depth

8 tx_fifo_depth_g : integer := 5; Structural FIFO Words 0,2,3… Tx fifo depth

9 tx_msg_fifo_depth_g : integer := 5; Structural FIFO Words 0,2,3… Tx message (high-priority) fifo depth

10 fifo_sel_g : integer := 0; Synchroniz

a!on

Clock

domains

Number 0-3: Synchronous mul!-clock,

GALS (globally asynchronous,

locally synchronous),

Gray FIFO, or

Mixed clock pausible

Type of the synchronizing FIFO buffers

between bus and agent

11 rel_agent_freq_g : integer := 1; Synchroniz

a!on

Clock

domains

Number posi!ve integer Rela!ve frequencies of IP and bus,

Needed at least for synchr. mul!clk

FIFOs

12 rel_bus_freq_g : integer := 1; Synchroniz

a!on

Clock

domains

Number posi!ve integer see above

13 addr_g : integer := 46; Func!onal Addressing Number posi!ve integer unique address for each wrapper

14 inv_addr_en_g : integer := 0; Func!onal Addressing Number 0 or 1 only for bridges, other half uses 0 and

the other 1

15 multicast_en_g : integer := 0 Func!onal Addressing Number 0 or 1 enable special addressing

16 n_agents_g : integer := 4; Func!onal Arbitra!on Number posi!ve integer total number of agents within one

segment (distributed arbitra!on

requires this)

17 prior_g : integer := 2; Func!onal Arbitra!on Number less than or equal n_agents unique priority value for all wrappers

within one segment

18 max_send_g : integer := 50; Func!onal Arbitra!on Number in words, 0 means unlimited max words the wrapper can reserve bus

19 n_time_slots_g : integer := 0; Func!onal Arbitra!on Number Number of !me slots in a TDMA frame.

TDMA is enabled by se$ng n_!me_slots

> 0. Ensure that all wrappers in a

segment agree on arb_type, n_agents,

and n_slots. Max_send can be wrapper-

specific.

20 arb_type_g : integer := 0; Func!onal Arbitra!on Number 0 round-robin, 1 priority, 2

combined, 3 DAA

Arbitra!on type

21 keep_slot_g := 1 Func!onal Arbitra!on Number For TDMA: 0 release unused

time slots 1 keep unused

Keep reserved but unused slots in TDMA.

Not used in HIBI revision r3

22 id_g : integer := 5; Func/Struct Reconfigur

a!on

Number posi!ve integer unique wrapper iden!fica!on for

reconfigura!on

23 id_width_g : integer := 4; Func/Struct Reconfigur

a!on

Number greater than or

equal(log2(id_g))

wrapper iden!fica!on size = max

number of wrappers

24 base_id_g : integer := 5; Func/Struct Reconfigur

a!on

Number posi!ve integer only for bridges, which cfg id are routed

acrossa the bridge

25 cfg_re_g : integer := 0; Func/Struct Reconfigur

a!on

Number 0 or 1 enable reading configura!on memory

26 cfg_we_g : integer := 0; Func/Struct Reconfigur

a!on

Number 0 or 1 enable wri!ng configura!on memory

27 n_extra_params_g : integer := 0; Func/Struct Reconfigur

a!on

Number posi!ve integer Number of app-specific extra registers

28 n_cfg_pages_g : integer := 1; Func/Struct Reconfigur

a!on

Number 1,2,3... Number of configura!on pages. Having

mul!ple pages allows fast reconfig. Note

that cfg memory ini!aliza!on is done

with separate package if you have many

!me slots or configura!on pages

• Enable/disable multicast functionality

• Enable/disable runtime configuration functionality (affects structure=area

as well)

Table 5 lists all the generics. Certain parameters are system-wide settings, for ex-

ample the width of the command. Some are segment-wide, for example bus clock,

data width, and number of wrappers in that segment. The rest are instance-specific, for

example buffer sizes and priorities.

28 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

9.2 Clocking

HIBI can support may clock domains. The border is either between IP and wrapper, or

in the middle of a bridge. There are five options:

1. Fully synchronous

2. Synchronous multi-clk: Clock frequencies are integer-multiples of each other.

Clocks are in the same phase. Easy to use with FPGA’s PLLs

3. GALS: No assumptions about relations (phase, speed) between clocks. Has

longer synch. latency than synch.multiclock.

4. Gray FIFO: FIFO depth limited to power of two (= 2n)

5. Mixed clock pausible

The method must be decide at synthesis time.

9.3 Runtime reconfiguration

Wrapper has config memory that stores all information for distributed arbitration. It

can be synthesized in many ways:

• Permanent: ROM, 1 page

• Partial run-time configurable: ROM with several pages

• Full run-time configurable: RAM, with pages

• Kactus supports currently 1-page ROM

HIBI allows the runtime configuration of all arbitration parameters to maximize

performance. This is achieved so that one of the agents (e.g. system controller CPU)

writes the new configuration values to all wrappers. The configuration values are sent

through the regular data lines. During the normal operation, i.e. when the configuration

is not changed, the controller CPU can perform its computation tasks. In the best case,

other PEs can continue their transfers even if HIBI is being configured. However,

some operations, such as swapping priorities of two wrappers, necessitate disabling

other transfers momentarily.

The structure of the configuration memory is illustrated at the bottom of Fig 8. It

includes multiple configuration pages for storing the parameter values, a register stor-

ing the number of currently active page, clock cycle counter, and logic that checks the

start and end of times of the time slots. The receive controller takes care of writing new

configuration values whereas the configuration values and time slot signals are fed to

the transfer controller. Configuration values can be written to non-active pages before

they are used to minimize the risk of conflict when the configuration is performed.

29 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

From rx_control

101 103 105 201 203 205 000

5 2 20 4 1 30 2

Page_1_reg

3 5

9

0 2

10 20

Page_2_reg

2 4

8

0 1

20 30

To tx_control

3 5 4

9 8

0 2 1

10 20 30

clk

From rx_control

addr_in 101 103 105 201 203 205 000

data_in 5 2 20 4 1 30 2

we_in

Page_1_reg

.prior 3 5

.n_agents 9

.arb_type 0 2

.max_send 10 20

Page_2_reg

.prior 2 4

.n_agents 8

.arb_type 0 1

.max_send 20 30

To tx_control

prior_out 3 5 4

n_agents_out 9 8

arb_type_out 0 2 1

max_send_out 10 20 30

1. 2. 3.

Figure 19: Example of runtime configuration

For very regular traffic, the TDMA slots can be set to minimize the latency, i.e. slot

starts shortly after the availability of data. For TDMA, each wrapper has an internal

cycle counter to decide correct times to access the bus. For this reason, wrappers in one

bus segment must be synchronized. When data is produced with varying time intervals

or quantities, the time slots cannot be optimally located. By runtime reconfiguration,

the cycle counters can be reset to an arbitrary clock cycle value within the time frame to

keep time slots in the correct place with respect to data availability. Also the length and

owner of the slots can be changed. The resynchronization can be triggered explicitly

from software or automatically by a specific monitor unit, which monitors how effec-

tively time slots are used and starts the reconfiguration if needed [1]. Roughly 10 %

improvement in HIBI v.1 throughput in video encoding due to dynamic reconfiguration

was reported in [7]. Larger gains are expected when several applications are executed

on a single platform. Reconfiguration was used in [4] to speed-up the exploration on

FPGA. It allowed notably less synthesis runs, each of which took several hours.

As a new feature in HIBI v.2, the second-level arbitration method can be changed

at runtime between priority and round-robin or both of them can be disabled. When the

second-level arbitration is disabled, only the basic TDMA is used and the slot owner

reserves the bus always for the whole allocated time slot. Similarly, only the second-

level arbitration is utilized when no time slots are allocated.

In HIBI v.2, three methods are used to improve the configuration procedure. First,

by making use of the bus nature, each common parameter can be broadcast to all wrap-

pers. Second, enabling the reading of configuration values simplifies the procedure as

the whole configuration does not have to be stored in the configuring agent. In contrast,

the configuring agent can read the old parameter values to help determining the new

30 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

ones. Third, additional storage capacity for multiple parameter pages has been added

to enable rapid change of all parameters. When a configuration page changes, all the

parameters are updated immediately with one bus operation. It is possible to store a

specific configuration for every application (phase) in its own configuration page to

enable fast configuration switching.

Runtime reconfiguration is illustrated in Fig 19 for 2-page configuration memory.

Signals coming from receive controller to configuration memory (addr_in, data_in,

we_in) are shown on top. In the middle are the registers .prior, .n_agents, .arb_type,

.max_send for both configuration pages (all parameter registers are not shown for clar-

ity). On the bottom, are the signals from memory to transfer controller (prior_out,

n_agents_out, arb_type_out, max_send_out). In the example, the first digit of the ad-

dress defines the page and two last digits define the parameter number.

1. The parameter registers for priority (.prior), arbitration type (.arb_type), and

maximum send amount (.max_send) on current page (page 1) are configured to

values 5, 2, and 20, respectively.

2. Parameters on the inactive page are updated: priority is set to 4, arbitration type

is changed from round-robin (0) to priority (1), and max_send is increased to 30.

3. Page 2 is activated by writing value 2 to address 0x000. When the page is

changed, all outputs to transfer controller change immediately. Since the num-

ber of agents (n_agents) changes to value 8, the wrapper with priority 9 cannot

access the bus anymore. This way arbitration latency can be decreased if some

agent is known to be idle.

10 Performance and resource usage

10.1 HIBI wrapper structure

The resource usage of the HIBI comes mainly from it’s wrappers. HIBI version 3 has

three types of them which include R1, R3 and R4. Figure ?? shows how a R3 wrapper

is constructed of multiplexors and a R1 wrapper which has four separate FIFOs itself.

10.2 Resource usage

The resource usage for invidual HIBI wrappers was acquired from a SoC that was

synthesized to a Arria II GX FPGA on a Arria II GX development board. The SoC had

two HIBI components with both attached to a R3 HIBI wrapper. The size of the fifos

on these wrappers was set to 4 words which means 4 ·32b = 128b on each fifo.

Table 6 shows the combinatorial ALU (adaptive LUT) counts and register counts

of a wrapper. Both minimum and maximum values are reported since synthesis does

31 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

HIBI wrapper R3

HIBI

wrapper

R1

addr data mux

write

addr data mux

write

addr data mux

read

addr data

mux read

message interface

normal interface

H
IB

I
se

g
m

e
n
t

H
IB

I
c
o
m

p
o
n
e
n
t

HIBI wrapper R1

double fifo

demux write

transmitter

receiver

double fifo

demux read

double fifo demux write

fifo

fifo

double fifo demux read

fifo

fifo
fifo mux

read

Figure 20: HIBI R3 wrapper block diagram

Table 6: Resource usage of wrapper R3, with 32b data, multiplxed address and 5b

command. v.2 and v.3

Wrapper subblock Unit Value

HIBI wrapper r3 comb. ALUTs 724-763

registers 1029-1168

HIBI wrapper r1 comb. ALUTs 466-533

registers 825-935

4-word FIFO comb. ALUTs 76-104

registers 155-167

not always produce exactly the same results. Area can be significantly reduced if the

FIFOs are implemented as onchip memories (m9k blocks in Arria II GX).

Fig. ?? shows the resource usage layout on the FPGA as seen on the Chip Planner

in Quartus II. The two wrappers are highlighted in blue.

10.3 Simulated performance

The throughput was measured for a 32 bit, 200 MHz HIBI segment with two compo-

nents, both of which were connected to the segment with a R3 wrapper. The sender

transmitted a continous stream of 1024 words to a single address. Maximum through-

put is 200MHz · 32b = 800 MByte/s. Since the data and address are buses muxed

together, the minimum time to send the stream would be 1025 cycles. Measured la-

tency and throughput are shown in Fig.??. Both approach their theoretical limits as the

FIFO depth increases.

32 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Figure 21: HIBI R3 in Quartus’ chip planner tool

11 Usage examples

IP can connect directly to HIBI but CPUs should use a DMA. It allows performing

transfers on the backgournd while CPU is processing.

11.1 Transmission with dual-port memory buffer and DMA con-

troller

Fig. 23 shows the concept how CPU can send data using DMA.

1. CPU reserves buffer space from dual-port memory

2. CPU copies/writes data to dual-port memory

3. CPU configures DMA transfer: memory address, size of transfer, and destination

IP-block’s HIBI address (not local CPU address)

4. DMA reads data from dual-port memory and sends the data to the configured

HIBI address

11.2 Reception with dual-port memory buffer and DMA controller

Fig. 24 shows the concept how CPU can use DMA to copy received data into the local

dual-port memory.

1. CPU reserves buffer space from dual-port memory

33 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000

T
ra

n
sf

e
r

�
m

e
,

[c
y

cl
e

s]

Wrapper fifo depth, [words]

(a) Transfer latency in cycles. Theoretical miniumum 1025 cycles (one cycle needed for

address)

0

100

200

300

400

500

600

700

800

1 10 100 1000

T
h

ro
u

g
h

p
u

t,
 [

M
B

y
te

s/
s]

Wrapper fifo depth, [words]

(b) Throuhgpput in MB/s. Theoretical max 800 MB/s

Figure 22: Performance with 1024-word transfers.

Figure 23: Example how CPU sends using DMA.

34 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Figure 24: Example how CPU receives data usign DMA.

Figure 25: Example mapping between incoming address and buffer in dual-port mem-

ory.

2. CPU configures DMA: Memory address, size of transfer, and the HIBI address

in which data is received

3. DMA copies the incoming data to DPRAM

4. DMA interrupts CPU when a configured number of words have been received

5. CPU knows that data is ready in memory and uses it/copies to data memory

Rx buffers are organized as channels. Fig. 25 shows how DMA translates incoming

HIBI addresses into addresses in the local memory. Only memory space limits how

many buffers (channels) exists at the same time. Channels have implicit meanings that

must be agreed:

1. Who (what IP-block or CPU) sends data to which channel, since otherwise the

sender is not known (HIBI does not send sender ID in transfers).

2. Possible explicit meaning of channel like “DCT transform Q-parameter”. Then,

it is not that relevant who provides data.

35 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Set {N2H2_0}

as rx
address

Write config {N2H2_0}

Set {N2H2_0}

as
destination

address

Write data to addr { N2H2_0}

CPU IP block A

Figure 26: Example how CPU instructs the IP block where to put result data.

11.3 Example: use source specific addresses

Designer wished to implement following high-level sequence “HW IP-block A should

send data to CPU after initialization”. The procedure to achieve this is

1. CPU Sets rx buffer address to its DMA block N2H2_0

2. CPU sends that same address to A’s IP-block specific configuration register

3. IP A knows now to where send data

4. CPU knows from where data is coming to address

It is assumed that CPU and IP A know the data amount at design time. Otherwise,

it must agreed upon during initialization (that was omitted for clarity).

11.4 SW interface to DMA

There are low-level SW macros available that access the hardware registers of HIBI PE

DMA (abbreaviated as HPD). They implement a driver, but can be also used from user

programs.

Notes: “HPD” is HIBI PE DMA (previously called Nios-to-HIBI 2, N2H2). “Base”

is the base address of HIBI PE DMA in HIBI address space. “Amount” is data amount

in 32-bit words.

HIBI_TX checks that previous send operation is complete and Calls HPD_send

macro. Hence, it also runs macros HPD_TX_ADDR, TX_AMOUNT, HIBI_ADDR,

TX_COMM, and TX_START Releases the Tx channel.

Following example shows a data transfers between two CPUs assuming the system

in Fig. 27(a). Fig. 27(b) shows the sequence diagram.

36 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 7: The SW macros for accessing the DMA controller’s registers

Macro Meaning

void HPD_CHAN_CONF (int channel, int

mem_addr, int rx_addr, int amount, int*

base)

Configure HPD channels. After configu-

ration, specific channel is ready to receive

amount of data to rx_addr HIBI address.

Received data is stored to mem_addr in

HPD address space.

void HPD_SEND (int mem_addr, int

amount, int haddr, int* base)

Send amount of data from mem_addr to

haddr HIBI address. mem_addr is memory

address in HPD address space.

void HPD_READ (int mem_addr, int

amount, int haddr, int* base)

Send command to read amountof data from

haddrHIBI address.

void HPD_SEND_MSG (int mem_addr, int

amount, int haddr, int* base)

Send amount of data from mem_addr to

haddr HIBI address as HIBI message.

mem_addr is memory address in HPD ad-

dress space.

int HPD_TX_DONE(int* base) Returns status of transmit operation.

void HPD_CLEAR_IRQ(int chan, int*

base)

Clears IRQ of specific channel.

int HPD_GET_IRQ_CHAN(int* base) Return the number of the channel that

caused interrupt. If interrupt hasn’t oc-

curred, return -1.

12 Summary

The most important properties of HIBI are summarized in Table. 9. HIBI network al-

lows multiple topologies and utilizes distributed arbitration. The network is constructed

by instantiating multiple wrapper components and and connecting them together. The

wrapper is modular allowing good parameterization at design time and possibility to

reconfigure certain parameters of the network runtime.

References

[1] T. Kangas, V. Lahtinen, K. Kuusilinna, and T. Hämäläinen, “System-on-chip

communication optimization with bus monitoring,” in DDECS, Apr. 2002, pp.

304–309.

37 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 8: The SW functions for using the DMA

Function Meaning

void HIBI_TX (uint8* pData, uint32

dataLen, uint32 destAddr, uint8 comm-

Type)

Send data over HIBI. pData is pointer

to data, dataLen is length of the

data in bytes, destAddr is destination

HIBI address, commType is either

HIBI_TRANSFER_TYPE_DATA or

HIBI_TRANSFER_TYPE_MESSAGE.

Differences to lower level macros are the

automatic copying of memory to HIBI

PE DMA-buffer and protection against

simultaneous sending in different threads.

struct sN2H_ChannelInfo*

N2H_ReserveChannel(int32 bufferSize,

void* callbackFunc, bool handleInDsr,

bool calledFromDsr, sint32 channelNum)

Reserve a channel for receiving data.

bufferSize Size of the data to be received

(bytes). callbackFunc: Function to call

when the data arrives. Prototype: func-

tion(uint8* pData, uint32 dataLen, uint32

receivedAddr) handleInDsr: Set to false

calledFromDsr: Set to false channelNum:

Channel that is waiting for incoming data.

The complete address will be HIBI base ad-

dress + channelNum. Difference to lower

level macros is that interrupt handler pro-

vided by HIBI driver, own function can be

registered directly to handle data.

[2] A. Kulmala, T. D. Hämäläinen, and M. Hännikäinen, “Comparison of GALS

and synchronous architectures with MPEG-4 video encoder on multiprocessor

system-on-chip FPGA,” in Euromicro DSD, Sep. 2006, pp. 83–86.

[3] A. Kulmala, M. Hännikäinen, and T. D. Hämäläinen, “Reliable GALS implemen-

tation of MPEG-4 encoder with mixed clock FIFO on standard FPGA,” in FPL,

Aug., pp. 495–500.

[4] A. Kulmala, E. Salminen, and T. D. Hämäläinen, “Distributed bus arbitration

algorithm comparison on FPGA based MPEG-4 multiprocessor SoC,” IET Com-

puters and Digital Techniques, vol. 2, no. 4, pp. 314–325, Jul. 2008.

38 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

Table 9: Properties of HIBI v.3

HIBI v.3

Description language VHDL, SystemC

Topology Hier.bus

HIBI-specific

OCP (TLM1, TLM2)

Synchronous wrapper

GALS network

Switching type (within segment) Circuit-switching

Switching type (between segments) Wormhole (packet)switching

Configuration Design-time, runtime

Data width, addr width, FIFO sizes, address mutliplexing,

initial configuration, addresses, clocking style

Number of config pages and their type (RAM/ROM)

TDMA cycle and slots, max send, own priority

Current TDMA clk cycle

Utilized arbitration algorithm

Change configuration page, change configuration contents (of RAM)

Burst transfers All transfers are bursts

Data priority 2-level: regular and high-prior

17

idle

write: data (lo/hi-prior), config, conditional (lo/hi), non-post data (lo/hi)

read request: data (lo/hi-prior), config, linked (lo/hi)

exclusive access: lock, write, read, release

System signals Clk, rst_n

Data [n-1:0] (*) may contain address as well

Addr valid

Command [4:0]

Lock

Full

IP signals Data, addr valid, cmd, we, full, re, empty, optionally one_p + one_d

Address lines Multiplexed or concatenated with data

Signal type Unidirectional, all shared

Signal resolution OR-based

Arbitration algorithms Round-robin, DAA, TDMA, priority, random, combination

Distributed

Pipelined

Handshaking 1 hadnshake signal, RX buffering reserved at application level

TDMA, round-robin/prior with limited tx length

Multiple priorities for data

Fast runtime configuration

TDMA synchronization

HW sim, HW/SW sim

FPGA prototypes

Articles > 10 conference, >5 journals

10-CPU H.263 video encoder

Synthetic test cases

WLAN baseband

H.263

H.263 + WLAN (FPGA)

MPEG-4, up to 35 CPUs + accelerators

U
sa

g
e

Verification

Test applications (simulation)

Test applications

(FPGA)

T
ra

n
sf

e
rs

Commands

S
ig

n
a
ls

Bus signals

F
lo

w
 c

o
n

tr
o

l

Arbitration implementation

Qos

Property

B
a
si

c
s

Interface

Clocking

C
o

n
fi

g
u

ra
ti

o
n

Design-time configurable parameters

Run-time configurable parameters

39 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

(a) IP sends.

(b) IP receives data

Figure 27: Examples of timing at IP interface.

[5] K. Kuusilinna, T. Hämäläinen, P. Liimatainen, and J. Saarinen, “Low-latency in-

terconnection for IP-block based multimedia chips,” in PDCN, Dec. 1998, pp.

411–416.

[6] V. Lahtinen, “Design and analysis of interconnection architectures,” Ph.D. disser-

tation, Tampere University of Technology, Jun. 2004.

[7] V. Lahtinen, K. Kuusilinna, T. Kangas, and T. Hämäläinen, “Interconnection

scheme for continuous-media systems-on-chip,” Microprocessors and Microsys-

tems, vol. 26, no. 3, pp. 123–138, Apr. 2002.

[8] Open Core Protocol Specification, Release 2.0, OCP-IP Alliance, Portland, OR,

2003.

40 TUT

Department of Computer Systems

Faculty of Computing and Electrical Engineering

HIBI v.3

Reference Manual

[9] E. Salminen, “On design and comparison of on-chip networks,” Ph.D. disserta-

tion, Tampere University of Technology, 2010.

[10] E. Salminen, K. Kuusilinna, and T. Hämäläinen, “Comparison of hardware IP

components for system-on-chip,” in Intl. Symposium on Soc, Tampere, Finland,

Nov. 2004, pp. 69–73.

41 TUT

