
DM9kA controller

Written by: Jussi Nieminen
22.10.2009

Tampere University of Technology

Contents

1 INTRODUCTION 1
1.1 Interface . 1
1.2 Using the DM9000A . 2

2 MODULES 3
2.1 Comm module . 3
2.2 Init module . 4
2.3 Interrupt handler module . 5
2.4 Read module . 5
2.5 Send module . 6

3 RESTRICTIONS AND WEIRD STUFF 8
3.1 Intended use . 8
3.2 Performance . 8
3.3 Initializing device . 8
3.4 Using the RX buffer . 8

1 INTRODUCTION 1

1 INTRODUCTION

DM9000A is an ethernet controller chip from Davicom. It is used e.g. in Altera’s
DE2 FPGA board. DM9kA controller is a VHDL based hardware block, that
is used to control the DM9000A. The source code has a little over 2000 lines
and the current version takes a little over 900 logic cells in a Cyclone II with
Quartus 9.0. Due to the required operating frequency of the DM9000A, this
controller block also runs with 25 MHz clock signal.

1.1 Interface

The DM9000A is using a general processor interface with either 8-bit or 16-bit
data bus. The DM9kA controller is made purely for the 16-bit version, the 8-bit
version is not supported. Interface with the DM9000A chip and the upper level
(e.g. IP layer) is shown in table 1.

Signal Width Description
eth clk out 1 25 MHz clock signal to the DM9000A device.
eth reset out 1 Reset signal.
eth chip sel out 1 Chip select, active low.
eth cmd out 1 Command signal, low for register address, high for data.
eth write out 1 Write signal, active low.
eth read out 1 Read signal, active low.
eth data inout 16 Bidirectional data bus using tri-state buffers.
eth interrupt in 1 Interrupt signal from the DM9000A chip.
new tx in 1 Goes high when upper level has a new transfer to send.
tx len in 11 Length of the frame to be transferred.
tx frame type in 16 Ethernet frame type.
target MAC in 48 MAC address where to send.
tx data in 16 Data to be transferred.
tx data valid in 1 High when there is valid data waiting for reading.
tx re out 1 Read enable signal to the upper level application.
new rx out 1 Indicates that there is a new frame to be received.
rx len out 11 Length of the received frame.
rx frame type out 16 Ethernet frame type.
rx erroneous out 1 High if frame is invalid (e.g. CRC checksum mismatch).
rx data out 16 Received data.
rx data valid out 1 High when received data is valid for reading.
rx re in 1 Read signal from the upper level.
ready out 1 High when ethernet link is up and ready.
fatal error out 1 Indicates serious malfunction in the DM9000A.

Table 1: DM9kA controller interface.

1 INTRODUCTION 2

IMPORTANT NOTICE:
The 16-bit data busses consist of two bytes instead of a single 16-bit data word.
Endianess of the data bus differs from an ethernet frame, so if you for example
want to have a sequence 0xABCD in the ethernet frame, you need to write it
as 0xCDAB to the data bus.

1.2 Using the DM9000A

The DM9000A is configured by first writing in a register address and then writ-
ing data to that register. The command signal (eth cmd out) decides whether
the value being written is an address or actual data. Transfer data is written in
by selecting the register address of transfer data buffer and then writing to it.
Data is received by first writing the register address of the received data buffer
and then reading from it.

2 MODULES 3

2 MODULES

DM9kA controller is formed of five different modules as shown in figure 1. Comm
(meaning communication) module talks with the DM9000A chip and relays to it
configuration data from the other modules. These other modules (except Init)
compete from Comm’s attention by raising up comm request signals. They have
fixed priorities that are located in the lower right corners of the boxes in the
figure. Once a module gets the turn (comm grant signal goes up) it cannot be
taken away from the module before it lowers its request signal. Init module has
it’s turn when the controller is released from reset and the module is no longer
needed after the chip has been initialized and the ethernet link is up.

Interrupt
handler

Init

DM9000A

tx_data_in,
tx_data_valid_in,

tx_re_out

rx_data_out,
rx_data_valid_out,
rx_re_in

comm_req

comm_grant

Comm

ReadSend

comm_req

comm_grant

config_data_bus

config_data_bus

config_data_bus

config_data_bus

eth_interrupt_in

rx_waiting

tx_ready

sleep_time

init_ready

config_data_bus:
- config_data
- reg_addr
- read_not_write
- data_from_comm
- data_from_comm_valid
- comm_busy

comm_grant
comm_req

new_tx_in,
tx_len_in,

tx_MAC_addr_in,
tx_frame_type_in

new_rx_out,
rx_len_out,
rx_frame_type_out,
rx_erroneous_out,
fatal_error_out

eth_*

1

23

Figure 1: DM9kA controller modules.

2.1 Comm module

As told before, Comm module handles communication with the DM9000A chip.
It’s also responsible for the arbitration between Interrupt handler, Read module
and Send module. Comm module gets the configuration data and returns read

2 MODULES 4

values via configuration data buses (see table 2). Other modules don’t have to
worry about timing or other details concerning communication with the chip,
so it should be relatively easy to convert this controller to use another ethernet
controller than DM9000A. (Or then it’s even harder, don’t know, but at least
it is supposed to be easy..)

Comm module has three main states, config state where it writes or reads
configuration data and write/read data states for relaying transfered data. Those
latter states are entered when the register addresses of TX or RX buffers are
written to the device in the config state. Data is read/written straight from/to
the upper level to eliminate unnecessary latency.

Signal Width Description
config data 8 Data to be written to the specific register.
reg addr 8 Address of the configuration register.
read not write 1 If high, read the value of the register instead of writing.
data from comm 8 If read not write is high, the value of the register.
data from comm valid 1 Register value is valid to be read.
comm busy 1 High when the Comm module is working.

Table 2: Signals of the configuration data bus.

2.2 Init module

Init module is responsible for initializing the DM9000A chip. It contains the
initialization values and tells the Comm module to write them to the chip. The
values are stored in an array that the module goes trought during initialization.
Table 3 shows the parameters contained by a single array element. The initial-
ization process is thus easily modified by editing, removing or adding elements
to the table. One must just remember to update the array size constant too, if
the number of elements in the array changes.

Parameter Description
Address Address of the register that is accessed.
Value Value that is written to the register.
Write If ’1’, write the value to the register, otherwise read

the register’s contents and ignore the Value field.
Sleeping time Some operations require some waiting, so the Comm

module stays idle as many cycles as the Sleeping time shows.

Table 3: Contents of a single initialization array element.

After initialization the module waits and polls the link status bit of the
DM9000A chip to know when the link is up and the chip is ready for transmis-
sions. After the link status is up, the module waits few more seconds for the
link on the other side to be ready as well and then notifies the Comm module

2 MODULES 5

about initialization being complete. The Init module has the Comm modules
complete attention as long as the ready bit has not been risen. When done, Init
module becomes idle until next reset.

2.3 Interrupt handler module

Interrupt handler does exactly what the name suggests. It handles interrups
from the DM9000A. The eth interrupt in signal is connected straight to the
handler, but it needs Comm module to know why the interrupt has been risen.

Only two sorts of interrupts are handled. If there is a new received trans-
mission waiting, the Interrupt handler raises the rx waiting signal that goes to
Read module. The other handled interrupt tells that an outgoing transfer has
been completed. In that case the handler raises the tx ready signal.

2.4 Read module

Read module wakes up and starts requesting a turn when signal rx waiting is
lifted up by Interrupt handler. Module’s state machine is shown in figure 2.
Data comes from the chip as shown in table 4. The leading 0x01 byte means
that there is a new frame waiting. In theory the value of the first byte should
always be peeked first without reading it away from the buffer. We know from
the interrupt when there is a new received frame but we still do a dummy peek
to the buffer (see section 3.4 for details why).

After peeking (and a little delay) we start reading values for real. The peeked
byte is still there, and in state check first byte we read it away from the buffer
and check that it is correct. It has to be 0x01 (standing for a new frame),
because this state is not entered without a received frame available interruption
from the DM9000A chip. If the byte is something else than 0x01, we stop doing
anything and go to the fatal error state.

Status byte contains the same information than DM9000A’s RX status reg-
ister. Bit 7 tells us that the incoming frame has a multicast address (not so
serious) but all the others stand for different errors. So if other than bit number
7 is up, we raise up the rx erroneous signal. The frame still gets sent to the
upper level, which can decide what to do with it.

After the status check we get the frame length and strip away the ethernet
header (source and destination addresses and ethernet frame type field) and
start relaying the data to the upper level. The last two bytes form a CRC
checksum that has already been checked by the DM9000A chip, so it’s just
stripped away from the data. Last thing to do is to peek the next value in the
buffer to check whether there is another frame waiting (0x01) or not (0x00).
Once again any other value means that there is something seriously wrong.

If there is another frame, it might have arrived when we were reading out
the first one. This means that there must be an RX interrupt waiting to be
handled by the Interrupt handler. The interrupt must be cleared so that the
handler doesn’t inform us about a frame that we have already read out from
the RX buffer.

2 MODULES 6

wait_rx
peek_first_byte delay

prepare_comm

check_first_byte
check_statusget_lengthstrip_header

relay_data

strip_checksum

check_next

fatal_error

clear_interrupt

Figure 2: State machine of the Read module.

2.5 Send module

Like the monstrous diagram in figure 3 tries to explain, Send module consists
of three different state machines. Conf state is used every time the module has
to configure or read DM9000A’s configuration registers. The init state state
machine is more or less a relic from earlier design phases and nowdays its only
function is to separate normal running state (named ’done’) from the state where
we fetch our own MAC address from the DM9000A right after reset.

The tx state is really the main state machine in the module. It stays in
the wait tx state until upper level application announces that it wants to send
something. Next job to do is to store transfer length to the DM9000A’s registers.
After that we set the send buffer address to the chip. This also tells the Comm
module to start relaying data straight to the buffer.

Send module is responsible of writing the ethernet header to the frame. The
header consists of destination address (usually called ’target address’ in the
code), source address (that we fetched in the get MAC state of init state state

0x01 status length low length high data . . . CRC 1 CRC 2 0x00/0x01

Table 4: Format of RX data in the RX data buffer. One cell equals one byte.

2 MODULES 7

wait_tx

write_trgt_MAC

write_own_MAC

write_frame_type

count_data

write_conf

read_reply

wait_busy

get_MAC

conf_tx_reg

conf_len_lo

conf_len_hi

Done

= conf_state

= init_state

= tx_state

send_cmd

Figure 3: State machines of the Send module.

machine) and ethernet frame type, that for example separates ARP packets
from IP packets.

After writing the header the Send module starts to relay data from upper
level application to the Comm module. It keeps track of the amount of data
that has already been written and knows when to stop relaying. After data has
been written the Send module raises TX Request bit of DM9000A’s TX Control
Register. This is not always necessary because the chip can be configured to
start transmitting automatically after certain percentage of the data is writ-
ten to the buffer. There is a constant send cmd en c in the code that decides
whether the send command is given or not.

3 RESTRICTIONS AND WEIRD STUFF 8

3 RESTRICTIONS AND WEIRD STUFF

3.1 Intended use

This controller is meant to be simple and small, so it’s not possible to use
all of the features supported by DM9000A. Also the main goal is to support
predetermined communication between Altera’s DE2 board and a single PC
and for example status bits warning about collisions are not monitored. All in
all, using this DM9kA controller to connect DE2 to a network may work, but
problems will arise once something a bit unusual happens.

3.2 Performance

The DM9000A chip can read or write two bytes of data every second clock
cycle. With 25 MHz clock this means bandwidth of 25 MB/s or 200 Mbit/s.
At the moment this controller block is reading received data only once in three
cycles, so rx bandwidth is really 16.7 MB/s or 133 Mbit/s. If higher rate is
needed, Comm module’s read data state has to be modified. Highest measured
bandwidth of the ethernet bus with the DM9000A chip using this block was
97.4 Mbit/s.

3.3 Initializing device

The DM9000A is a bit curious device and its datasheets are not too helpful.
There are instructions in the DM9000A Application Notes about initializing
the chip, but at least I couldn’t get the thing working following them. Altera’s
example code that came with the DE2 revealed, that some tricks have to be
done (like turning on and off the PHY) in order to get the chip up and running.
After getting the chip to work, I didn’t give the initialization process too much
attention, so there might be some redundancy.

3.4 Using the RX buffer

Reading from DM9000A’s control register 0xF0 is supposed to return the first
value in the RX data buffer without incrementing the buffer’s pointer. So the
value is just peeked without removing it from the buffer. This is meant to be
used when checking whether there is something to be read in the buffer (see
section 2.4). But every time the RX buffer is used after some other operations,
the first peek to it returns something completely different than the first value.
The same invalid value is also returned, if we are using register 0xF2 (that
increments the buffer pointer) as the first read operation.

DM9000A’s data sheet doesn’t really explain this, but it gives some hints
what to do and why. In an example C code there is a dummy read using the
0xF0 register. The returned value isn’t used in any way. The description of the
0xF0 register in the data sheet also states that by reading the register value ”the
DM9000A starts to pre-fetch the SRAM data to internal data buffers”. They

3 RESTRICTIONS AND WEIRD STUFF 9

just forgot to mention, that the first read operation apparently returns some
old random value from those internal data buffers and only after that you can
start reading the correct data.

