UDP/IP witH VHDL

Written by: Jussi Nieminen
22.10.2009
Tampere University of Technology

Contents

1 INTRODUCTION 1
1.1 Intended use and restrictions 1
1.2 ARP block 1

2 USAGE 2
2.1 Application side 2

2.1.1 Imterface. 2
2.1.2 About the length and data busses 3
2.1.3 How to get bits running 4
2.2 Ethernetsideo)
2.2.1 Interface and timing 5

3 IMPLEMENTATION DETAILS 7
3.1 Structure of the UDP/IP block 7
3.2 State machines of the UDP block 8
3.3 Sending and receiving oo 8

References 11

1 INTRODUCTION 1

1 INTRODUCTION

UDP/IP block is a network interface that is capable of sending and receiving
UDP (User Datagram Protocol) packets over ethernet. The block also includes
ARP (Address Resolution Protocol) funtionality. All the source codes are writ-
ten in VHDL (Very high speed integrated circuit Hardware Description Lan-
guage) and licensed under LGPL (Lesser General Public License).

1.1 Intended use and restrictions

This block is originally designed for a Network-on-Chip monitor application to
get high data bandwidth from Altera’s DE2 board to a single PC. (At least
higher than with UART.) Future applications in mind possibility to receive
UDP packets sent from a PC was also included. This means that the block
is desinged for predetermined communication between two agents using UDP
packets only. IP level broadcasting or network masking are not supported.
Correct functionality when connecting this block to a network full of agents and
protocols is not guaranteed. In addition the size of the used ARP table (two
entries) is not suitable for use in larger networks and there’s no timeouts in
cases like ARP request being never answered.

So to wrap things up, without modification this block can be used in special
communication within two agents or in small special networks using proper
UDP packets only. Other types of packets are always simply discarded. If you
need something more advanced, this block is a good starting point for further
development.

1.2 ARP block

As mentioned, the UDP/IP block also includes ARP functionality. The internet
is a wonderful place, and with little searching ready-made ARP blocks by Ashley
Partis and Jorgen Peddersen [1] came up. The files were modified to meet our
needs (and match our coding style), but the basic functionality is the same.

2 USAGE 2

2 USAGE

2.1 Application side

This section describes how the UDP/IP block is connected to and used with an
application.

2.1.1 Interface

Figure 1 shows the interface with an application. Thicker arrows are wider
busses while thinner ones stand for single bit signals. Most of the signals are
hopefully self-explanatory. The rx_erroneous signal means that the ethernet
controller has detected a possibly data corrupting situation (e.g. collision), but
the frame was nevertheless received. So it’s relayed to the application, which
can decide what to do with it.

new_tx

A

tx_length (11 bits; length in bytes)

destination_address (32 bits)

destination_port (16 bits)

source_port (16 bits)

tx_data (16 bits)

tx_data_valid

b A A A A

tx_read_enable

\

UDP/IP new_rx
rx_length (11 bits; length in bytes)

\ J

Application

source_address (32 bits)

source_port (16 bits)

destination_port (16 bits)

rx_data (16 bits)

yYYYVYYVYY

rx_data_valid

IX_erroneous

\ J

rx_read_enable

A

Figure 1: Interface between an application and the UDP/IP block.

2 USAGE 3

2.1.2 About the length and data busses

As shown in the interface, the length bus is 11 bits wide. This corresponds
with the maximum possible ethernet frame size (1518 bytes). IP packets could
be much longer, but there is no support for packet fragmenting and thus the
maximum possible data length is maximum ethernet frame size minus headers
and ethernet checksum. The application is responsible for keeping the packet
size below maximum.

ldata < lmax - leth - lip - ludp - ZC'RC'
=1518 —14—20—8—4
= 1472 bytes

Length information is given before any data so the application must know
beforehand how much it’s going to send. This is due to the fact that we want
to use ethernet controller chip’s internal data buffers to save FPGA resources,
and for that (at least some if not all) ethernet chips need the length beforehand.
The application must make sure, that it really sends or receives data as much as
the length value tells. Remember that the length is given in bytes even
though data is written two bytes at the time!

The 16-bit data bus consists of two bytes instead of a single 16-bit data word.
Endianess of the data bus is different from an ethernet frame (n downto 0 versus
0 to n), so if you want to have a sequence 0xABCD on a data frame, you will
have to write it as 0xCDAB to the data bus. If there is a transfer with odd
length, the last byte will use the bits 0 to 7 while bits 8 to 15 can have random
values. The figure 2 desperately tries to explain all this.

TX data bus
. . XX* {OXEF
TX information, used to create the headers. *The transfer
(4 in this example
Length || Dest. Address | | Dest. Port | |Source port : has odd length,

(11 bits) (32 bits) (16 bits) || (16 bits) o the st byte
OxAB: 0x89 is "don't care”.

/ / 0x67.0x45
/ /
| | 0x23:0x01
| | 15......8 | 7.......0
A
| r \
'ﬁggg‘ IP header UDP header |0x01 0x23 0x45 (0x67 0x89 OXAB|e e ¢ |OXEF

Ethernet frame

Figure 2: Ezxample of how the ethernet frame is formed.

2 USAGE 4

2.1.3 How to get bits running

Timing for transferring and receiving data is shown in figure 3. A new transfer is
started by setting up the new_tx signal, all the needed information (TX length,
destination address and ports) and the first two bytes of data with data_valid
signal. When UDP/IP block is ready, it will start reading data by raising the
tx_read_enable signal. All the application’s signals must remain stable from the
moment new_tx is risen to the first time the read enable is up. It might take a
while before the UDP/IP block starts to read if the destination MAC address
is not yet in the ARP table. The first time the read enable is up means that all
the other information (address, ports etc.) has been received and those signals
no longer have to remain the same.

Receiving works exactly the same way, the UDP/IP block sets all the needed
information, first bytes of data and new_rx signal and application starts to read
by raising up the rx_read_enable signal. The information signals are allowed to
change (thus are considered invalid) once the read enable signal is risen for the
first time.

5
L, -
clock h

new_tx/rx / \

burx_length xXX__X_Valid length X xxx

dest./source_address XXX X Valid: :a:d:d:ress X XXX

destination_port XXX X Valid: E)Ofi X XXX

source_port xxx_ X_Valid port X xxx

tdine_data xxX_ X_Data bytes 1 &2 X _Data bytes 3& 4 X_etc..

tx/rx_data_valid / \ / \ /
tx/rx_read_enable / \ / \

rx_erroneous

(in rx only)

XXX = not valid, don't care

Figure 3: Timing of transferring or receiving data.

2 USAGE 5

2.2 Ethernet side

UDP/IP block’s communication with an ethernet controller block is similar as
with an application. Information signals are a bit different but timing follows the
same principle. In fact, when headers have been written and it’s time to write
the data the UDP/IP block simply connects its input and output data signals
so that the application is really talking straight to the ethernet controller block.
More information about this can be found from section 3.

2.2.1 Interface and timing

Figures 4 and 5 contain the interface and timing information. The ethernet
frame type value is part of an ethernet header and it identifies the protocol that
is carried in that frame. UDP/IP block only accepts frames with frame types
0x0800 or 0x0806 standing for IP or ARP frames respectively. Frames with
other types are read from the ethernet controller block but discarded without
notifying the application.

. new_tx
< tx_length (11 bits; length in bytes)
target_ MAC_address (48 bits
< get MAC_ ()
tx_ethernet_frame_type (16 bits
< X L _type ()
tx_data (16 bits
< _data ()
L tx_data_valid
tx_read_enable -
Ethernet
controller UDP/IP
block new_rx -

rx_length (11 bits; length in bytes)

rx_ethernet_frame_type (16 bits)

rx_data (16 bits)

Yyvy

rx_data_valid

IX_erroneous

\

rx_read_enable

A

Figure 4: Interface between an ethernet controller block and the UDP/IP block.

2 USAGE 6

’"
S, ..
clock h
new_tx/rx / \

bdn_length xxx__X_Valid length X xxx
tx/rx_frame_type XXX X Valid frame type X XXX
tinx_data xxX_X_Data bytes 1 & 2 X_Databytes 3 &4 X_etc...

tx/rx_data_valid / \ / \ /
tx/rx_read_enable / \ / \

target_MAC_addr XXX >< Valid target address >< XXX
(in tx only) T

rx_erroneous
(in rx only)

XXX = not valid, don't care

Figure 5: Timing for communication between UDP/IP and ethernet controller
block.

3 IMPLEMENTATION DETAILS 7

3 IMPLEMENTATION DETAILS
This section briefly describes how the UDP/IP block is implemented. If you

aren’t making any changes to the source code you hopefully don’t have to care
about the following stuff.

3.1 Structure of the UDP /IP block

Ethernet
controller

UDP/IP
ARP-packets Headers
ARPSNd UDP
ARP3
Transfer information

Application

Figure 6: Block diagram of the system.

Figure 6 shows the construction blocks of the system. Block named UDP
is responsible of running the show: it commands the ARP side and selects the
multiplexer input. Its other main task is to form or interpret the UDP/IP
headers depending on the direction of the transfer.

The ARP functionality [1] is divided to two blocks. The ARP3 (the ”3”
comes from the file name, don’t know what it stands for) block includes the
ARP table and is responsible of updating it. The ARPSnd block is responsible
of sending and receiving ARP queries and it also communicates with the UDP
block.

3 IMPLEMENTATION DETAILS 8

The (de)multiplexer selects one of the three sources/destinations for data
going/coming to/from the ethernet controller. UDP sends and receives headers
and ARPSnd ARP packets. The third data bus goes directly to the application.
So e.g. during an outgoing transfer, after the UDP block has finished sending
headers it switches the mux to relay data from the application straight into the
ethernet controller.

3.2 State machines of the UDP block

The UDP block contains most of the control logics, and it uses two main and
two sub state machines. Main state machines Tx state and Rz state are shown
in figure 7 and the sub state machines helping in reading or writing headers are
shown in figure 8. The header state machines are used when the main state
machines are in states write/read_IP/UDP _headers.

State rx_error is
entered when there is

Rx state something seriously

@ wrong with the headers,

and it's propably not
going to get any better.

Tx state

State rx_discard is entered in case of an invalid
transmission (e.g. not supported protocol), but it's also used
when the UDP packet is smaller than min. ethernet packet
length and there are extra fillings to be removed.

Figure 7: State diagrams of the two main states.

3.3 Sending and receiving

Figures 9 and 10 illustrate how sending and receiving data really happens. I'm
not an expert on UML, so don’t mind any unintended semantics. These dia-
grams are only trying to show the order in which events take place.

3 IMPLEMENTATION DETAILS 10

Application UDP block ARP blocks Ethernet controller

[1: New tx + tx information ‘

|

| Naturally, if the
I MAC address is
|

L

already in the ARP
table, no queries
need to be sent.

2: MAC address query

I
| 3:ARP query

4: ARP reply |

5: MAC address

6: New tx + tx information

7: Headers

8: Data

Figure 9: Sequence diagram about sending a packet via UDP/IP.

Application UDP block ARP blocks Ethernet controller

New rx + rx information

Headers

New rx + rx information

Data

Figure 10: Sequence diagram about receiving a packet via UDP/IP.

REFERENCES 11

References
[1] Ashley Partis, Jorgen Peddersen. VHDL P Stack
Project. University of Queensland, Australia, 2001.

URL: http://www.itee.uq.edu.au/~peters/xsvboard/index.html

