

Gaussian Noise Generator
Core Specification

Guangxi Liu
guangxi.liu@opencores.org

Revision 1.0
Jan. 29, 2015

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org i

Revision History

Revision Date Author Description
0.1 2014/8/4 Guangxi Liu First Draft.
1.0 2015/1/29 Guangxi Liu Revision 1.0

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org ii

Contents

Revision History i

1 Introduction 1

1.1 Description 1
1.2 Features 1
1.3 Applications 1

2 Algorithm 2

2.1 Overview 2
2.2 CTG 2
2.3 ICDF 3
2.4 Performance 4

3 Implementation 6

3.1 Schematic Symbol 6
3.2 Parameters 6
3.3 Ports 6
3.4 Structure 7

3.4.1 Top Module 7
3.4.2 CTG 7
3.4.3 ICDF 8

3.5 Timing 9

4 C/MATLAB Model 10

4.1 C codes 10
4.2 C MEX and MATLAB codes 10

5 Synthesis 11

5.1 Xilinx FPGA 11
5.2 Altera FPGA 11
5.3 ASIC 11

6 Simulation 12

6.1 Test Bench 12
6.2 Simulation Result 12

References 13

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 1

1 Introduction

1.1 Description
The Gaussian Noise Generator (GNG) core generates white Gaussian noise of
standard normal distribution, which can be used to measure BER to extremely low
BER levels (~10-15). The core uses a 64-bit combined Tausworthe generator and an
approximation of the inverse normal cumulative distribution function, which obtains a
PDF that is Gaussian to up to 9.1σ.

The core was designed using synthesizable Verilog code and can be delivered as a
soft-IP targeted for any FPGA device and ASIC technology. C/MATLAB models and
corresponding test benches are also available.

1.2 Features
 Period of generated noise sequence is about 2176

 Random distribution in the range of ±9.1σ

 Noise is quantized to 16 bits with 5 bits of integer and11 bits of fraction

 Internal 64-bit uniform random number generator with configurable initial seeds

 Based on a piecewise polynomial approximation of the inverse normal
cumulative distribution function

 High throughput, over 300 MHz clock rate and output sample rate in advanced
FPGA

 Fully synchronous design using single clock

 Design optimized for Xilinx & Altera FPGA technology

1.3 Applications
 Communication system requiring accurate emulation of an AWGN channel

 Bit error rate measurement system

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 2

2 Algorithm

2.1 Overview
Most digital methods for generating Gaussian random variables are based on the
transformation of uniformly distributed random variables. The most important
methods for the design of hardware GNG are summarized below.

CLT
The central limit theorem (CLT) states that the sum of a sufficiently large number of
independent uniformly distributed random variables will be approximately normally
distributed. High accuracy GNGs need to sum up a large number of samples and the
CLT method is not suitable for high-speed applications.

B-M Method
The Box–Muller (B-M) method has been widely used to generate Gaussian noise
samples. This method is based on the transformation of two independent uniformly
distributed random numbers, i.e., U(0,1), using elementary functions (sqrt(), ln(), and
cos()/sin()).

Rejection–Acceptance Methods
The rejection–acceptance methods, basically the Polar method and the Ziggurat
method, are the most important methods in software random number generation. Their
main drawback is the use of conditional statements that lead to a nonconstant output
rate.

Wallace Method
The Wallace method is based on the fact that linear combinations of Gaussian-
distributed random numbers are also Gaussian distributed. This method avoids the
evaluation of transcendental functions.

ICDF
The inversion method is based on the use of the ICDF of the Gaussian distribution to
transform a uniformly distributed random variable x into a Gaussian variable y
through y = ICDF(x). Using this method, it is possible to generate random samples for
arbitrary distributions. This method is used as the design presented here.

2.2 CTG
Although traditional linear feedback shift registers (LFSRs) are often sufficient as a
uniform random number generator (URNG), Tausworthe URNGs are fast and occupy
less area. Furthermore, they provide superior randomness when evaluated using the
Diehard random number test suite.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 3

The combined Tausworthe generator (CTG) is used here follows the algorithm
presented by [3][4], which generates a 64-bit uniform random number per clock and
has a large period of 2176(≈1053).

The parameters of generator are as follows (see Table 2 in [4]):

L = 64, J = 3, k = 176

(k1, k2, k3) = (63, 58, 55)

(q1, q2, q3) = (5, 19, 24)

(s1, s2, s3) = (24, 13, 7)

The algorithm is described in [3], and special process is used in generating valid
initial state of generator. See relative codes of design.

2.3 ICDF
The inversion method generates Gaussian samples via the ICDF of the Gaussian
distribution. A uniformly distributed random sample U(0,1)x∈ is transformed into a
sample y with the desired probability density function applying y = ICDF(x). The
definition of ICDF is

 12 erI fCDF() (2 1)x x−= −

The curve of it is shown in Figure 2.1.

Figure 2.1 Curve of function ICDF(x)

It is highly nonlinear when x approaches 0 or 1. Besides, the curve is center
symmetric with x = 0.5. So only the part of x > 0.5 is considered except sign.

The design uses a nonuniform segmentation scheme for the ICDF approximation.
Typically, the most significant bits (MSBs) of the URNG output determine the
segment and from the rest of the bits, the most significant ones are used as the input
for interpolation inside the selected segment. So, we need to compute ICDF(u), u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4

x

IC
D

F(
x)

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 4

being the value obtained if the bits of the URNG output are interpreted as an unsigned
binary representation (64 bits here).

The architecture of nonuniform segmentation scheme for the ICDF approximation is
similar to the one proposed in [6] for the hierarchical segmentation. The segmentation
of the function leads to two basic blocks in the ICDF computation: segment selection
and interpolation inside the selected segment. For interval (0, 0.5], P2SL segmentation
schemes is used for the first pass and then US for the second pass.

The hardware computes ICDF(u’), u’ being another uniform variable, which is
different from u, created also from the URNG output bits. ICDF(u’) can be computed
more efficiently than ICDF(u), both being uniformly distributed variables with the
same word length and, therefore, leading to the same output precision[1].

For each inner segment, a second order polynomial evaluation is performed, that is

 2 1 0()y C x C x C= + +

And we need to find the best coefficients C0, C1 and C2 making the approximation
error minimum. For real hardware implementation, these coefficients required further
converted to fixed-point.

2.4 Performance
The error plot of each segment is shown in Figure 2.2. For each segment, only the
maximum error between fixed-point and ideal result is shown.

Figure 2.2 Error plot for each segment

From above plot, the maximum absolute error is about 0.00035, which is about 0.72
ulp (1 ulp = 2-11). The result satisfies system accuracy requirement.

Figure 2.3 below shows the PDF of generated samples for a population of 10 million.
The black solid line indicates the ideal Gaussian PDF.

50 100 150 200

0.5

1

1.5

2

2.5

3

3.5
x 10

-4

Segment Index

A
bs

 e
rro

r

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 5

Figure 2.3 PDF of the generated samples for 10 million samples

We can see that the generated samples closely follow the true Gaussian PDF.

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

P
D

F(
x)

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 6

3 Implementation

3.1 Schematic Symbol
The schematic symbol for the core is shown in Figure 3.1.

Figure 3.1 Core schematic symbol

3.2 Parameters
The parameters for the core are shown in Table 3.1.

Table 3.1 Core parameters

Name Width Description
INIT_Z1 64 Initial state value for CTG sub module 1.
INIT_Z2 64 Initial state value for CTG sub module 2.
INIT_Z3 64 Initial state value for CTG sub module 3.

3.3 Ports
The ports for the core are shown in Table 3.2.

Table 3.2 Core ports

Name Width Direction Description
clk 1 Input System clock.
rstn 1 Input System synchronous reset, active low.
ce 1 Input Clock enable.

valid_out 1 Output Output data valid.
data_out 16 Output Output data, fixed point format s<16,11>.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 7

3.4 Structure
3.4.1 Top Module

The top module comprises module CTG and ICDF, as shown in Figure 3.2.

Figure 3.2 Top module architecture

3.4.2 CTG

The architecture of CTG is depicted in Figure 3.3. For simplicity the control signals
are not presented.

Figure 3.3 Architecture of CTG

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 8

The initial values of registers z1, z2 and z3 are precalculated. And combinatorial logic
for each branch is (symbol⊕denotes the logical exclusive-or operator)

3.4.3 ICDF

The architecture of ICDF is depicted in Figure 3.4. For simplicity the control signals
and registers are not presented.

Figure 3.4 Architecture of ICDF

Where submodule S is sign bit extension, TRN is data truncation, and RND is data
round. All multipliers and adders are signed operation.

Submodule LZD is to count number of leading zeros of 61-bit number. Here we
choose the methodology proposed in [5]. The architecture of LZD is shown in Figure
3.5.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 9

Figure 3.5 Architecture of LZD

Where the logic of LZD4 is as below

V = d[0] | d[1] | d[2] | d[3]

P = {~(d[2] | d[3]), ((d[2] | d[3]) ? ~d[3] : ~d[1])}

And the logic of LZD8 is

V = V[0] | V[1]

P = {~V[1], ((V[1]) ? P[1] : P[0])}

And so on. Note that in the last level LZD64 only P is used.

3.5 Timing
The typical timing diagram is in Figure 3.6.

Figure 3.6 Core timing diagram

The signal valid_out asserts after 11 clock cycles when signal ce asserts. If ce is tied
high, data_out is output every clock.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 10

4 C/MATLAB Model

4.1 C codes
We use C codes to build the functional model. The file names and their descriptions
are listed in Table 4.1 below.

Table 4.1 C codes list

File Name Description

taus176.h Header file for maximally equidistributed combined Tausworthe
generator.

taus176.c Implementation file for maximally equidistributed combined
Tausworthe generator.

icdf.h Header file for piecewise polynomial approximation of inverse of the
normal cumulative distribution function.

icdf.c Implementation file for piecewise polynomial approximation of
inverse of the normal cumulative distribution function.

These codes are also used as C MEX codes in MATLAB model (See next section).

4.2 C MEX and MATLAB codes
To accelerate MATLAB simulation speed, C MEX method is used. The file names
and their descriptions are listed in Table 4.2 below.

Table 4.2 C MEX/MATLAB codes list

File Name Description
ctg_seed.c C MEX file for generate Combined Tausworthe Generator seed.
ctg_seed.m MATLAB helper file for ctg_seed function.
ctg_gen.c C MEX file for generate Combined Tausworthe number.
ctg_gen.m MATLAB helper file for ctg_gen function.

icdf_gen.c C MEX file for generate inverse of the normal cumulative distribution
function.

icdf_gen.m MATLAB helper file for icdf_gen function.
build_mex.m Build above C MEX files.
test_gng.m Test Gaussian noise generator.

Note that 64-bit integer data type is used in C MEX file, and VC++ should be used as
compile in MATLAB mex setup. Typical versions are MATLAB R2011b and Visual
C++ 2010.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 11

5 Synthesis

5.1 Xilinx FPGA
FPGA Device is Virtex-6 XC6VLX240T-2ff1156 and implementation tool is Xilinx
ISE 14.7. Results are shown in table 5.1, and are slightly better than [2].

Table 5.1 Implementation results (place and route) for Xilinx FPGA

Number of occupied Slices 97
Number of RAMB36E1 1
Number of DSP48E1s 2
Maximum frequency 311.8 MHz

5.2 Altera FPGA
FPGA Device is Stratix IV GX EP4SGX230KF40C3 and implementation tool is
Altera Quartus II 11.1. Results are shown in table 5.2, and are slightly better than [2].

Table 5.2 Implementation results (place and route) for Altera FPGA

Total LABs 34
M9K blocks 2

DSP block 18-bit elements 4
Maximum frequency 376.8 MHz

5.3 ASIC
ASIC technology library is SMIC 55nm LL and synthesis tool is Synopsys Design
Compiler 2012.06-SP3. Results are shown in table 5.3.

Table 5.3 Implementation results for SMIC library

Area 16739.52 μm2
Equivalent gates 13078
Target frequency 400.0 MHz

Power 4.2133 mW

The smallest area (1.28μm2) of an NAND2 gate is used as the base in equivalent gates
calculation. Notice that the results are not the best due to the core is not specially
optimized for ASIC.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 12

6 Simulation

6.1 Test Bench
To verify the correction of the core, a SystemVerilog code (tb_gng.sv) is written to do
it. First, we use ctg_seed(1) command in MATLAB to generate the core parameters
INIT_Z1/ INIT_Z1/ INIT_Z1, which are just the default parameters in code gng.v.
The design gng is instantiated as a design under test (DUT) in test bench. The basic
function of test bench is: generate N = 1000000 active signal ce to the DUT, and
record its output data to a data file (gng_data_out.txt).

6.2 Simulation Result
By running the simulation script file run.do in ModelSim, the result data file
gng_data_out.txt can be generated. Meanwhile by running the m file test_gng.m in
MATLAB, the variable x is gotten. Then Import the data in gng_data_out.txt into
MATLAB and compare it with x. The comparison result should be all equal, which
means the function of RTL exactly matching that of MATLAB model.

http://www.opencores.org/

 OpenCores Gaussian Noise Generator Core Specification Rev. 1.0

www.opencores.org 13

References

[1] R. Gutierrez, V. Torres, and J. Valls, “Hardware architecture of a Gaussian noise
generator based on inversion method,” IEEE Trans. Circuits Syst. II, vol. 59, no. 8, pp.
501–505, 2012.

[2] DiComLab, “IP cores: AWGN Generator,” http://www.gised.upv.es/awgn.html.

[3] P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators,”
Math. Computation, vol. 65, no. 213, pp. 203-213, 1996.

[4] P. L’Ecuyer, “Tables of Maximally Equidistributed Combined LFSR Generators,”
Math. Computation, vol. 68, no. 225, pp. 261-269, 1999.

[5] V. Oklobdzija, “An Algorithmic and Novel Design of a Leading Zero Detector
Circuit: Comparison with Logic Synthesis,” IEEE Trans. VLSI Systems, vol. 2, no. 1,
pp. 124-128, 1994.

[6] R. C. C. Cheung, D. Lee,W. Luk, and J. Villasenor, “Hardware generation of
arbitrary random number distributions from uniform distributions via the inversion
method,” IEEE Trans. VLSI Systems, vol. 15, no. 8, pp. 952–962, 2007.

http://www.opencores.org/
http://www.gised.upv.es/awgn.html

	Revision History
	1 Introduction
	1.1 Description
	1.2 Features
	1.3 Applications

	2 Algorithm
	2.1 Overview
	2.2 CTG
	2.3 ICDF
	2.4 Performance

	3 Implementation
	3.1 Schematic Symbol
	3.2 Parameters
	3.3 Ports
	3.4 Structure
	3.4.1 Top Module
	3.4.2 CTG
	3.4.3 ICDF

	3.5 Timing

	4 C/MATLAB Model
	4.1 C codes
	4.2 C MEX and MATLAB codes

	5 Synthesis
	5.1 Xilinx FPGA
	5.2 Altera FPGA
	5.3 ASIC

	6 Simulation
	6.1 Test Bench
	6.2 Simulation Result

	References

