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1 Introduction 

1.1 Description 
The Gaussian Noise Generator (GNG) core generates white Gaussian noise of 
standard normal distribution, which can be used to measure BER to extremely low 
BER levels (~10-15). The core uses a 64-bit combined Tausworthe generator and an 
approximation of the inverse normal cumulative distribution function, which obtains a 
PDF that is Gaussian to up to 9.1σ. 

The core was designed using synthesizable Verilog code and can be delivered as a 
soft-IP targeted for any FPGA device and ASIC technology. C/MATLAB models and 
corresponding test benches are also available. 

1.2 Features 
 Period of generated noise sequence is about 2176 

 Random distribution in the range of ±9.1σ 

 Noise is quantized to 16 bits with 5 bits of integer and11 bits of fraction 

 Internal 64-bit uniform random number generator with configurable initial seeds 

 Based on a piecewise polynomial approximation of the inverse normal 
cumulative distribution function 

 High throughput, over 300 MHz clock rate and output sample rate in advanced 
FPGA 

 Fully synchronous design using single clock 

 Design optimized for Xilinx & Altera FPGA technology 

1.3 Applications 
 Communication system requiring accurate emulation of an AWGN channel 

 Bit error rate measurement system 
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2 Algorithm 

2.1 Overview 
Most digital methods for generating Gaussian random variables are based on the 
transformation of uniformly distributed random variables. The most important 
methods for the design of hardware GNG are summarized below. 

CLT 
The central limit theorem (CLT) states that the sum of a sufficiently large number of 
independent uniformly distributed random variables will be approximately normally 
distributed. High accuracy GNGs need to sum up a large number of samples and the 
CLT method is not suitable for high-speed applications. 

B-M Method 
The Box–Muller (B-M) method has been widely used to generate Gaussian noise 
samples. This method is based on the transformation of two independent uniformly 
distributed random numbers, i.e., U(0,1), using elementary functions (sqrt(), ln(), and 
cos()/sin()). 

Rejection–Acceptance Methods 
The rejection–acceptance methods, basically the Polar method and the Ziggurat 
method, are the most important methods in software random number generation. Their 
main drawback is the use of conditional statements that lead to a nonconstant output 
rate. 

Wallace Method 
The Wallace method is based on the fact that linear combinations of Gaussian-
distributed random numbers are also Gaussian distributed. This method avoids the 
evaluation of transcendental functions. 

ICDF 
The inversion method is based on the use of the ICDF of the Gaussian distribution to 
transform a uniformly distributed random variable x into a Gaussian variable y 
through y = ICDF(x). Using this method, it is possible to generate random samples for 
arbitrary distributions. This method is used as the design presented here. 

2.2 CTG 
Although traditional linear feedback shift registers (LFSRs) are often sufficient as a 
uniform random number generator (URNG), Tausworthe URNGs are fast and occupy 
less area. Furthermore, they provide superior randomness when evaluated using the 
Diehard random number test suite. 
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The combined Tausworthe generator (CTG) is used here follows the algorithm 
presented by [3][4], which generates a 64-bit uniform random number per clock and 
has a large period of 2176(≈1053). 

The parameters of generator are as follows (see Table 2 in [4]): 

L = 64, J = 3, k = 176 

(k1, k2, k3) = (63, 58, 55) 

(q1, q2, q3) = (5, 19, 24) 

(s1, s2, s3) = (24, 13, 7) 

The algorithm is described in [3], and special process is used in generating valid 
initial state of generator. See relative codes of design. 

2.3 ICDF 
The inversion method generates Gaussian samples via the ICDF of the Gaussian 
distribution. A uniformly distributed random sample U(0,1)x∈  is transformed into a 
sample y with the desired probability density function applying y = ICDF(x). The 
definition of ICDF is 

 12 erI fCDF( ) (2 1)x x−= −  

The curve of it is shown in Figure 2.1. 

 

 
Figure 2.1 Curve of function ICDF(x) 

 

It is highly nonlinear when x approaches 0 or 1. Besides, the curve is center 
symmetric with x = 0.5. So only the part of x > 0.5 is considered except sign. 

The design uses a nonuniform segmentation scheme for the ICDF approximation. 
Typically, the most significant bits (MSBs) of the URNG output determine the 
segment and from the rest of the bits, the most significant ones are used as the input 
for interpolation inside the selected segment. So, we need to compute ICDF(u), u 
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being the value obtained if the bits of the URNG output are interpreted as an unsigned 
binary representation (64 bits here). 

The architecture of nonuniform segmentation scheme for the ICDF approximation is 
similar to the one proposed in [6] for the hierarchical segmentation. The segmentation 
of the function leads to two basic blocks in the ICDF computation: segment selection 
and interpolation inside the selected segment. For interval (0, 0.5], P2SL segmentation 
schemes is used for the first pass and then US for the second pass. 

The hardware computes ICDF(u’), u’ being another uniform variable, which is 
different from u, created also from the URNG output bits. ICDF(u’) can be computed 
more efficiently than ICDF(u), both being uniformly distributed variables with the 
same word length and, therefore, leading to the same output precision[1]. 

For each inner segment, a second order polynomial evaluation is performed, that is 

 2 1 0( )y C x C x C= + +   

And we need to find the best coefficients C0, C1 and C2 making the approximation 
error minimum. For real hardware implementation, these coefficients required further 
converted to fixed-point. 

2.4 Performance 
The error plot of each segment is shown in Figure 2.2. For each segment, only the 
maximum error between fixed-point and ideal result is shown. 

 

 
Figure 2.2 Error plot for each segment 

 

From above plot, the maximum absolute error is about 0.00035, which is about 0.72 
ulp (1 ulp = 2-11). The result satisfies system accuracy requirement. 

Figure 2.3 below shows the PDF of generated samples for a population of 10 million. 
The black solid line indicates the ideal Gaussian PDF. 
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Figure 2.3 PDF of the generated samples for 10 million samples 

 

We can see that the generated samples closely follow the true Gaussian PDF. 
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3 Implementation 

3.1 Schematic Symbol 
The schematic symbol for the core is shown in Figure 3.1. 

 

 
Figure 3.1 Core schematic symbol 

 

3.2 Parameters 
The parameters for the core are shown in Table 3.1. 

 

Table 3.1 Core parameters 

Name Width Description 
INIT_Z1 64 Initial state value for CTG sub module 1. 
INIT_Z2 64 Initial state value for CTG sub module 2. 
INIT_Z3 64 Initial state value for CTG sub module 3. 

 

3.3 Ports 
The ports for the core are shown in Table 3.2. 

 

Table 3.2 Core ports 

Name Width Direction Description 
clk 1 Input System clock. 
rstn 1 Input System synchronous reset, active low. 
ce 1 Input Clock enable. 

valid_out 1 Output Output data valid. 
data_out 16 Output Output data, fixed point format s<16,11>. 
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3.4 Structure 
3.4.1 Top Module 

The top module comprises module CTG and ICDF, as shown in Figure 3.2. 

 

 
Figure 3.2 Top module architecture 

 

3.4.2 CTG 

The architecture of CTG is depicted in Figure 3.3. For simplicity the control signals 
are not presented. 

 

 
Figure 3.3 Architecture of CTG 
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The initial values of registers z1, z2 and z3 are precalculated. And combinatorial logic 
for each branch is (symbol⊕denotes the logical exclusive-or operator) 

  

3.4.3 ICDF 

The architecture of ICDF is depicted in Figure 3.4. For simplicity the control signals 
and registers are not presented. 

 

 
Figure 3.4 Architecture of ICDF 

 

Where submodule S is sign bit extension, TRN is data truncation, and RND is data 
round. All multipliers and adders are signed operation. 

Submodule LZD is to count number of leading zeros of 61-bit number. Here we 
choose the methodology proposed in [5]. The architecture of LZD is shown in Figure 
3.5. 
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Figure 3.5 Architecture of LZD 

 

Where the logic of LZD4 is as below 

V = d[0] | d[1] | d[2] | d[3] 

P = {~(d[2] | d[3]), ((d[2] | d[3]) ? ~d[3] : ~d[1])} 

And the logic of LZD8 is 

V = V[0] | V[1] 

P = {~V[1], ((V[1]) ? P[1] : P[0])} 

And so on. Note that in the last level LZD64 only P is used. 

3.5 Timing 
The typical timing diagram is in Figure 3.6. 

 

 
Figure 3.6 Core timing diagram 

 

The signal valid_out asserts after 11 clock cycles when signal ce asserts. If ce is tied 
high, data_out is output every clock. 
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4 C/MATLAB Model 

4.1 C codes 
We use C codes to build the functional model. The file names and their descriptions 
are listed in Table 4.1 below. 

 

Table 4.1 C codes list 

File Name Description 

taus176.h Header file for maximally equidistributed combined Tausworthe 
generator. 

taus176.c Implementation file for maximally equidistributed combined 
Tausworthe generator. 

icdf.h Header file for piecewise polynomial approximation of inverse of the 
normal cumulative distribution function. 

icdf.c Implementation file for piecewise polynomial approximation of 
inverse of the normal cumulative distribution function. 

 

These codes are also used as C MEX codes in MATLAB model (See next section). 

4.2 C MEX and MATLAB codes 
To accelerate MATLAB simulation speed, C MEX method is used. The file names 
and their descriptions are listed in Table 4.2 below. 

 

Table 4.2 C MEX/MATLAB codes list 

File Name Description 
ctg_seed.c C MEX file for generate Combined Tausworthe Generator seed. 
ctg_seed.m MATLAB helper file for ctg_seed function. 
ctg_gen.c C MEX file for generate Combined Tausworthe number. 
ctg_gen.m MATLAB helper file for ctg_gen function. 

icdf_gen.c C MEX file for generate inverse of the normal cumulative distribution 
function. 

icdf_gen.m MATLAB helper file for icdf_gen function. 
build_mex.m Build above C MEX files. 
test_gng.m Test Gaussian noise generator. 

 

Note that 64-bit integer data type is used in C MEX file, and VC++ should be used as 
compile in MATLAB mex setup. Typical versions are MATLAB R2011b and Visual 
C++ 2010. 
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5 Synthesis 

5.1 Xilinx FPGA 
FPGA Device is Virtex-6 XC6VLX240T-2ff1156 and implementation tool is Xilinx 
ISE 14.7. Results are shown in table 5.1, and are slightly better than [2]. 

 

Table 5.1 Implementation results (place and route) for Xilinx FPGA 

Number of occupied Slices 97 
Number of RAMB36E1 1 
Number of DSP48E1s 2 
Maximum frequency 311.8 MHz 

 

5.2 Altera FPGA 
FPGA Device is Stratix IV GX EP4SGX230KF40C3 and implementation tool is 
Altera Quartus II 11.1. Results are shown in table 5.2, and are slightly better than [2]. 

 

Table 5.2 Implementation results (place and route) for Altera FPGA 

Total LABs 34 
M9K blocks 2 

DSP block 18-bit elements 4 
Maximum frequency 376.8 MHz 

 

5.3 ASIC 
ASIC technology library is SMIC 55nm LL and synthesis tool is Synopsys Design 
Compiler 2012.06-SP3. Results are shown in table 5.3.  

 

Table 5.3 Implementation results for SMIC library 

Area 16739.52 μm2 
Equivalent gates 13078 
Target frequency 400.0 MHz 

Power 4.2133 mW 
 

The smallest area (1.28μm2) of an NAND2 gate is used as the base in equivalent gates 
calculation. Notice that the results are not the best due to the core is not specially 
optimized for ASIC. 
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6 Simulation 

6.1 Test Bench 
To verify the correction of the core, a SystemVerilog code (tb_gng.sv) is written to do 
it. First, we use ctg_seed(1) command in MATLAB to generate the core parameters 
INIT_Z1/ INIT_Z1/ INIT_Z1, which are just the default parameters in code gng.v. 
The design gng is instantiated as a design under test (DUT) in test bench. The basic 
function of test bench is: generate N = 1000000 active signal ce to the DUT, and 
record its output data to a data file (gng_data_out.txt). 

6.2 Simulation Result 
By running the simulation script file run.do in ModelSim, the result data file 
gng_data_out.txt can be generated. Meanwhile by running the m file test_gng.m in 
MATLAB, the variable x is gotten. Then Import the data in gng_data_out.txt into 
MATLAB and compare it with x. The comparison result should be all equal, which 
means the function of RTL exactly matching that of MATLAB model. 
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