
GSC - A SystemC to Verilog translator

Samuel Shoji Fukujima Goto - RA:017335

Prof. Guido Araújo

19/06/2006

Instituto de Computação - IC/UNICAMP

email:samuel.goto@ic.unicamp.br

1

Abstract

This paper presents a comparison between two different hardware description languages

- SystemC and Verilog -, and describes the development of a real life translator.

2

Contents

1 Introduction 4

1.1 What is verilog ? . 4

1.2 What is SystemC ? . 4

1.3 What is SystemC RTL ? . 5

1.4 Filling the gap . 5

2 The Problem 5

2.1 Parsing C++ : Keystone . 6

2.2 Abstract Syntax Tree : Graphviz . 6

2.3 Previous Work . 6

3 Code Emission 7

3.1 sc module . 7

3.2 sc types . 9

3.3 sc input, sc output, sc inout . 9

3.4 sc signals vs variables . 10

3.5 Hierarchy . 11

3.6 sc method . 12

3.7 Statements and Expressions . 15

4 Verification 15

4.1 Syntax . 15

4.2 Semantics . 17

4.3 Synthesis . 18

4.4 Comercial Reference . 18

5 Results 18

5.1 Testbench . 19

3

5.2 Coverage . 19

6 Next steps 19

6.1 High Level Synthesis . 23

6.2 Applications : Synthesis of ArchC Processors 23

References 25

4

1 Introduction

1.1 What is verilog ?

In the past, when circuits were simple, hardware designers were satisfied with schematic

models of digital circuits : it was an elegant and robust way to model a design. However,

with the constant growth of project’s size and complexity, describing circuits with wires

and logical ports was getting impractical, and engineers started discussing how to describe

hardware in a more convenient manner.

Hardware description languages were evolved from this schematic description, and for

a while they were sufficient. Verilog - along with VHDL -, has been used as the industry

standard for hardware descriptions for a while now. They have become famous because

they are simple, have a similar syntax to C, and offers a great power over the project (just

as much as schematic models) with the simplicity of a higher level of abstraction (know

as register transfer level).

However, once again, digital circuits started getting too big and complex, and describing

them in a hardware description language such as Verilog is becoming impractical for systems

nowadays. Designers needed an even higher level of abstraction and better support for tools.

1.2 What is SystemC ?

SystemC is a C++ library that extends the C++ core to support hardware descriptions

constructs. SystemC is used to model and describe hardware with all the benefits of the

C++ infrastructure (compilers, editors, libraries, pre-processors, etc).

It supports and implements most of hardware data types - wires, signals, bits, registers,

memory, etc - and all hardware language paradigms - parallel processing, asynchrony, etc.

Although SystemC is perfectly capable of describing hardware at the Register Transfer

Level (RTL), it has been mostly used because it offers great support at a high level of

5

abstraction, the System Level.

1.3 What is SystemC RTL ?

The idea behind SystemC is that designers should have only one language to describe

all levels of abstraction during the design flow. In the past, the verification team wrote

their code in a high level language (such as C or Java) while the designers team were

writing code in Verilog of VHDL.

The final description of a SystemC module is a Register Transfer Level model of the

design, witch should be as detailed as it would be in any other language.

The Register Transfer Level of a language is a subset of this language, that can be

synthesized by a synthesis tool.

1.4 Filling the gap

Verilog and VHDL has been know as the standard for hardware description languages

in the industry. Although SystemC is capable of describing RTL modules, it will take a

while for the industry to accept it as a standard.

What is being presented on this paper is an attempt to produce a real life translator of

SystemC RTL to Verilog RTL, a verification methodology and a discussion on the results.

2 The Problem

To write a compiler (or a translator) one must handle three basic parts : the front end

(parsing), elaboration (verification and optimization), and the back end (code emission

). In this chapter I will discuss these three basic steps, and show how I made some of the

design decisions.

6

2.1 Parsing C++ : Keystone

I have seriously considered writing a c++ parser from scratch, but I have quickly learned

a lesson : parsing c++ is not an easy task.

As stated before, parsing c++ could be a tedious and laborious work. It is not a difficult

work per se, but taking care of each c++ ambiguity and syntactical use case would take a

lot of time.

However, as strange as it may seem, trying to use an existent one isn’t as easy as writing

one from scratch. Fortunately, after a long search, there was one good solution : keystone

1.

Keystone is a c++ front end built to be a c++ front end : nothing more. There is no

need to extract the c++ parser from a project or write a new one from scratch; keystone

parses c++ source code and returns an AST representation in a graphviz dot format.

2.2 Abstract Syntax Tree : Graphviz

A good implementation decision on an AST representation is definitely time well spent.

So I took a while and found a good graph modeling package called graphviz. It supports

most of the graphs operators and transforms and it is very stable. Graphviz also generates

graphical images of a graph, witch makes development easier 2.

2.3 Previous Work

Before gsc, there were other attempts to produce a SystemC to Verilog translator.

Unfortunately, some of the most successful efforts are highly cost commercial products.

1http://www.cs.clemson.edu/ malloy/projects/keystone/doc.html
2http://www.graphviz.org/

7

Translators like Synopsy’s dc shell and Forte’s cynthVLG are great at their job, but not

everyone can have unlimited access to them (by unlimited I mean ”forever and at a

reasonable cost”).

There are, however, some attempts to produce an open source translator. Two of them

are worth noting : sc2v and tabajara. The first is a opencores.org attempt, produced by an

European group. The second is a Brazilian attempt. They are both very immature, and

they are not ready to use in a normal design flow.

Their immaturity resides on one small but crucial design decision : they both tried

to write a SystemC grammar to parse models and preprocessor directives. In effect, this

design decision ties the code to a very strict c++ subset, witch makes general programming

impractical : you will have to write each construct exactly how the front end wants you to.

Although I have tried myself to write a c++ parser, I have quickly noticed that writing

a decent one is just not feasible in a short time (it would actually be a project on its own).

Not using a well established preprocessor like cpp didn’t seem like a good design decision

either.

3 Code Emission

After SystemC RTL code is parsed and represented in an AST, each AST node is visited

to extract information about the module. Information like module interface, signals and

variable declarations, methods and sensitivity lists and modules hierarchy is extracted with

a simple AST walk.

Each SystemC construct is then translated to a Verilog correspondent. Table 1 shows

an example of the basic module structure.

3.1 sc module

8

Table 1: Basic syntax of a module

SystemC Verilog

#include < systemc . h>

SC MODULE(ha l f adde r){

s c i n < bool > a , b ;

sc out < bool > sum , carry ;

void p r c ha l f add e r (){

sum = (a ˆ b) ;

car ry = (a & b) ;

}

SC CTOR(ha l f adde r){

SC METHOD(p r c ha l f add e r) ;

s e n s i t i v e << a << b ;

}

}

module ha l f adde r (a , b , sum , car ry) ;

input a ;

input b ;

output sum ;

output carry ;

reg sum ;

reg carry ;

always @(a or b)

begin : p r c ha l f a dd e r

sum <= (a ˆ b) ;

car ry <= (a & b) ;

end

end module ;

9

The basic container in SystemC is called a SC MODULE(name). SC MODULE(name

) is actually a macro that expands into a c++ class declaration. Since we have total control

over the pre processor (where macros are expanded), I have created a file called systemc.h

with several systemc macros that expands as I find convenient. The SC MODULE(name

macro) actually expands as the following :

#de f i n e SC MODULE(module) class module

This is useful since as you walk on the AST, it is good to have pointers for keywords

like SC MODULE, SC METHOD, etc. So basically, when we walk the AST and find a

node like

class ha l f adde r {

// AST ch i l d nodes

}

we consider this a module declaration, witch will be further translated to

module ha l f adde r () ;

// AST ch i l d nodes

end module ;

3.2 sc types

Each SystemC data type must have a Verilog correspondent(See Table 2).

Table 2) shows simple data width and sign conversions. Since Verilog isn’t a strongly

typed language (like VHDL), it greatly facilitates the translation job.

3.3 sc input, sc output, sc inout

Input and output ports are extracted from the AST and translated into verilog. For

example, port declarations like

10

Table 2: SystemC to Verilog data types mapping

SystemC data types Verilog data types

sc logic var reg var

sc bool var reg var

int var reg signed[31 : 0] var

sc int< n > var reg signed[n-1 : 0] var

sc uint< n > var reg [n-1 : 0] var

sc bigint< n > var reg signed[n-1 : 0] var

sc biguint< n > var reg [n-1 : 0] var

SC MODULE(counter){

s c i n < bool > c l k ;

sc out < int > value ;

// s ta tements

}

Is translated into :

module counter (c lk , va lue) ;

input c l k ;

output [3 1 : 0] va lue ;

reg [3 1 : 0] va lue ;

−− statements

end module ;

3.4 sc signals vs variables

11

An important - and difficult - translation decision must be taken when translating sig-

nals and variables to Verilog. According to the SystemC language specification, signals

behave much like Verilog registers assignment : they are non blocking, and can be accessed

on different parallel threads (Table 3). Variables, however, behave much like wires as-

signments, since they are blocking and can only be accessed in a given scope (Table 4

).

They are both declared as regs, but the difference lies on the kind of assignment they

take during code execution : <= or :=.

The exception is when signals are used to connect sub modules in a hierarchy. In this

case, signals should be considered and declared wires (Table 5).

Table 3: sc signal to reg translation example

SystemC Verilog

SC MODULE(example){

s c i n < bool > c l k ;

s c s i g n a l < bool > a ;

void prc example (){

a = 1 ;

}

}

module example (c l k) ;

input c l k ;

reg a ;

always @(c lk)

begin : prc example

a <= 1;

end

end module ;

3.5 Hierarchy

There are many ways to describe hierarchy in SystemC (mainly because SystemC

modules are basically classes, so one can instantiate a class in any C++ valid statement).

12

Table 4: variable to reg translation example

SystemC Verilog

SC MODULE(example){

s c i n < bool > c l k ;

bool a ;

void prc example (){

a = 1 ;

}

}

module example (c l k) ;

input c l k ;

reg a ;

always @(c lk)

begin : prc example

a := 1 ;

end

end module ;

A full featured translator should be able to translated at least the conventional instantiation

construct. Consider , for instance, the example on Table 5.

3.6 sc method

Methods are the basic RTL execution model of SystemC. It is much like any other

Verilog thread : it is a sequence of statements and expressions.

Each SystemC method has a sensitivity list associated, and is triggered every time an

event occurs in it. You can have positive edge triggers, as well as negative edge triggers.

SystemC sensitivity list of methods prototypes are translated as in Table 6

Inside a SystemC class declaration, modules can have internal functions and proce-

dures. One can identify if a method is a thread or a normal function if there is a

SC METHOD(func) statement inside the class constructor. Threads and functions are

translated differently, as Table 6 shows.

13

Table 5: sc signal to wire translation due to hierarchy interconnection

SystemC Verilog

SC MODULE(f u l l a d d e r){

s c i n <bool> a , b , c in ;

sc out<bool> sum , cout ;

s c s i g n a l <bool> c1 , s1 , c2 ;

ha l f adde r ∗ ha1 ptr ,∗ ha2 ptr ;

void prc o r ()

{

cout = c1 | c2 ;

}

SC CTOR(f u l l a d d e r)

{

ha1 ptr = new ha l f adde r () ;

ha1 ptr−>a (a) ;

ha1 ptr−>b (b) ;

ha1 ptr−>sum (s1) ;

ha1 ptr−>carry (c1) ;

ha2 ptr = new ha l f adde r () ;

ha2 ptr−>a (s1) ;

ha2 ptr−>b (c in) ;

ha2 ptr−>sum (sum) ;

ha2 ptr−>carry (c2) ;

SC METHOD(prc o r) ;

s e n s i t i v e << c1 << c2 ;

}

} ;

module f u l l a d d e r (a , b , c in ,

sum , cout) ;

input a ;

input b ;

input c in ;

output sum ;

output cout ;

wire sum ;

reg cout ;

wire c1 ;

wire s1 ;

wire c2 ;

always @(c1 or c2)

begin : p r c o r

cout <= c1 | c2 ;

end

ha l f adde r ha1 ptr (

. a (a) ,

. b (b) ,

. sum(s1) ,

. ca r ry (c1)

) ;

ha l f adde r ha2 ptr (

. a (s1) ,

. b (c in) ,

. sum(sum) ,

. car ry (c2)

) ;

end module
14

Table 6: SystemC to Verilog methods and functions translation

SystemC Verilog

void p r c ha l f add e r (){}

SC METHOD(p r c ha l f add e r) ;

s e n s i t i v e << a << b << c l k . pos () ;

always @(a or b or posedge (c l k))

begin : p r c ha l f a dd e r

end

s c u in t <2>

func (s c i n t <2> a , s c i n t <2> b) {

i f (a−b <0)

return (b−a) ;

return (a−b) ;

}

function [1 : 0] func ;

input [1 : 0] a ;

input [1 : 0] b ;

begin

i f (a − b < 0) begin

func = b − a ;

end

func = a − b ;

end

endfunction

15

3.7 Statements and Expressions

Each c++ statement and expression inside a method in the AST is recursively trans-

lated with a verilog correspondent. C++ statements and expressions have similar verilog

constructs . See Table 7.

4 Verification

It turns out that verifying a translation model is as difficult as building one. This is not

a new thing for hardware verification teams, but it may not seem reasonable at first. The

first problem arises if you don’t have (or actually can’t have) a testbench for each module

you translate. In fact, there is no way to completely know if your translation describes your

SystemC description perfectly. Having a translation tool (hypothetically fully verified)

doesn’t help you either : you may have two different translation that perfectly describes

one circuit (use of #define pragmas instead of constants, for instance).

However, you can have a good idea of your translation efficiency if you cover some basic

structure of a system description (if it helps, remember that this is an engineering paper,

not a mathematician’s).

In general, a translation should do exactly as it is told : a simple translation. It shouldn’t

fix a designer mistake or make assumptions. It must, however, make an interpretation of

each piece of code and translate it. Is this chapter I present the verification methodology

adopted by gsc and justify in witch case it is sufficient.

4.1 Syntax

gsc assumes that the SystemC model is syntactically and semantically right. This means

that in a normal design flow, a designer would first create and validate a SystemC model

16

Table 7: SystemC to Verilog statements and expressions mapping

SystemC Statements Verilog Statements

state = write s; state <= write s;

state.write(write s); state <= write s;

var = state.read(); var <= state;

var = a.range(1, 2); var = a(1 : 2);

a {+ , − ,/ ,∗ ,& , | ,&& , | |} a a {+ , − ,/ ,∗ ,& , | ,&& , | |} a

{ − , ! ,˜} a { − , ! ,˜} a

i f (a){

}

else i f (b) {

}

else {

}

i f a then

end

else begin

i f b then

else

end

end

switch (a){

case 0 : { break ; }

case 1 : { break ; }

default : { break ; }

}

case (a)

0 : begin end

1 : begin end

default : begin end

endcase

for (i = 0 ; i < 3 ; i ++) for (i = 0 ; i < 3 ; i = i + 1)

i++ i = i + 1;

if (i++) tmp = i + 1; if (tmp)

a = b ? c : d ; a <= b ? c : d ;

10,0x10 10,′h10

a = memory[address]; a <= memory[address];

return a + b; func name = a + b;

17

before translating it to Verilog (witch implies compiling with an external c++ compiler

like gcc or g++. This compilation and execution process should guarantee that the model

is syntactically and semantically right, in terms of C++ statements and expressions. For

the same reason, it is also safe to assume that all preprocessor directives (#defines, #ifdef,

macros) and includes are resolved. This is perfectly reasonable to assume and greatly

facilitates the translation.

Considering this assumption, gsc doesn’t need to check and elaborate much over type

checking, undefined references, undeclared variables and most of the common problem a

normal compiler would. If gsc translates each c++ type and construct with a idempotent

one, it may safely assume its validation.

Therefore, the first verification step it takes is through a syntactical analysis and veri-

fication made by a third party tool (to guarantee an external interpretation of the verilog

language). gsc translates the SystemC code and feeds its translation to the iverilog 3

verilog compiler, witch makes most of the static type checks and references.

4.2 Semantics

A translator must emit syntactically valid code. This is easy to check. It must, however,

generate a true and valid code that perfectly represents the host code in the target language.

It turns out that this is very difficult to do, and a translation tool is not enough to

guarantee that the translation is perfect in all cases. The engineering solution to this

problem is to build a subset of pairs (a : possible input, b : correspondent valid output)

and feed this subset to the model.

There are EDA tools that supports the simulation of two different hardware languages

(like Verilog plus SystemC, for example), called co simulation tools. gsc uses one of this

tools, called Modelsim, to guarantee that for a given input vector, the translation behaves

3iverilog, also know as icarus verilog, is a verilog simulator generator, witch, in this case, is being used

just as a verilog syntax verification tool

18

just like the original model.

4.3 Synthesis

A part from being semantically right, a translation tool should fit a synthesis tool as

much as it can, after all, that is why it is being used : synthesis. Therefore, a synthesis

tool called Altera Quartus 5.0 has been used on each test to check if it understands its

translations.

4.4 Comercial Reference

Having all those steps resolved is enougth to have a good translator, but it can’t offer

any guarantee on its translations. Acctually, it is very hard (perhaps impossible) to have

a fully verified translation tool.

However, having well stabilished and well tested tools in the hardware industry, that

offers exactly what we are trying to develop, helps to have an idea of an ‘accepted‘ transla-

tion result. Therefore, comparing results from third part tools results (usualy comercial’s

) of the same model should be enought to cover most of SystemC use cases.

5 Results

In this chapter I will present the results from several model’s translations. Choosing

the right test set was a big part of my work, and it is worth noting witch criterea were used

and how they were analysed.

19

5.1 Testbench

Initially, before gsc tries to solve complex models, it should be able to translate simple

and self contained examples of SystemC use cases. Things like adders, fsm 4, basic struc-

tures, hieararchy, functions, etc are included in the ’basic models’ testbench. See results

on Table 8.

After that, since gsc was born to cover, at least, as much as its predecessors, tests

included in previous works (sc2v and tabajara) were used. All tests dispatched in the

oficial distribution of sc2v and tabajara were used. See results on Table 9 and Table 10.

Finally, real world models - a mp3 and mpeg decoder - were used to guarantee that

gsc could handle big and complex designs, written by external designers. See results on

Table 11 and Table 12.

Comparisons were taken using Forte’s CynthVLG tool.

5.2 Coverage

In this section I will discuss my experience with each tool, and point out their attributes

(Table 13).

6 Next steps

gsc has proved to be a notable alternative to comercial tools, and has definitly proved

its coverage superiority over other open source tools. gsc has been developed under solid

basis (a full featured front end, its preprocessor and a well stabilished abstract syntax tree

representation) and could be extended to support other features.

4finite state machines

20

Table 8: basic translations

model description syntax semantics synthesis comparison

switch.cpp switch() construct

translation

pass pass pass pass

func.cpp function translation pass pass pass pass

half adder.cpp half adder pass pass pass pass

full adder.cpp full adder (hiearchy) pass pass pass pass

fsm.cpp finite state machine pass pass pass pass

sequencia101.cpp 101 recognition of a

binary stream

pass pass pass pass

processor.cpp a very simple proces-

sor

faileda pass pass pass

cast.cpp data type casts failed failed failed failed

init.cpp data intialization pass pass pass pass

pp.cpp if(i++) use case failed failed failed failed

aprocessor syntax verification failed because iverilog can’t handle verilog 2001 witch does supports

multidimensional arrays (iverilog covers only 1995 Verilog). However, this is a perfectly valid verilog

featured and can be safely used

Table 9: sc2v testbench translations

model description syntax semantics synthesis comparison

delay line.cpp not avaiable pass pass pass pass

half adder.cpp not avaiable pass pass pass pass

md5.cpp not avaiable pass pass pass pass

sc ex1.cpp not avaiable pass pass pass pass

stmach k.cpp not avaiable pass pass pass pass

subbytes.cpp not avaiable pass pass pass pass

21

Table 10: tabajara testbench translations

model description syntax semantics synthesis comparison

dcdct.cpp not avaiable pass pass pass pass

si.h not avaiable pass pass pass pass

Table 11: mp3 testbench translations

model description syntax semantics synthesis comparison

dct not avaiable pass pass pass pass

imdct not avaiable pass pass pass pass

overlap not avaiable pass pass pass pass

reorder not avaiable pass pass pass pass

imdctwindow not avaiable pass pass pass pass

avalon not avaiable pass pass pass pass

window not avaiable pass pass pass pass

crc not avaiable pass pass pass pass

Table 12: mpeg testbench translations

model description syntax semantics synthesis comparison

bitstream not avaiable pass not avaiable pass not avaiable

cbp not avaiable pass pass pass pass

dcdct not avaiable pass pass pass pass

piacdc not avaiable pass not avaiable pass not avaiable

qi not avaiable pass not avaiable pass not avaiable

rgb not avaiable pass not avaiable pass not avaiable

si not avaiable pass not avaiable pass not avaiable

sum not avaiable pass not avaiable pass not avaiable

mem not avaiable pass pass pass pass

22

Table 13: Existing alternatives comparison

Features Synopsys Forte sc2v tabajara gsc

free no no yes yes yes

open source no no yes yes yes

front end full featured full featured c++ subseta c++ subsetb full featuredc

type casting sup-

port

no yes no no partial

functions sup-

port

no partial yes yes yes

inout ports yes no yes yes yes

basic testbench

coverage

full full partial partial full

sc2v testbench

coverage

full full full failed full

tabajara test-

bench coverage

full full failed full full

mp3 testbench

coverage

full full failed failed full

mpeg testbench

coverage

full full failed full partial

ahand written bison grammar
bhand written bison grammar
ckeystone parser and cpp preprocessor

23

A part from supporting the remaining mandatory features (specially better type casts

handling, and the if (i++) problem), there are other desired features that may find its

path trought gsc roadmap.

6.1 High Level Synthesis

High Level Synthesis is having a lot of attention in the Computer Science field [4]. It

basicaly tries to generate a hardware description from any high level description, typically

a C program. It means that you could be able to describe hardware much like you describe

any other program (witch is basicaly a description of what to do, an algorithim).

High Level Synthesis has been studied using a Control Data Flow Graph [1], with

some kind of Instruction Scheduling Algorithim [2] and Resource Allocation Algorithim[3],

subjected to a finite resource, timing and power constraint.

Future works on gsc will probably include some form of scratch in this particular subject.

6.2 Applications : Synthesis of ArchC Processors

A part from high level synthesis, gsc, as it is today, could be used for several applications

: it is a generic RTL translation tool.

SystemC is getting its respect from its ability to handle big and complex projects,

specially because of its System Level support. ArchC 5 is an ADL6 for description and

development of processors [5].

Altought ArchC current generates simulation-only models of processors (for runtime

performance purposes), it is perfectly capable of generating RTL models of processors

architecture (as long as the designer also writes RTL description of instructions too. Hand

written scheduled pipelined instructions are a good example of RTL instruction). Since

5http://www.archc.org
6Architecture Description Language

24

gsc basicaly translates RTL models, it would be a nice feature to include gsc in the ArchC

roadmap development and have synthesis of real processors take part of the ArchC design

flow.

25

References

[1] Namballa, R.;Ranganathan, N.; Ejnioui, A.; Control and Data Flow Graph Extraction

for High-Level Synthesis

[2] Memiki, S.O. ;Fallah, F; Accelerated SAT-based scheduling of Control/Data Flow

Graphs

[3] Zhong, L..;Luo J.; Fei, Y.; Jha, N.; Register Binding based Power Management for

High-level Synthesis of Control-Flow Intensive Behaviours

[4] Arvind;Rosenband, D. L.; Nikhil, R.S; Dave, N.; High Level Synthesis : An Essential

Ingredient for designing Complex ASICs

[5] Azeved, R.;Rigo, S.;Bartholomeu, M.;Araújo, G.;Araújo, C.; Barros, E.; The ArchC

Architecture Description Language

26

