
Copyright © DeverSYS 
www.deversys.com 

 

 
 
 
 
 
 
 
 
 
 
 

 

FR
EE

 IP
 C

O
R

E 
O

VE
R

VE
W

 
 

Hierarchical Carry Save Algorithm. 
HCSA Generic ALU. 
Free VHDL IP Cores. 



 
 

 

Hierarchical Carry Save Algorithm 
 
It is known 3 possible adder implementations: ripple carry, carry save and 
carry look ahead. Here we propose a kind of carry save algorithm: 
“hierarchical carry save algorithm” (HCSA) and compare its properties with 
Synopsis’s DW01 ‘cla’(carry look ahead) adder implementation. 
 
The idea of the algorithm is illustrated on Fig.1. Carry from low part of sum is 
used for choice of 2 possible high part sum results. This approach is used on 
every hierarchy level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. HCSA structure. 

 
 

 
 
 

 

a(1)+b(1)+0 a(1)+b(1)+1 

         MX     a(0)+b(0) 
C 

                   A(1,0)+B(1,0) 

a(3,2)+b(3,2)+1 a(3,2)+b(3,2)+0 

          MX 

                                                             a(3,0)+b(3,0) 
C 

C 

…

…



 
 

 

Implementation Results 
 

Table 1 and Chart 1 represents HCSA synthesis and simulation results in 
comparing with standard Synopsis’s DW01 ‘CLA’ adder implementation 
(0.35u STD cell library). 

 

HCSA / Snps CLA Comparative Chart

100

300

500

700

900

1100

1300

1500

1700

1900

0 32 64 96 128

Data Width

G
at

es
 A

llo
ca

te
d

0

1

2

3

4

5

6

7

D
el

ay
 (n

s)

HCSA Gates
Snps CLA gates
HCSA delay
Snps CLA delay

 
Chart 1. 

 
 HCSA Synopsis’s ‘cla’ 

Data Width gates delay gates delay 
8 143 2.51 127 2.72 
16 327 3.09 327 3.40 
32 527 4.18 655 4.14 
64 1061 5.34 1053 5.16 

128 1965 6.64 1865 6.41 
 

Table 1. Synthesis and post synthesis simulation results. 



 
 

 

Generic ALU based on HCSA adder 
 

HCSA may be used within the different kind of tasks It behaves effective also 
for processor core parts. For example Generic ALU can be implemented 
applying HCSA methodology. 
Basic idea is every ALU bit implemented as a combinational part and 
performs either logic or arithmetic operations. Since bit carry/bit stealing 
exists only in arithmetic operations ( “+” or ”-“)  the HCSA method can be also 
applied for the ALU bit. (for more details see ALU implementation). 
 
 

 
 
 
Table 2 represents ALU_HCSA (ALU with hierarchical carry save algorithm) 
implementation details (synthesis process: 0.35u library, worst case military 
conditions). 
 
 

Data 
width 

delay 
(ns) 

combinational 
area (gates) 

non-combinational 
area (gates) 

8 4.70 230 235 
16 5.66 385 400 
32 6.99 800 715 
64 8.39 1460 1345 

 
Table 2. HCSA ALU Synthesis results. 

 
 

Theme for debates. 
 
HCSA ALU delay is greater than HSCA adders one, the reason is that ALU bit 
is more complex than adder one. Hardware expenses (combinational part) are 
a little bit greater in comparison with HCSA adder, because instruction 
decoder is included into combinational part additionally to ALU itself. 
 
Please pay attention that delay grows proportional to data width logarithm as 
algorithms theory expected both for adder and ALU_HCSA cases. 
 
Of course instruction decoder may be implemented using different ways, may 
be more effective. But the goal of this part is to present complete ALU only. 

In other words ALU structure is exactly the same as HCSA adder except 
missed logic parts there. 


