HDLC controller core

Jamil Khatib

April 9, 2001

(C) Copyright 2001 Jamil Khatib.

CONTENTS

www. OpenCores.org Project

Contents

1 List of authors and changes

2 Project Definition
2.1 Introduction.
2.2 Objectives L e e e e

3 Specifications
3.1 System Features Specification
3.2 External Inmterfaces

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Receive Channel
Back-end interface mapping to Wishbone SoC bus

Transmit Channel
Back-end interface mapping to Wishbone SoC bus . .
CPUinterface.

4 Design description
4.1 Receive Channel

4.2

4.3
4.4

4.5
4.6
4.7
4.8
4.9

4.1.1 Designnotes
4.1.2 Timing o Lo e
Transmit Channel
421 Designnotes
422 Timingo Lo e
External FIFO and registers
Registers. Lo
441 Transmit oo oo
442 Receive e

Transmit Frame 0o oo,
Receive Frame
Connection to TDM controller
Clocks Synchronization
Diagramso

5 Testing and verifications
5.1 Simulation and Test benches
5.2 Verification techniques and algorithms
53 Testplans Lo

6 Implementations
6.1 Scripts, files and any other information.
6.2 Design conventions and coding styles

7 Reviews and comments

10
10
10
10
10
11
11
11
11
11
12
12
13
13
13
14

14
15
15
15

15
15
15

15

HDLC controller

2 of 15

CONTENTS www. OpenCores.org Project

8 References 15

HDLC controller 3 of 15

www. OpenCores.org Project

1 List of authors and changes

‘ Name ‘ Changes Date ‘ Contact address ‘
Jamil Khatib | Initial release 9-1-2001 | khatib@ieee.org
Jamil Khatib | TX interface added, Spec improved | 27-1-2001 | khatib@ieee.org
Jamil Khatib | External FIFO buffer added 3-2-2001 | khatib@ieee.org
Jamil Khatib | Registers and CPU interface added | 8-2-2001 | khatib@ieee.org
Jamil Khatib | Drop bit, TDM interface are added | 9-2-2001 | khatibQieee.org
Jamil Khatib | More design descriptions added 2-4-2001 | khatib@ieee.org
Jamil Khatib | FIFO buffers calculations added 9-4-2001 | khatib@ieee.org

HDLC controller

4 of 15

www. OpenCores.org Project

2 Project Definition

2.1

Introduction

HDLC protocol is used as a data link of most of the current communication
systems like ISDN, Frame Relay etc. HDLC is a family of protocols that
varies in address size, control field, FCS and no. of data bits.

2.2

Objectives

The aim of this project is to develop the basic HDLC functionalities to be
used by many communication systems.

3 Specifications

3.1

1.

© ®»® N

10.

11.
12.

13.
14.

15.

System Features Specification

Synchronous operation

. 8 bit parallel back-end interface

Use external RX and TX clocks

Start and end of frame pattern generation

Start and end of frame pattern checking

Idle pattern generation and detection (all ones)

Zero insertion and removal for transparent transmission.
Abort pattern generation and checking (7 ones)

Address insertion and detection by software

CRC generation and checking (CRC-16 or CRC-32 can be used which
is configurale at the code top level)

FIFO buffers and synchronization (External)

Byte aligned data (if data is not aligned to 8-bits error signal is re-
ported to the backend interface)

Q.921, LAPD and LAPB compliant.

The core should not have internal configuration registers or counters,
instead it provides all the signals to implement external registers.

There is No limit on the Maximum frame size as long as the backend
can read and write data (depends on the external FIFO size)

HDLC controller 5 of 15

www. OpenCores.org Project

16.

17.

18.

19.

20.

21.

22.

Bus connection is not supported directly (TxEN and RxEN pins can
be used for that reason)

Retransmission is not supported when there is collision in the Bus
connection mode.

This controller is used for low speed application only (relative to the
backend bus).

Supports connection to TDM core via backend interface and software
control for time slot selection and control (signaling ,etc.) generation.

Backend interface uses the Wishbone bus interface which can be con-
nected directly to the system or via FIFO buffer.

Optional External FIFO buffers, configuration and status registers.

The core will be made of two levels of hierarchies, the basic function-
ality and the Optional interfaces and buffers.

3.2 External Interfaces
3.2.1 Receive Channel
‘ Signal name ‘ Direction ‘ Description ‘
‘ Control interface ‘ ‘ ‘
| Rt | Input | System asynchronous reset(active low) |
‘ Serial Interface ‘ ‘ ‘
RxClk Input Receive Clock
Rx Input Receive Data
RxEn Input RX enable (active high)
| Back-end Interface | ‘ |
RxD([7:0] Output | Receive data bus
ValidFrame Output Valid Frame indication during all frame bytes transfer
FrameErr Output Error in the received data (lost bits)
Aborted Output Aborted Frame
Read Input Read byte
Ready Output Valid data exists

3.2.2 Back-end interface mapping to Wishbone SoC bus

The HDLC receive backend interface can be used as a slave core or master
according to the below mapping. The core supports SINGLE READ Cycle
only using 8-bit data bus without address lines. The choice between master
and slave is left for the system integrator and must do the configuration and
glue logic as defined in the tables.

HDLC controller 6 of 15

www. OpenCores.org Project

oS
@““‘%“i@m

‘ Signal Name ‘ Wishbone signal
Master Configuration connected to FIFO
RxClk CLK1I
Rst not RST 1
RxD([7:0] DAT_O(7:0)
ValidFrame STB_O
ValidFrame CYC.O
ReadByte ACK. and not RTY_I
Ready WE_O
FrameERR TAGO0-O
Aborted TAG1.0
Slave FIFO(two-clock domain FIFO)
Data[7:0] DAT 1(7:0)
Chip Select STBI
STB_ and not FullFlag ACK_O
FullFlag RTY_O
Write WE I
Slave Configuration
RxClk CLK1I
Rst not RST I
RxD([7:0] DAT_O(7:0)
ValidFrame TAGO0-O
ReadByte not WE_I
Ready not RTY_O
STB_I and not WR_I ACK_O
FrameERR TAG1.0
Aborted TAG2.0

HDLC controller 7 of 15

www. OpenCores.org Project

3.2.3 Transmit Channel

‘ Signal name

‘ Direction ‘ Description

‘ Control interface

‘ Rst ‘ Input ‘ System asynchronous reset(active low)

| Serial Interface ‘ ‘
TxClk Input Transmit Clock
Tx Output Transmit Data
TxEn Input TX enable (active high)

‘ Back-end Interface ‘ ‘ ‘
TxD[7:0] Input Transmit data bus
ValidFrame Input Valid Frame indication during all frame bytes transfer
AbortedTrans Output Error in the transmitted data (Abort pattern was generated)
AbortFrame Input Abort Frame
Write Input Write byte
Ready Output Can accept new data

3.2.4 Back-end interface mapping to Wishbone SoC bus

The HDLC receive backend interface can be used as a slave core or master
according to the below mapping. The core supports SINGLE WRITE Cycle
only using 8-bit data bus without address lines. The choice between master
and slave is left for the system integrator and must do the configuration and

glue logic as defined in the tables.

HDLC controller

8 of 15

www. OpenCores.org Project

Signal Name

Wishbone signal

Master Configuration connected to FIFO

TxClk CLK.1I

Rst not RST I
TxD[7:0] DAT_1(7:0)
Write ACK. and not RTY_I
Ready not WE_O
AbortedTrans TAGO0_O
ValidFrame TAG11
AbortFrame TAGO_I
Always Active CYC.O
Always Active STB_O
Slave FIFO(two-clock domain FIFO)

Data[7:0] DAT I(7:0)
EmptyFlag RTY.O
Read WE_I
WE_T and not EmptyFlag ACK_O
ChipSelect STBI
Slave Configuration

TxClk CLK.I

Rst not RST_I
TxDI[7:0] DAT I(7:0)
ValidFrame STB_I
Write WE_1
Ready not RTY_O
STB_I and WR._I ACK_O
AbortFrame TAGO I
AbortedTrans TAGO0_O

3.2.5 CPU interface

This interface is used when the FIFO and registers are included in the Core.
This interface is compatible to WishBone slave bus interface that supports
single read /write cycles and block cycles. The interface supports the follow-

ing wishbone signals.

HDLC controller

9 of 15

www. OpenCores.org Project

‘ Signal Note
RSTI Reset
CLK I Clock
ADR_I(2:0) | 3-bit address line
DAT_O(7:0) | 8-bit receive data
DAT I(7:0) | 8-bit transmit data
WE.I Read/write
STB I Strobe
ACK O Acknowledge
CYCI Cycle
TAGO_O TxDone interrupt
TAG1.0O RxReady interrupt

4 Design description

4.1 Receive Channel
4.1.1 Design notes

Receive channel provides interface to the backend via a simple handshake
protocol that can be used to connect the controller to either a shared memory
or FIFO buffer. This protocol uses the hand shack protocol of the Wishbone
SoC bus.

Receive channel supports only 8-bits aligned data. Each frame starts
with a starting flag (01111110) and ends with starting flag (01111110). Since
the receipt ion is synchronous only, the channel uses the external clock and
a byte must be read from the channel within the first 7 clock pulses after
the ready signal is asserted. If no data is read during this period (while
ValidFrame signal is active) FrameErr is signaled reported to the backend
as long the ValidFrame is active. FrameErr is signaled also when non 8-bit
aligned data is received and when FCS error is found.

4.1.2 Timing

4.2 Transmit Channel

Transmit channel provides interface to the backend via a simple handshake
protocol that can be used to connect the controller to either a shared memory
or FIFO buffer. This protocol uses the handshack protocol of the Wishbone
SoC bus.

Transmit channel supports only 8-bits aligned data. Each frame starts
with a starting flag (01111110) and ends with starting flag (01111110). Since
the transmission is synchronous only, the channel uses the external clock and
a byte must be written to the channel within the first 7 clock pulses after
the ready signal is asserted. If no data is inserted during this period (while

HDLC controller 10 of 15

www. OpenCores.org Project

ValidFrame signal is active) abort pattern is transmitted and reported to
the backend via AboredTrans signal as long the ValidFrame is active.

4.2.1 Design notes
4.2.2 Timing

The channel starts accepting data after asserting the ValidFrame signal.
This signal can control no of idle pattern bits (e.g. if this signal is de-
asserted for 8 bits only a single Idle pattern (8 ones) is inserted). Valid
Frame signal must be asserted for 8 clocks after any valid write operation.

4.3 External FIFO and registers

The controller has optional external FIFO buffers, one for data to be trans-
mitted and one for data to be received. Status and control registers are
available to control these FIFOs. These two blocks (FIFOs and registers)
are built around the HDLC controller core which make them optional if the
core is to be used in different kind of applications. The current implemen-
tation supports the following configuration: The size of the Transmit and
receive FIFOs is (8 x 128) bits which enables 128 maximum HDLC frame
size.

The transmit buffer is used to prevent underflow while transmitting bytes
to the line. All bytes will be available once the transmit is enabled. The
Receive buffer is used to provide data burst transfer to the Back end interface
which prevents the back end from reading each byte alone. The FIFO size
is suitable for operating frequencies 2.048MHz on the serial interface and 50
MHz on the back end interface. Other frequencies can operate if the delay
between HDLC frames is less than the delay needed for the back end to
empty the internal FIFO (the next calculations is an example to be applied
for different frequencies)

7 bits (minimum bits between HDLC Frames) / 2.048MHz = 3.418 us

128 Bytes (Maximum frame size) / 50MHz = 2.56 us

These FIFOs are implemented on Single port memory. Two interrupt
lines are used, one to signal transmission done and one to request transfer
of received frame to memory. These interrupts are also reflected in Status
registers to support polling mode for the controller.

4.4 Registers

All internal registers are 8-bit width.

4.4.1 Transmit
Tx Status and Control Register: Tx SC Offset Address = 0x0

HDLC controller 11 of 15

www. OpenCores.org Project

BIT 7 6 5 4 3 2 1 0
FIELD | N/A | N/A | FCSen | FIFOOverflow | Aborted | TxAbort | TxEnable | TxDone
RESET 0 0 0 0 0 0 0 0
R/W RO | RO WO RO RO WO WO RO
Tx FIFO buffer register: Tx_Buffer Offset Address = 0x1
BIT 7-0
FIELD || Transmit Data byte
RESET 0x0
R/W WO

4.4.2 Receive

Rx Status and Control Register: Rx_SC Offset Address = 0x2

BIT 7 6 5 4 3 2 1 0
FIELD | N/A | N/A | N/A | FIFOOverflow | Aborted | FrameError | Drop | RxReady
RESET 0 0 0 0 0 0 0 0
R/W RO | RO | RO RO RO RO WO RO

Rx FIFO buffer register: Rx_Buffer

BIT 7-0
FIELD || Received Data byte
RESET 0x0
R/W RO

Rx Frame length: Rx_Len Offset Address = 0x4

BIT 7-0
FIELD || Frame Length
RESET 0x0
R/W RO

4.5 Transmit Frame

e The CPU should check TxDone (in Tx status register 0x0) bit of it is
’1” or wait for TxDone interrupt. TxDone bit is reset to 0’ after the
first write to Tx FIFO Buffer register (0x1).

Offset Address = 0x3

e The CPU should write frame data bytes to Tx FIFO buffer register

(0x1).

o After writing all data bytes to TX buffer register, the CPU should
write '1’ to TxEnable to enable data transmission to the line. After

HDLC controller

12 of 15

www. OpenCores.org Project

writing to this bit no further write operation to Tx FIFO buffer register
is allowed till TxDone is set (all writes will be ignored).

e [t is optional for the CPU to check the status bits of Tx status register.

4.6 Receive Frame

e The controller sets RxReady bit in Rx Status and control register (0x2)
and sets the TxReady interrupt line to indicate valid frame in internal
buffer is available.

e It is recommended that the CPU read the Rx Status and control reg-
ister (0x3).

e The CPU should read the Frame length register (0x4) to check the size
of the frame. The value of this regiter is valid only after the RxReady
bit is set and remains valid till the first read from the Data buffer.

e The CPU should read Rx FIFO buffer register (0x3) Frame length
times to get all frame bytes. Performing extra reads (read from empty
buffer) produces invalid data.

e If the CPU does not read all frame bytes as soon as possible the in-
ternal buffer will overflow and FIFOOverflow bit will be set and the
current frame should be dropped. No further read operations should
be attempted till RxReady bit is set again and RxReady interrupt is
signaled indicating new available frame.

e The software can drop entire frame from the Receive FIFO buffer by
writing 1 to drop bit in the status and control receive register (0x3).
This is suitable for dropping bad frames (for any reason) or frames
with incorrect addresses.

4.7 Connection to TDM controller

This controller can get/send data from/to TDM controller through software
control. The software configures the TDM controller to select the channel. It
adds/removes the address and control information fields of the HDLC frame.
Then passes the data field between the two controllers through optional
DMA transfer.

4.8 Clocks Synchronization

Since the core can operate in different clock domains (The serial line domain
and the backend interface domain), all control signals pass through two flip
flops to reduce the metastability. These Flip Flops are clocked with the
same clock of the interface that read these signals.

HDLC controller 13 of 15

www. OpenCores.org Project

4.9 Diagrams

™D 7:O|; | | a > T
Backend | FCS-16 Y Zero —| g
I nsertion I nsertion gCI k

Backe? |_I_ E.J . ¥ I

Tx Controller ‘ﬁn
Rx Controller ‘%R)(En
qu 7: O] [| —_ _|_ I_l] Rx
< | <—
| L Zero Fl ag
| Backend FCS-16 Del etion [] Detection c Rxd k
Backend L —
Figure 1: HDLC core
r —
<———> Regs |
—_ —
Li ne
! RX FIFO RX FCS RX Sync HDLC (RX) (&—
Backend
Li ne
= TX FIFO TX FCS TX Sync HDLC (TX) |—>
[regs |
<—> Regs

Figure 2: HDLC controller

5 Testing and verifications

‘ Requirement ‘ Test method ‘ Validation method ‘

Interface timing

‘ Functionality ‘ ‘ ‘

HDLC controller 14 of 15

www. OpenCores.org Project

5.1 Simulation and Test benches

5.2 Verification techniques and algorithms

5.3 Test plans

6 Implementations

The design is implemented using the VHDL language. The design is divided
into three main blocks, serial Receive channel, Serial Transmit channel and

the Top blocks.

The Receive and Transmit serial channels perform the

HDLC functionality. The Top blocks perform the FCS calculation (Which
is either FCS-16 or FCS-32), the frame buffering the interface with the
back end system and the synchronization between the clocks. The FCS and
Buffering can be changed by replacing the corresponding files.

6.1 Scripts, files and any other information

Zero_detect.vhd
flag_detect.vhd

RX
RxChannel.vhd | Top Rx Channel
Rxcont.vhd Rx Controller

Zero detect and serial to parallel

Flag detection

TX

TxChannel.vhd | Top Tx channel
TXcont.vhd Tx Controller
zero_ins.vhd Zero insertion and parallel to serial
flag_ins.vhd Flag insertion

Top

TxBuff.vhd Tx buffer
TxFCS.vhd Tx FCS-16
TxSync.vhd Tx synchronization
RxBuff.vhd Rx buffer
RxFCS.vhd Rx FCS-16
RxSync.vhd Rx synchronization
WB_IF.vhd WishBone interface
hdlc.vhd Top HDLC controller

6.2 Design conventions and coding styles

7 Reviews and comments

8 References

HDLC controller

15 of 15

