HPC-16 Instruction Reference Manual

M. Umair Siddiqui

Change Log
	Date
	Description
	Authors

	Before Release
	Initial Document
	M.Umair Siddiqui

	Before Release
	Formatting & editing
	Jawwad Asif

	Sep-03, 2005
	First Release
	M. Umair Siddiqui

Table of Contents
HPC-16 Instruction Reference Manual
i
Change Log
ii
Table of Contents
iii
Instruction set reference
1
MOVE
1
MOV/COPY (register operand)
1
Move/Copy (to stack pointer from reg)
1
Move/Copy (to reg from stack pointer)
1
LOAD WORD
2
Load word from memory (register indirect mode)
2
Load word from memory (register indirect + imm16)
2
Load word from memory (using ‘sp’)
2
Load word from memory (’sp’ + imm16)
3
STORE WORD
3
Store word to memory (register indirect mode)
3
Store word to memory (register indirect + imm16)
4
Store word to memory (using ‘sp’)
4
Store word to memory (sp + imm16)
4
LOAD BYTE
5
Load Byte from memory with zero ext (register indirect mode):
5
Load Byte from memory with zero ext (register indirect + imm16):
5
Load byte from memory with sign ext (register indirect mode):
5
Load byte from memory with sign ext (register indirect + displacement mode)
6
STORE BYTE
6
Store byte to memory (register indirect mode)
6
Store byte to memory (register indirect + imm16)
7
LOAD IMMIDIATE
7
Load 16-bit immediate value (constant) to register from memory
7
Load 16-bit immediate value (constant) to ‘sp’ from memory
7
INC/DEC
8
Increment (register operand)
8
Decrement (register operand)
8
ALU OPERATIONS
8
Subtract (register operands)
8
And (register operands)
9
Add (register operands)
9
Add with carry (register operands)
9
Subtract with borrow (register operands)
10
Logical inclusive or (register operands)
10
Exclusive or (register operands)
10
Logical not (register operand)
11
ALU OPERATIONS IMMIDIATE
11
Subtract (register and immediate operands)
11
logical and (register and immediate operands)
11
Addition (register and immediate operands)
12
Add with carry (register and immediate operands)
12
Subtract with borrow (register and immediate operands)
12
Logical inclusive or (register and immediate operands)
13
Exclusive or (register and immediate operands)
13
ADD/SUB-I SP
13
Addition (Stack pointer and immediate operands)
13
Subtract (Stack operation and immediate operands)
14
FLAG OPERATION
14
Compare two register operands
14
Logical Comparison between register operands
14
FLAG OPERATION IMMIDIATE
15
Compare (register and immediate operands)
15
Logical Compare (register and immediate operands)
15
SHIFT OPERATION
16
Shift logical left (register operand)
16
Shift logical right (register operand)
16
Shift arithmetic left (register operand)
16
Shift arithmetic right (register operand)
17
Rotate left (register operands)
17
Rotate right (register operand)
18
Rotate carry left (register operand)
18
Rotate carry right (register operand)
18
SHIFT IMMEDIATE
19
Shift logical left (imm4 operand)
19
Shift logical right (imm4 operand)
19
Shift arithmetic left (imm4 operand)
19
Shift arithmetic right (imm4 operand)
20
Rotate left (imm4 operand)
20
Rotate right (imm4 operand)
21
Rotate carry left (imm4 operand)
21
Rotate carry right (imm4 operand)
21
STACK
22
Push register onto the stack
22
Push FLAGS onto the stack
22
Pop word off stack to destination register
22
Pop word off stack to FLAGS
23
CALL
23
Procedure Call (absolute address)
23
Procedure Call (relative address)
24
Procedure Call (relative call with imm11)
24
RETURN
24
FLAG OPERATIONS
25
CLC : Clear Carry
25
STC : Set Carry Flag
25
CMC : Complement Carry Flag
25
CLI : Clear Interrupt Flag
26
STI : Set Interrupt flag
26
JMP
26
JMP (absolute address)
26
JMP (relative address)
27
JMP (relative call with imm11)
27
JCC (conditional)
27
INT
28
INTO : Interrupt overflow
28
INTERRUPT RETURN
29
NO OPERATION (NOP)
29
HALT
29

Instruction set reference
MOVE
MOV/COPY (register operand)
Format

: MOV rn, rm

Operation
: rn = rm

Flags Affected: none

Encoding
:

	00000
	001
	nnnn
	mmmm

Description: Copies the source register (rm) to destination register (rn)
Move/Copy (to stack pointer from reg)
Format

: MOV sp, mmmm

Operation
: SP = rm

Flags Affected: none

Encoding
:

	00000
	010
	xxxx
	mmmm

Description: Copies the source register (rm) to stack pointer (sp)
Move/Copy (to reg from stack pointer)
Format

: MOV nnnn, sp

Operation
: rn = sp

Flags Affected: none

Encoding
:

	00000
	100
	nnnn
	xxxx

Description: Copies the stack pointer (sp) to destination register (rn)
LOAD WORD
Load word from memory (register indirect mode)
Format

: LD rn, (rb)

Operation
: rn = Memory[rb]

Flags Affected: none

Encoding
:

	00001
	000
	nnnn
	bbbb

Exceptions: Alignment exception will be raised in case of accessing misaligned word.
Description: load the word data from memory at address present in "rb" register.

Load word from memory (register indirect + imm16)
Format

: LD rn, (rb + 0xhhhh)

Operation
: rn = Memory[rb + 0xhhhh]

Flags Affected: none

Encoding
:

	00001
	001
	nnnn
	bbbb

	imm16

Exceptions: Alignment exception will be raised in case of accessing misaligned word.

Description: Calculate the effective address by adding the content of "rb" register and 16-bit signed constant and load the word data from memory present at effective address.

Load word from memory (using ‘sp’)
Format

: LD rn, (sp)

Operation
: rn = Memory[sp]

Flags Affected: none

Encoding
:

	00001
	010
	nnnn
	xxxx

Description: load the word data from memory at address present in "sp" stack pointer.

Load word from memory (’sp’ + imm16)
Format

: LD rn, (sp + 0xhhhh)

Operation
: rn = Memory[sp + 0xhhhh]

Flags Affected: none

Encoding
:

	00001
	100
	nnnn
	xxxx

	 imm16

Description: Calculate the effective address by adding the content of "sp" stack pointer and 16-bit signed constant and load the word data from memory present at effective address.

STORE WORD
Store word to memory (register indirect mode)
Format

: ST rn, (rb)

Operation
: Memory[rb] = rn

Flags Affected: none

Encoding
:

	00010
	000
	nnnn
	bbbb

Exception: Alignment exception will be raised in case of accessing misaligned word

Description: store the register content into memory at address present in "rb" register
Store word to memory (register indirect + imm16)
Format

: ST rn, (rb + imm16)

Operation
: Memory[rb + imm16] = rn

Flags Affected: none

Encoding
:

	00010
	001
	nnnn
	bbbb

	 imm16

Exceptions: Alignment exception will be raised in case of accessing misaligned word

Description: Calculate the effective address by adding the content of "rb" register and 16-bit signed constant and store the register content into memory at effective address.
Store word to memory (using ‘sp’)
Format

: ST rn, (sp)

Operation
: Memory[sp] = rn

Flags Affected: none

Encoding
:

	00010
	010
	nnnn
	xxxx

Exception: Alignment exception will be raised in case of accessing misaligned word

Description: store the register content into memory at address present in "sp" stack pointer.
Store word to memory (sp + imm16)
Format

: ST rn, (sp + imm16)

Operation
: Memory[sp + imm16] = rn

Flags Affected: none

Encoding
:

	00010
	100
	nnnn
	xxxx

	imm16

Exceptions: Alignment exception will be raised in case of accessing misaligned word

Description: Calculate the effective address by adding the content of "sp" stack pointer and 16-bit signed constant and store the register content into memory at effective address.
LOAD BYTE
Load Byte from memory with zero ext (register indirect mode):
Format

: LBZX rn , (rb)

Operation
: rn = zero ext(Memory[rb])

Flags Affected: none

Encoding
:

	00011
	000
	nnnn
	bbbb

Description: using the base address, load the lower byte of destination register with the content at the base address and fill the upper byte of destination register with all zeros.
Load Byte from memory with zero ext (register indirect + imm16):
Format

: LBZX rn , (rb + imm16)

Operation
: rn = zero ext(Memory[rb + imm16])

Flags Affected: none

Encoding
:

	00011
	100
	nnnn
	bbbb

	imm16

Description: Calculate the effective address by adding the content in base register with a 16-bit signed constant and load the lower byte of destination register with the content at the effective address and fill the upper byte of destination register with all zeros.
Load byte from memory with sign ext (register indirect mode):

Format

: LBSX rn , (rb)

Operation
: rn = sign ext(Memory[rb])

Flags Affected: none

Encoding
:

	00011
	001
	nnnn
	bbbb

Description: Using the base address load the lower byte of destination register with the content at the base address and fill the upper byte of destination register with the MSB of the lower byte.

Load byte from memory with sign ext (register indirect + displacement mode)

Format

: LBSX rn , (rb + imm16)

Operation
: rn = sign ext(Memory[rb+ imm16])

Flags Affected: none

Encoding
:

	00011
	101
	nnnn
	bbbb

	imm16

Description: Calculate the effective address by adding the value of base register with a 16-bit signed immediate value and load the lower byte of destination register with the content at the effective address and fill the upper byte of destination register with the MSB of the lower byte.

STORE BYTE
Store byte to memory (register indirect mode)

Format

: SB rn, (rb)

Operation
: Memory[rb] = rn

Flags Affected: none

Encoding
:

	00100
	001
	nnnn
	bbbb

Description : Using the base address, store the lower byte of destination register at the location pointed by the base address.

Store byte to memory (register indirect + imm16)
Format

: SB rn, (rb + imm16)

Operation
: Memory[rb + imm16] = rn

Flags Affected: none

Encoding
:

	00100
	010
	nnnn
	bbbb

	imm16

Description : Calculate the effective address by adding the value of base register with a 16-bit signed immediate value and store the lower byte of destination register at the location pointed by the effective address.
LOAD IMMIDIATE
Load 16-bit immediate value (constant) to register from memory
Format

: LI rn , imm16

Operation
: rn = imm16

Flags Affected : none

Encoding
:

	01001
	001
	Nnnn
	xxxx

	imm16

Description: Load immediate/constant 16-bit data to the destination register
Load 16-bit immediate value (constant) to ‘sp’ from memory
Format

: LI sp , imm16

Operation
: sp = imm16

Flags Affected : none

Encoding
:

	01001
	010
	xxxx
	xxxx

	imm16

Description: Load immediate/constant 16-bit data to the stack pointer.
INC/DEC
Increment (register operand)
Format

: INC rn

Operation
: rn = rn + 1

Flags Affected: CF is preserved while OF, SF, ZF are set according to result

Encoding
:

	00101
	001
	nnnn
	xxxx

Description: Add 1 to destination register while preserving the state of CF.

Decrement (register operand)
Format

: DEC rn

Operation
: rn = rn - 1

Flags Affected: CF is preserved while OF, SF, ZF are set according to result

Encoding
:

	00101
	000
	nnnn
	xxxx

Description: Subtract 1 from destination register while preserving the state of CF.
ALU OPERATIONS
Subtract (register operands)
Format

: SUB rn, rm

Operation
: rn = rn – rm

Flags Affected: OF, SF, ZF, CF are set according to result

Encoding
:

	00110
	000
	nnnn
	mmmm

Description: Subtract source register from destination register and store result in destination register

And (register operands)
Format

: AND rn, rm

Operation
: rn = rn AND rm

Flags Affected: OF and CF cleared, SF and ZF are set according to result

Encoding
:

	00110
	101
	nnnn
	mmmm

Description: Perform bitwise AND operation between destination register and source register and store the result in destination register.

Add (register operands)
Format

: ADD rn, rm

Operation
: rn = rm + rn

Flags Affected: OF, SF, ZF and CF are affected according to result

Encoding
:

	00110
	001
	nnnn
	mmmm

Description: Add destination register and source register, and store result in destination register

Add with carry (register operands)
Format

: ADC rn, rm

Operation
: rn = rn + rm + CF

Flags Affected: OF, SF, ZF, CF are affected according to result

Encoding
:

	00110
	011
	nnnn
	mmmm

Description
: Add the destination register, source register and CF, and store result in destination register. ADC instruction is useful for multi word addition

Subtract with borrow (register operands)
Format

: SBB rn, rm

Operation
: rn = rn – (rm + CF)

Flags Affected : OF, SF, ZF, CF affected according to result

Encoding
:

	00110
	010
	nnnn
	mmmm

Description: Add the source register with CF and subtract the result from destination register, and store result in destination register. SBB is useful for multi word subtraction.

Logical inclusive or (register operands)
Format

: OR rn, rm

Operation
: rn = rn OR rm

Flags Affected : OF and CF are cleared, SF and ZF are set according to result

Encoding
:

	00110
	110
	nnnn
	mmmm

Description: Perform bitwise OR operation between destination and source registers and store the result in destination register.

Exclusive or (register operands)
Format

: XOR rn, rm

Operation
: rn = rn XOR rm

Flags Affected: OF, CF are cleared, ZF and SF set according to result

Encoding
:

	00110
	111
	nnnn
	mmmm

Description: Perform bitwise XOR operation between destination and source registers and store the result in destination register.

Logical not (register operand)
Format

: NOT rn

Operation
: rn = NOT (rn)

Flags Affected: none

Encoding
:

	00110
	100
	nnnn
	mmmm

Description: Performs bitwise-NOT operation on destination register (rn).
ALU OPERATIONS IMMIDIATE
Subtract (register and immediate operands)
Format

: SUB rn, imm16

Operation
: rn = rn – imm16

Flags Affected: OF, SF, ZF, CF are set to according result

Encoding
:

	01010
	000
	nnnn
	xxxx

	imm16

Description : Subtract immediate 16-bit data from destination register and store the result in the destination register’rn’.

logical and (register and immediate operands)
Format

: AND rn, imm16

Operation
: rn = rn AND imm16

Flags Affected: OF and CF are cleared, ZF and SF are set according to result

Encoding
:

	01010
	101
	nnnn
	xxxx

	imm16

Description: Perform bitwise AND operation between ‘rn’ and 16-bit constant and store result in ‘rn’.

Addition (register and immediate operands)
Format

: ADD rn, imm16

Operation
: rn = rn + imm16

Flags Affected: OF, SF, ZF, CF are affected according to result.

Encoding
:

	01010
	001
	nnnn
	xxxx

	imm16

Description: Add content of rn and 16-bit constant and store rn

Add with carry (register and immediate operands)
Format

: ADC rn, imm16

Operation
: rn = rn + imm16 + CF

Flags Affected: OF, SF, ZF, CF are affected according to result

Encoding
:

	01010
	011
	nnnn
	xxxx

	imm16

Description: Add the destination register, 16-bit constant and CF, and store result in destination register. ADC instruction is useful for multi word addition

Subtract with borrow (register and immediate operands)
Format

: SBB rn, imm16

Operation
: rn = rn – (imm16 + CF)

Flags Affected: OF, SF, ZF, CF are set according to result

Encoding
:

	01010
	010
	nnnn
	xxxx

	imm16

Description: Add the source register with CF and subtract the result from destination register, and store result in destination register. SBB is useful for multi word subtraction.

Logical inclusive or (register and immediate operands)
Format

: OR reg_dest, imm16

Operation
: reg_dest = reg_dest OR imm16

Flags Affected: OF, CF are cleared and SF, ZF set according to result

Encoding
:

	01010
	110
	nnnn
	xxxx

	imm16

Description: Performs bitwise OR operation between content of reg_dest and 16-bit constant and store result in destination register.

Exclusive or (register and immediate operands)
Format

: XOR rn, imm16

Operation
: rn = rn XOR imm16

Flags Affected: OF, CF are cleared and ZF, SF are set according to result

Encoding
:

	01010
	111
	nnnn
	xxxx

	imm16

Description: Performs bitwise XOR operation between content of ‘rn’ and 16-bit constant and store result in destination result

ADD/SUB-I SP
Addition (Stack pointer and immediate operands)
Format

: ADD sp, imm16

Operation
: sp = sp + imm16

Flags Affected: OF, SF, ZF, CF are affected according to result.

Encoding
:

	01101
	001
	xxxx
	xxxx

	imm16

Description: Add content of stack pointer ’sp’ and 16-bit constant and store ‘sp’.
Subtract (Stack operation and immediate operands)
Format

: SUB sp, imm16

Operation
: sp = sp – imm16

Flags Affected: OF, SF, ZF, CF are set to according result

Encoding
:

	01101
	000
	xxxx
	xxxx

	imm16

Description : Subtract immediate 16-bit data from stack pointer’sp’ and store the result in the ‘sp’.

FLAG OPERATION
Compare two register operands
Format

: CMP rn, rm

Operation
: temp = rn – rm

ModifyStatusFlags;

Flags Affected: OF, SF, ZF, CF are set according

Encoding
:

	01000
	000
	nnnn
	mmmm

Description: compare two register operands and set the status flags. Without affecting operands the comparison is performed by subtracting ‘rn’ from ‘rm’ and setting the status flags in same manner as the SUB instruction.

Logical Comparison between register operands
Format

: TEST rn, rm

Operation
: temp = rn AND rm

ModifyStatusFlags

Flags Affected : OF, CF are cleared, SF and ZF are set according to result

Encoding
:

	01000
	101
	nnnn
	mmmm

Description: Perform logical comparison between both register operands. Without affecting operands the comparison is performed by bitwise-AND operation between ‘rn’ and ‘rm’ and setting the status flags in same manner as the AND instruction.
FLAG OPERATION IMMIDIATE
Compare (register and immediate operands)
Format

: CMP rn, imm16

Operation
: temp = rn – imm16

ModifyStatusFlags;

Flags Affected: OF, SF, ZF, CF are set according

Encoding
:

	01100
	000
	nnnn
	xxxx

	imm16

Description: compare register operand with 16-bit constant and set the status flags. Without affecting operands the comparison is performed by subtracting the constant from rn and setting the status flags in same manner as the SUB instruction.

Logical Compare (register and immediate operands)
Format

: TEST rn, imm16

Operation
: temp = rn AND imm16

ModifyStatusFlags

Flags Affected : OF, CF are cleared, SF and ZF are set according to result

Encoding
:

	01100
	101
	nnnn
	xxxx

	imm16

Description: Perform logical comparison between register operand and 16-bit constant. Without affecting operands the comparison is performed by bitwise-AND operation between reg1 and constant and setting the status flags in same manner as the AND instruction.
SHIFT OPERATION
Shift logical left (register operand)
Format

: SLL rn, rm

Operation
: rn << rm

Flags Affected: The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	00111
	000
	 nnnn
	mmmm

Description: Shifts the bits in the destination register to the left by the number of bits specified in the ‘rm’ register. For each shift count, the most significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Shift logical right (register operand)
Format

: SLR rn, rm

Operation
: rn >>> rm

Flags Affected : The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	00111
	001
	nnnn
	mmmm

Description: Shifts the bits in the destination register to the right by the number of bits specified in the ‘rm’ register. For each shift count, the least significant bit of the destination operand is shifted into the CF flag, and the most significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.

Shift arithmetic left (register operand)
Format

: SAL rn, rm

Operation
: rn << rm

Flags Affected: The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	00111
	010
	nnnn
	mmmm

Description: Shifts the bits in the destination register to the left by the number of bits specified in the ‘rm’ register. For each shift count, the most significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Shift arithmetic right (register operand)
Format

: SAR rn, rm

Operation
: rn >>> rm

Flags Affected : The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	00111
	011
	nnnn
	mmmm

Description: Shifts the bits in the destination register to the right by the number of bits specified in the ‘rm’ register. For each shift count, the least significant bit of the destination operand is shifted into the CF flag, and the most significant bit retained its original value. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Rotate left (register operands)
Format

: ROL rn , rm

Operation
: rotate_left(rn), rm times

Flags

: The CF flag contains the value of the bit shifted into it

Encoding
:

	00111
	100
	nnnn
	mmmm

Description: Shifts (rotates) the bits of the destination register the number of bit positions (as specified in the ‘rm’ register) toward more-significant bit positions, except for the most-significant bit, which is rotated to the least significant bit location and stores the result in the destination operand.
Rotate right (register operand)
Format

: ROR rn , rm

Operation
: rotate_right(rn), rm times

Flags Affected : The CF flag contains the value of the bit shifted into it

Encoding
:

	00111
	101
	nnnn
	mmmm

Description: Shifts (rotates) the bits of the destination register the number of bit positions (as specified in the ‘rm’ register) toward less-significant bit positions, except for the least-significant bit, which is rotated to the most significant bit location and stores the result in the destination operand.

Rotate carry left (register operand)
Format

: RCL rn, rm

Operation
: rotate_left_with_carry(rn), rm times

Flags Affected: The CF flag contains the value of the bit shifted into it

Encoding
:

	00111
	110
	nnnn
	mmmm

Description: The Instruction rotates the ‘rnn to the left through CF resulting in the MSB being placed in the CF and old CF ended in the LSB. The ‘rm’ defines the number of rotations.

Rotate carry right (register operand)
Format

: RCR rn, rm

Operation
: rotate_right_with_carry(rn), rm times

Flags Affected: The CF flag contains the value of the bit shifted into it

Encoding
:

	00111
	111
	nnnn
	mmmm

Description: The Instruction rotates the ‘rn’ to the right through CF resulting in the LSB being placed in the CF and old CF ended in the MSB. The ‘rm’ defines the number of rotations
SHIFT IMMEDIATE
Shift logical left (imm4 operand)
Format

: SLL rn, imm(3:0)

Operation
: rn << imm(3:0)

Flags Affected: The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	01011
	000
	nnnn
	imm(3..0)

Description: Shifts the bits in the destination register to the left by the number of bits specified by the 4 bit immediate value. For each shift count, the most significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Shift logical right (imm4 operand)
Format

: SLR rn, imm(3:0)

Operation
: rn >>> imm(3:0)

Flags Affected : The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	01011
	001
	nnnn
	imm(3..0)

Description: Shifts the bits in the destination register to the right by the number of bits specified by the 4 bit immediate value. For each shift count, the least significant bit of the destination operand is shifted into the CF flag, and the most significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Shift arithmetic left (imm4 operand)
Format

: SAL rn, imm(3:0)

Operation
: rn << imm(3:0)

Flags Affected: The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	01011
	010
	nnnn
	imm(3..0)

Description: Shifts the bits in the destination register to the left by the number of bits specified by the 4 bit immediate value. For each shift count, the most significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Shift arithmetic right (imm4 operand)
Format

: SAR rn, imm(3:0)

Operation
: rn >>> imm(3:0)

Flags Affected : The CF flag contains the value of the last bit shifted out of the destination operand; SF and ZF are set according to result

Encoding
:

	01011
	011
	nnnn
	imm(3..0)

Description: Shifts the bits in the destination register to the right by the number of bits specified by the 4 bit immediate value. For each shift count, the least significant bit of the destination operand is shifted into the CF flag, and the most significant bit retained its original value. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination operand.
Rotate left (imm4 operand)
Format

: ROL rn , imm(3:0)

Operation
: rotate_left(rn), imm times

Flags

: The CF flag contains the value of the bit shifted into it

Encoding
:

	01011
	100
	nnnn
	imm(3..0)

Description: Shifts (rotates) the bits of the destination register the number of bit positions (as specified by the 4 bit immediate value) toward more-significant bit positions, except for the most-significant bit, which is rotated to the least significant bit location and stores the result in the destination operand.
Rotate right (imm4 operand)
Format

: ROR rn , imm(3:0)

Operation
: rotate_right(rn), imm times

Flags Affected : The CF flag contains the value of the bit shifted into it

Encoding
:

	01011
	101
	Nnnn
	imm(3..0)

Description: Shifts (rotates) the bits of the destination register the number of bit positions (as specified by the 4 bit immediate value) toward less-significant bit positions, except for the least-significant bit, which is rotated to the most significant bit location and stores the result in the destination operand.

Rotate carry left (imm4 operand)
Format

: RCL rn, imm(3:0)

Operation
: rotate_left_with_carry(rn), imm times

Flags Affected: The CF flag contains the value of the bit shifted into it

Encoding
:

	01011
	110
	nnnn
	imm(3..0)

Description: The Instruction rotates the ‘rn’ to the left through CF resulting in the MSB being placed in the CF and old CF ended in the LSB. The 4 bit immediate value defines the number of rotations.

Rotate carry right (imm4 operand)
Format

: RCR rn, imm(3:0)

Operation
: rotate_right_with_carry(rn), imm times

Flags Affected: The CF flag contains the value of the bit shifted into it

Encoding
:

	01011
	111
	nnnn
	imm(3..0)

Description: The Instruction rotates the ‘rn’ to the right through CF resulting in the LSB being placed in the CF and old CF ended in the MSB. The 4 bit immediate value defines the number of rotations
STACK
Push register onto the stack
Format

: PUSH rn

Operation
: SP = SP – 2

Memory[SP] = rn

Flags Affected: none

Encoding
:

	01110
	000
	nnnn
	xxxx

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: Decrement the stack pointer (SP) by 2 and then transfers the register content to the new top of the stack.
Push FLAGS onto the stack
Format

: PUSHF

Operation
: SP = SP – 2

Memory[SP] = FLAGS

Flags Affected: none

Encoding
:

	01110
	001
	xxxx
	xxxx

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: Decrement the SP by 2 and then transfers FLAGS register to the new top of the stack.
Pop word off stack to destination register
Format

: POP rn

Operation
: rn = Memory[SP]

 SP = SP + 2

Flags Affected: none

Encoding
:

	01110
	100
	nnnn
	xxxx

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: The content of the register `rn’ is replaced by the word at the top of stack and SP is incremented by 2.
Pop word off stack to FLAGS
Format

: POPF

Operation
: FLAGS = Memory[SP]

 SP = SP + 2

Flags Affected: All flags are affected (including interrupt flag)

Encoding
:

	01110
	101
	xxxx
	xxxx

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: Transfer the memory word into FLAGS register and increment the SP by 2.
CALL
Procedure Call (absolute address)
Format

: ACALL (rb)

Operation
: temp = rb

 push(PC)

 PC = temp

Flags Affected: none

Encoding
:

	01111
	001
	xxxx
	bbbb

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: The address of the next sequential instruction is pushed on to the stack and the control is transferred to the base address
Procedure Call (relative address)
Format

: LCALL (rb)

Operation
: temp = rb

 push(PC)

 PC = PC + temp

Flags Affected: none

Encoding
:

	01111
	010
	xxxx
	bbbb

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: PC will be added to temp and then the PC will be updated.

Procedure Call (relative call with imm11)
Format

: SCALL imm11

Operation
: temp = sign ext(imm11)

 push(PC)

 PC = PC + temp

Flags Affected: none

Encoding
:

	10000
	imm(10…..0)

Exceptions: stack alignment exception will be raised, if SP contains odd value

Description: 11-bit immediate value with sign extension will be loaded into PC
RETURN
Format

: RET

Operation
: pop(PC)

Flags Affected : none

Encoding
:

	10001
	xxx
	xxxx
	xxxx

Exception: stack alignment exception will be raised, if SP contains odd value

Description: Return control after the called procedure has been executed. PC is updated by popping one word from the stack
FLAG OPERATIONS
CLC : Clear Carry
Format
: CLC

Operation
: CF = 0

Flags Affected : CF

Encoding
:

	11000
	000
	xxxx
	Xxxx

Description: Clear the carry flag
STC : Set Carry Flag
Format
: SLC

Operation
: CF = 1

Flags Affected: CF

Encoding
:

	11000
	001
	xxxx
	Xxxx

Description: set the carry flag

CMC : Complement Carry Flag
Format
: SLC

Operation
: CF = NOT(CF)

Flags Affected: CF

Encoding
:

	11000
	010
	xxxx
	Xxxx

Description: complement the carry flag

CLI : Clear Interrupt Flag
Format
: CLI

Operation
: IF = 0

Flags Affected: IF

Encoding
:

	11000
	100
	xxxx
	Xxxx

Description: Clear the interrupt flag. As a result all the maskable external interrupts become disabled.
STI : Set Interrupt flag
Format
: STI

Operation
: IF = 1

Flags Affected: IF

Encoding
:

	11000
	101
	xxxx
	xxxx

Description: set the interrupt flag, the processor begins responding to external, maskable interrupts

JMP
JMP (absolute address)
Format

: AJMP (rb)

Operation
: temp = rb

 PC = temp

Flags Affected: none

Encoding
:

	10101
	001
	xxxx
	bbbb

Description: The control is transferred to the base address.
JMP (relative address)
Format

: LJMP (rb)

Operation
: temp = rb

 PC = PC+temp

Flags Affected: none

Encoding
:

	10101
	010
	xxxx
	bbbb

Description: Pc will be added to temp and then the PC will be updated.

JMP (relative call with imm11)
Format

: SJMP imm11

Operation
: temp = sign ext(imm11)

 PC = PC + temp

Flags Affected: none

Encoding
:

	10110
	imm(10..0)

Description: 11-bit immediate value with sign extension will be loaded into PC

JCC (conditional)
Format

: Jcc imm(6..0)

Operation
: if condition satisfied

temp = sign ext (imm(6..0))

PC = PC + temp

Flags Affected: none

Encoding
:

	10111
	imm(6..4)
	tttn
	imm(3..0)

Description: 7-bit immediate value with sign extension will be loaded into PC.

	tttn
	mnemonic
	condition
	

	`0000
	O
	Overflow
	OF = 1

	`0001
	NO
	no overflow
	OF = 0

	`0010
	B, NAE
	below, not above or equal
	CF = 1

	`0011
	NB, AE
	not below, above or equal
	CF = 0

	`0100
	E, Z
	equal, zero
	ZF = 1

	`0101
	NE, NZ
	not equal, not zero
	ZF = 0

	`0110
	BE, NA
	below or equal, not above
	CF = 1 or ZF = 1

	`0111
	NBE, A
	not below or equal, above
	CF = 0 and ZF = 0

	`1000
	S
	sign
	SF = 1

	`1001
	NS
	not sign
	SF = 0

	`1010
	
	
	

	`1011
	
	
	

	`1100
	L, NGE
	less than, not greater than or equal to
	SF != OF

	`1101
	NL, GE
	Not less than, greater than or equal to
	SF = OF

	`1110
	LE, NG
	less than or equal to, Not greater than
	ZF = 1 or SF != OF

	`1111
	NLE, G
	not less than or equal to, greater than
	ZF = 0 and SF = OF

INT

Format

: INT imm4

Operation
: IF = 0

push(FLAGS)

push (PC)

PC = imm4 * 8

Flags Affected : none

Encoding
:

	10010
	xxx
	xxxx
	i(3..0)

Exception: double fault exception will be raised, if SP contains odd value

Description: Transfer control to one of 16 interrupt routines. The constant provides index into the Interrupt Vector Table (IVT). First IF is cleared; then FLAGS register is push into stack followed by PC. Then control transferred to desired interrupt service routine.
INTO : Interrupt overflow
Format

: INTO

Operation
: if OF = 1

overflow exception raised

Flags Affected: none
Encoding
:

	10011
	xxx
	0000
	0000

Exception: double fault exception will be raised, if SP contains odd value

Description: The overflow interrupt checks the OF flag in the FLAGS register and calls the overflow interrupt handler if the OF flag is set to 1.

INTERRUPT RETURN
Format

: IRET

Operation
: pop(PC)

pop(FLAGS)

Flags Affected : all

Encoding
:

	10100
	xxx
	xxxx
	xxxx

Exception: stack alignment exception will be raised, if SP contains odd value

Description: Returns program control from an interrupt handler to a program or procedure that was interrupted by generated interrupt

NO OPERATION (NOP)
Format : NOP

Flags Affected: none

Encoding :

	11110
	xxx
	xxxx
	xxxx

Description: No operation is performed, only PC is incremented

HALT
Format

: HLT

Flags Affected
: none

Encoding
:

	11111
	xxx
	xxxx
	xxxx

Description: Causes the processor to enter its halt state and wait for an external interrupt or reset.

