HPC-16 Implementation: ``impl0”

M. Umair Siddiqui
Change Log
	Date
	Description
	Authors

	Sep 3, 2005
	Initial release
	M. Umair Siddiqui

Table of Contents

iHPC-16 Implementation: ``impl0”

iiChange Log

iiiTable of Contents

11
Introduction

12
Top level

23
Pin Descriptions

34
Bus Cycles

65
Datapath

96
Datapath interconnections

127
Control unit

1
Introduction

In this document, we describe organization of current implementation: data-path components, their functionality and their interconnection with each other, similarly, for control unit we describe all the states, transitions and outputs.

2
Top level

HPC-16 is a 16 bit CPU with 64K address space. It has 16 bit address bus and a separate 16 bit data bus. Since the CPU is a synchronous design therefore it is provided with external clock input (CLK_I) and reset (RST_I) signal. To ease communication between CPU and memory or I/O peripherals there are some control signals like write enable (WE_O) to indicate a write operation. Cycle (CYC_O) output and Strobe (STB_O) signal to indicate the start of cycle and start of phase respectively. To receive the acknowledgement, (ACK_I) input is provided. For interrupt processing the INTR_I signal is provided to request interrupt. Another signal INTA_CYC _O is provided as cycle tag signal, which asserted through out the interrupt acknowledge cycle. Three more signals I_CYC_O, C_CYC_O and D_CYC_O are provided as cycle tag signals and asserted through out instruction fetch, immediate fetch and data (load and store) cycles respectively.
[image: image1.png]Acknowledge

Clock

laterrupt request

Reset

Ack_i ADR_o<1son
seL_o=1i0m
eve_o
c_cve o

INTR, _eve_o

we_o

DaT_1o<tsi0n

Address Bus

sel(1)-Bus bigh enable
sel(0)=Bus low enable

Indicate start of cycle

indicate the constant
loading

Indicate the data read
write cvele

indicate Interrupt
eyele

Indicate mstruction
Tetch

strobe

Welte enable

Data bus

Figure: 2.1 - Top level diagram

3
Pin Descriptions

CLK_I: The clock input [CLK_I] coordinates all activities for the internal logic within the CPU. All CPU output signals are registered at the rising edge of [CLK_I]. All CPU input signals are stable before the rising edge of [CLK_I].
DAT_IO (15..0): The 16-bit data-bus DAT_IO(15..0), used to pass binary data.

RST_I: The reset input [RST_I] forces the CPU to restart. The PC is preset to default “0x0080” and FLAGS is reset. The RST_I should remain high for 4-5 Clock cycle, so that it can be recognized as valid reset signal.
ACK_I: The acknowledge input [ACK_I], when asserted, indicates the normal termination of a bus cycle (read/write/interrupt acknowledge).
ADR_O(15..0): The address bus [ADR_O(15..0)] is used to pass a binary address. The HPC-16 can address 216 byte locations.
CYC_O: The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in progress. The signal is asserted for the duration of all bus cycles.
SEL_O (1..0): The select output array [SEL_O(1..0)] indicates where valid data is expected on the [DAT_IO] signal array during READ cycles, and where it is placed on the [DAT_IO] signal array during WRITE cycles.
STB_O: The strobe output [STB_O] indicates a valid data transfer cycle. It is used to qualify various other signals on the interface such as [SEL_O(1..0)]. The SLAVE asserts the [ACK_I] signals in response to every assertion of the [STB_O] signal.
WE_O: The write enable output [WE_O] indicates whether the current local bus cycle is a READ or WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE cycles.
INTR_I: The interrupt request input INTR_I is used by peripheral devices, to request hardware interrupts. The interrupting peripheral device should assert the INTR_I pin, till the interrupt is recognized.
INTA_CYC_O: This signal is associated with CYC_O (cycle tag). It is asserted through out the interrupt acknowledge cycle, during which CPU read the interrupt vector no. from peripheral devices.

D_CYC_O, C_CYC_O, I_CYC_O: These three signals are also cycle tags. They are asserted during data load/store, constant fetch and instruction fetch respectively.

4
Bus Cycles

There are basically three types of bus cycles: read cycle, write cycle and interrupt acknowledge cycle. Currently HPC-16 performs only one data transfer at a time, and does not support RMW and block transfer cycles.
4.1
Read Cycle
The HPC-16 read cycle is shown in figure 4.7. The bus protocol works as follows:
CLOCK EDGE 0:

· CPU presents a valid address on [ADR_O(15..0)].

· CPU negates [WE_O] to indicate a READ cycle.

· CPU presents bank select [SEL_O(1..0)] to indicate where it expects data.

· CPU asserts [CYC_O] to indicate the start of the cycle and appropriate cycle tag (instruction, data or constant).
· CPU asserts [STB_O] to indicate the start of the phase.
SETUP, EDGE 1:

· SLAVE decodes inputs, and responding SLAVE asserts [ACK_I].

· SLAVE presents valid data on [DAT_IO(15..0)].

· SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data.

· CPU monitors [ACK_I], and prepares to latch data on [DAT_IO(15..0)] .

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I], thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
CLOCK EDGE 1:

· CPU latches data on [DAT_IO(15..0)].

· CPU negates [STB_O], [CYC_O] and cycle tags to indicate the end of the cycle.

· SLAVE negates [ACK_I] in response to negated [STB_O].
[image: image2.png]CLK_1

ADR_O

DAT_IO

WE_O

SEL_O

STB_O
ACK_I

cyc_o

XXXKHXX
HRETO,

B s

XXX

VALID

xX=

e

g

FreRy 8 W

Figure: 4.1 – HPC-16 Read Cycle

4.2
Write Cycle

The HPC-16 write cycle is shown in figure 4.8. The bus protocol works as follows:
CLOCK EDGE 0:

· CPU presents a valid address on [ADR_O(15..0)].

· CPU presents valid data on [DAT_IO(15..0)].

· CPU asserts [WE_O] to indicate a WRITE cycle.

· CPU presents bank select [SEL_O(1..0)] (“11” for 16-bit word and “01” or “10” for 8-bit byte), to indicate where it sends data.

· CPU asserts [CYC_O] and cycle tag (D_CYC_O) to indicate the start of the cycle.

· CPU asserts [STB_O] to indicate the start of the phase.

SETUP, EDGE 1:

· SLAVE decodes inputs, and responding SLAVE asserts [ACK_I].

· SLAVE prepares to latch data on [DAT_IO(15..0)].

· SLAVE asserts [ACK_I] in response to [STB_O] to indicate latched data.

· CPU monitors [ACK_I], and prepares to terminate the cycle.

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I], thereby allowing it to throttle the cycle speed. Any number of wait states may be added.

CLOCK EDGE 1:

· SLAVE latches data on [DAT_IO(15..0)].

· CPU negates [STB_O], [CYC_O] and cycle tag to indicate the end of the cycle.

· SLAVE negates [ACK_I] in response to negated [STB_O].
[image: image3.png]CLK_I

ADR_O

DAT_TIO

WE_O

SEL_O

STB_O

ACK_I

cvc_o

:

4

B
FoRATN

__/__

Figure: 4.2 – HPC-16 Write Cycle

4.3
Interrupt Acknowledge Cycle

The HPC-16 interrupt acknowledge cycle is shown in figure 4.9. The bus protocol works as follows:
CLOCK EDGE 0:

· CPU negates [WE_O] to indicate a READ cycle.

· CPU presents bank select [SEL_O(1..0) = 10] to indicate where it expects data.

· CPU asserts [CYC_O] and [INTA_CYC_O] to indicate the start of the interrupt acknowledge cycle.

· CPU asserts [STB_O] to indicate the start of the phase.

SETUP, EDGE 1:

· SLAVE decodes inputs, and responding SLAVE asserts [ACK_I].

· SLAVE presents valid vector no. on [DAT_IO(15..8)].

· SLAVE asserts [ACK_I] in response to [STB_O] to indicate valid data.

· CPU monitors [ACK_I], and prepares to latch data on [DAT_IO(15..8)].

Note: SLAVE may insert wait states (-WSS-) before asserting [ACK_I], thereby allowing it to throttle the cycle speed. Any number of wait states may be added.

CLOCK EDGE 1:

· CPU latches data on [DAT_IO(15..8)].

· CPU negates [STB_O], [INT_CYC_O] and [CYC_O] to indicate the end of the cycle.

· SLAVE negates [ACK_I] in response to negated [STB_O].

[image: image4.png]CLK_I

DAT_IO(11:8)

WE_O

SEL_O(1)

STB_O
ACK T

cvyc_o

INTA_CYC_O

XXX

[9)
!

14dadS B

RXXX

ARGy
LS

Figure: 4.3 – HPC-16 Interrupt Acknowledge Cycle

5
Datapath
The datapath consists of functional units like ALU, Shifter etc and registers: PC, SP, FLAGS, General purpose registers, along with several other units, registers and muxes. The datapath inputs are control signals like registers’ load control signals, muxes’ data select signals, operation select signals of ALU and Shifter, Clock input. The data bus is used for both input and output operations. The datapath outputs are address bus, interrupt flag, IR(15..8), Jcc_ok (Fcmp output), LSB of PC, SP, MAR and TR2 registers. First we describe the functionality of important datapath components and then describe their in-connection.

[image: image5.jpg]91-OdH jo yiedeleQ
8sz Hg"G|)upw
|
. m 019z ‘UBIS ‘|jo ‘N0
- | uio
Bey o i ;
8 (1 p)upw - | (0gh (o e
= 71 |- 0 e |
(0"v)Bey o . » B (870L)Ixs
<{0)Hpuw— - m - O il
moo | m le— o5z o /)upw
— - - | (07€)zn A
(720 ubis unser yys ! m [eds-
—— 1) w{o=ptH)IXs !
<oiez _ x 2 e
3o 00 m_ m
. £ o 8800
<«——|dwoy o S S
«— (1"p)Be < < [ss
. -—
L"v)oey m_ 0
-
1noo E ujo (0)za |z} LpW |
[2)
up [%ds— < 4Z600
>
m H
m_ ynsas nje < Zi |-
’ ne
H00:X8(0=2) L) m_ am___mm.m <tge) -« 0 e
x | 8 . (Xxnw ouuixe m 3
oipw E (Beyixe a 09 < L - iyl Ol 1v@
- C S
(0"gL)ol" Lva S 2
B . 5 |
m o ﬁ Ul -
——od— 8 S
- G | S
(o Tmixe =
3 ed— l— Lpw €0)
|
5 5
€ _ x
(0)ew S O 8. (xnwTouuxe — 2 <-up
4nonie - od g o
x £
3 ye
€
(07G1)0 day = Jew o le—ds ds 5 pw
% S n_ Yz
£ £
| e—od— 2 ynsal nly <(g)od nonje
i}

Figure: 5.1 – HPC-16 Datapath

The functionality of FLAGS, PC and SP has been specified previously.

Register File: The register file contains 16 GPRs (16-bit each). Register file has two 4-bit address inputs: “aadr(3..0)” and “badr(3..0)”, one 16-bit data input associated with “aadr”: “ad(15..0)”, one clock input: clk, one write control: “adwe”, two data outputs: “aq(15..0)” and “bq(15..0)” associated with “aadr” and “badr” respectively. Data can read asynchronously, by applying the addresses at “aadr” and “badr”, however write operation is performed synchronously at rising edge of “clk”(provided “adwe” is asserted).

ALU: The ALU performs 8 arithmetic and logical operations: subtract, addition, subtract with borrow, add with carry and bit-wise logical operations: NOT, AND, OR and XOR. It has two 16-bit data inputs: “a” and “b”, one carry input from FLAGS, one 3-bit operation select: “opsel”. It has three outputs: 16-bit result, carry output and overflow output.

Shifter: The Shifter is combination module which performs 8 shift and rotate operations: shift logical left, shift logical right, shift arithmetic left, shift arithmetic right, rotate left, rotate right, rotate carry left and rotate carry right. It has one 16-bit data input: “a”. 4-bit to specify shift amount: “b”, one carry input from FLAGS, one 3-bit operation select: “opsel”. It has three outputs: 16-bit result, carry output and overflow output.

Fcmp: Fcmp supports the conditional execution of Jcc and INTO instruction. It has two 4-bit inputs: flags and tttn and one output jcc_ok, if condition specified by tttn input (related to flags status) is satisfied, jcc_ok is asserted.
IR: Instruction Register is 16-bit register with clock enable. It is used to store the fetched instructions. IR(15..8) goes to control unit, for instruction decoding.

MDRI: Memory data register for input, is 16-bit register with clock enable. It is used to store immediate constants and data fetch from memory.

INTR: this is 4-bit register with clock enable, used to store the interrupt vector provided by interrupting devices in interrupt acknowledge cycle.

MAR: Memory Address Register is 16-bit register with clock enable. It is used to temporary store the generated instruction/data operand addresses.

MDRO: Memory Data register for Output is 16-bit register with clock enable. It is used to temporary store candidate data for output.

DFH: 16-bit register with clock enable, used to store the invalid content of SP, that cause stack error or double fault.

TR1 –TR5: Since instruction execution takes multiple cycles. These registers are used to store the intermediate results during instruction execution.

The rest of datapath contain muxes for input data selection for registers and other functional units.

6
Datapath interconnections

Now we discuss the interconnection between the datapath registers and functional units. The current implementation of datapath introduces the area overhead, but simplifies the control unit design, as due to point-to-point connections less data sequencing needed to be performed. The datapath diagram is shown in Figure 4.10. For simplicity, clock and control signals: write enable of register file, data selection signals of muxes, clock enable of registers, operation selection of ALU and shifter are not shown. These are input “ports” of datapath and coming from control unit.

The IR register input is connected to databus (DAT_IO), the IR output goes to different modules, IR(15..8) goes to control unit for instruction decoding. The clock enable of IR is control by “ir_ce” input of datapath. MDRI is also connected to databus, its clock enable is connected to “mdri_ce”.

The two address inputs of register file “aadr” and “badr” are connected to IR(7..4) and IR(3..0). The data input “ad” come from output of Adin_mux. The write enable input is connected to “ad_we”.

Two temporary registers TR1 and TR2 are connected to register file's “aq” and “bq” output respectively. Two temporary registers TR3 and TR4 are connected to sign extended fields of IR: IR(10..0) and (IR(10..8) & IR(3..0)) respectively. The LSB of TR2 goes out of datapath.

Alua_mux is connected to ALU's input port “A”. It is controlled by “alua_mux_sel”. It has four inputs which are connected to: PC output, SP output, TR1 output and TR2 output. Alub_mux is connected to ALU's input port “B”. It is controlled by “alub_mux_sel”. It has 7 inputs, which are connected to: TR2 output, constant “2”, constant “1”, constant “0”, TR3 output, TR4 output, MDRI output. The carry input comes from FLAGS(4). The opsel of ALU is connected to “aopsel” signal.

Sbin_mux is 2-1 mux, its output connected to “B” input of Shifter, control by “sbin_mux_sel”. One of its input connected to TR2(3..0) while other is connected to IR(3..0). This allows us to implement constant as well as variable shift operations. Shifter’s “A” input comes from TR1. The carry input comes from FLAGS(4). The opsel of Shifter is connected to “sopsel” signal.

The result, carry and overflow outputs coming from ALU and Shifter are multiplexed by ASResult_mux. This mux is controlled by “asresult_mux_sel”. From this mux three signals are generated: “asresult_mux_result_out”, “asresult_mux_c_out” and “asresult_mux_o_out”. From “asresult_mux_result_out”, two more signals are generated: “asresult_mux_s_out” and “asresult_mux_z_out”. The “asresult_mux_result_out” goes to TR5.

POPF instruction, pop the content of memory word into FLAGS register. Therefore a 4-bit wide 2-1 mux COSZin_mux is required for four status flags (C, O, S, Z) in FLAGS registers, to either select mdri(4 downto1) or flag outputs of ASResult_mux.
Adin_mux is 6-1 mux connected to regfile ad input. It is controlled by “adin_mux_sel”. Its inputs are connected to outputs of TR2, TR5, SP, MDRI, “mdri_highlow_zse_high” and “mdri_highlow_zse_low”. While execution of lbzx/lbsx instruction CPU needs to load byte. After loading byte data, data is either zero extended or sign extended.
Additionally there is no alignment restriction on byte data, data may either present on even address or odd address. Byte data on even address appear on higher 8 lines of databus and loaded into MDRI(15..8) while byte data on odd address appear on lower 8 lines of databus and loaded into MDRI(7..0). So we have to (sign/zero) extend both of them.

FLAGS register input consists of “coszin_mux_out & mdri(0)”. FLAGS register has several control signals: asynchronous reset, load control, separate load controls for carry and interrupt flags, three control signals for clearing/complementing/setting carry flag and two control signals for clearing/setting interrupt flag. These control signals are connected to datapath input “ports”: “flags_rst”, “flags_ce”, “flags_cfce”, “flags_ifce”, “flags_clc”, “flags_cmc”, “flags_stc”, “flags_cli” and “flags_sti” respectively. When hardware interrupt occurs, control need to check the status of interrupt flag, this signal goes to datapath output. Fcmp has two 4-bit inputs connected to status flags of FLAGS register and IR(7..4). Its output goes to datapath output.
INTR is connected to databus(11..8). It is controled by “intr_ce". The Intno_mux select the vector no. It is controlled by “intno_mux_sel” signal. First four inputs are tied to const ant “1”, “2”, “3” and “4”, which are vector numbers of invaild opcode exception, alignment exception, stack error exception and double fault respectively. The other two are tied to outputs of IR(3..0) and INTR. The selected vector number is further zero extended and multiplied by 8.
The PCin_mux is 3-1 mux, connected to PC input. It is controlled by “pcin_mux_sel". One of its input is connected to ALU result output (this allows PC increments after fetching instruction, placing effective address calculated during jmp and call), second to Intno_mux output (for int, into and hardware interrupt) and third to MDRI output (for ret and iret instructions). The asynchronous preset and clock enable of PC are connected to “pc_pre” and “pc_ce”. The PC may contain odd address, especially after ret or iret instruction. Therefore LSB of PC output goes out of datapath.

The Spin_mux is 2-1 mux, connected to SP input, controlled by "spin_mux_sel". One of its inputs is connected to "alu_result_out" and other to MDRI output. The asynchronous preset and clock enable of SP are connected to “sp_pre” and “sp_ce”. The SP may contain odd address. Therefore LSB of SP output goes out of datapath. The SP output also goes to DFH input, which is controlled by “dfh_ce”.

Marin_mux is 3-1 mux, controlled by "marin_mux_sel". Its inputs are connected to: PC, SP and “alu_result”. MAR output is connected to address bus. MAR is control by “mar_ce”. LSB of MAR also goes out of datapath.
Mdroin_mux is 7-1 mux. It is controlled by signal "mdroin_mux_sel" its inputs are connected to outputs of: PC, TR1, zero extended FLAGS output, intno_mux_out, (TR1(7..0) << 8), ext(TR1(7..0)) and DFH. MDRO output is connected to data bus. MDRO is control by “mdro_ce”.

7
Control unit

The control of current implementation of HPC-16 is implemented as big synchronous Mealy Machine with 45 states. Theses states are (names are “case insensitive”):

reset, fetch0, fetch1, fetch2,

exec0, exec1, exec2, exec3, exec4, exec5,

int_chk, int0, int1, int2, int3, int4,

align0, align1, align2, align3, align4,

stkerr0, stkerr1, stkerr2, stkerr3, stkerr4, stkerr5, stkerr6, stkerr7
invalid0, invalid1, invalid2, invalid3, invalid4,

df0, df1, df2, df3, df4, df5, df6, df7, df8, df9,
halted
Its inputs are clock, LSB of PC, SP, TR2 and MAR registers, jcc_ok signal, interrupt flag, IR(15..8), RST_I, INTR_I and STB_I signals. The asynchronous inputs RST_I and INTR_I are internally synchronized as rst_sync and intr_sync respectively. All the state transitions are performed on next rising edge. The control unit generates various control signals like, data select lines of muxes, clock enable of registers, operation select signals of ALU and Shifter and Bus control signals. The IR(15..8) input is used for instruction decoding, the combinational decoding logic in control unit generates signal “cur_ic” on the basis of IR(15..8). In rest of this section, we shall give “high-level” description about states, output and transition of state machine (control unit).

7.1
Reset
The control asynchronously goes reset state as logic ‘1’ is asserted on ‘rst_sync’ pin. The PC is asynchronously preset to ‘0x0080’. The FLAGS register also asynchronously resets. The control (and consequently CPU) will remain in this reset state until “rst_sync” become 0. When “rst_sync” = 0 then control goes to fetch0 state (on next rising edge of clock).

7.2
Fetch0

In this state the control checks if the PC(0) = 0 then the control signals are generated to load PC to MAR, as well as to increment the PC by two (on next rising edge). The control jumps to the next state fetch1. Otherwise if PC(0) = 1 then alignment exception occurred, control goes to align0 state.

7.3
Fetch1

In the fetch1 state, the control signals are generated to load instruction into IR from the memory address contained in MAR, and control goes to the next state fetch2.

7.4
Fetch2

The control checks the ACK_I (for rest of this section we shall use alias “ack”) signal. If the “ack” = ‘1’ then instruction read cycle will be finished and the control jumps to the exec0 state otherwise it will continue instruction read operation (assuming a wait state inserted by memory) and remain in fetch2 state.

7.5
Exec0
For this stage the control signals are generated according to type of instruction fetched from memory:
MOV Rn, Rm

For this instruction, the contents of TR2 are transferred to Rn in register file. The control unit jumps to the int_chk state to check any interrupt after executing this instruction.

MOV SP, Rm

In this instruction, zero will be added to TR2 in the ALU and the result will be placed in the SP. The control unit jumps to int_chk state to check any interrupt after executing this instruction.

MOV Rn, SP

The instruction will transfer the content of SP to Rn in register file. The control unit jumps to the int_chk state to check any interrupt after executing this instruction.

LD Rn, Rb

In this instruction, the control unit checks whether the address specified in the Rb is properly aligned by checking the LSB of TR2, if its ‘0’ then zero will be added to TR2 and the result will placed in the MAR and the control unit jumps to exec1 state otherwise it will go to align0 state.

LD Rn, (Rb + disp)/ LD Rn, (SP + disp)/ ST Rn, (Rb + disp)/ ST Rn, (SP + disp)/ LBZX Rn, (Rb + disp)/ LBSX Rn, (Rb + disp)/ SB Rn, (Rb + disp)/ LI Rn, imm16/ LI SP, imm16/ ALUop Rn, imm16/ CMP Rn, imm16/ ST Rn, imm16/ ADD SP, imm16/ SUB SP, imm16

In the exec0 state, the control signals will be generated to place the content of PC to MAR and PC is incremented by two and the control unit jumps to exec1 state.

LD Rn, SP

If the LSB of SP is zero then the control signals are generated to place the content of SP to MAR and the control unit jumps to the exec1 state otherwise the stack error occurs and SP will be placed to DFH and control jumps to stkerr0 state.
ST Rb, Rn

If the LSB of TR2 is ‘0’ then zero will be added to TR2 and the result will be placed in MAR, TR1 will be placed in the MDRO and control unit goes to the exec1 state. Otherwise (TR2(0) = ‘1’) the alignment exception occurs and control unit jumps to align0 state.

ST SP, Rn

If the LSB of SP is ‘0’ then SP will be placed in MAR, TR1 will be placed in the MDRO and control unit goes to exec1 state. If SP(0) is not zero then the SP will be placed in the DFH and control unit jumps to stkerr0 state.
LBZX Rn, Rb

Zero will be added to TR2 and the result will be placed in the MAR. The control unit will go to exec1 state.

LBSX Rn, Rb

Zero will be added to TR2 and the result will be placed in the MAR. The control unit will go to exec1 state.

SB Rb, Rn

Zero will be added to TR2 and the result will be placed in the MAR, TR1 will be loaded into the MDRO and the control unit will go to exec1 state.

INC Rn
One will be added to TR1 and the result will be placed in the TR5, FLAGS register is also updated except the CF and IF flags. The next state will be the exec1.

DEC Rn
One will be subtracted from TR1 and the result will be placed in the TR5, FLAGS register is also updated except the CF and IF flags. The next state will be the exec1.

ALUop Rn, Rm

ALU operation will be performed between TR1 and TR2 registers and the result will be placed in the TR5 register. FLAGS register is also updated except (IF) flag. The next state will be exec1.

SHIFTop Rn, Rm

Shift operation will be performed on TR1 register and the result will be placed in the TR5 register. FLAGS register is also updated except (IF) flag. The next state will be exec1.

CMP Rn, Rm
TR2 is subtracted from TR1 register and the result will be placed in the TR5 register. FLAGS register is also updated except (IF) flag. The control unit will jump on to int_chk.
TST Rn, Rm
TR2 is logically anded with TR1 register and the result will be placed in the TR5 register. FLAGS register is also updated except (IF) flag. The control unit will jump on to int_chk.

Shiftop Rn, imm4
Shift operation will be performed on TR1 and the result will be placed in the TR5 register. The FLAGS register will also be updated except (IF) flag and the control unit will go the exec1 state.

PUSH Rn
If the LSB of Sp is ‘0’ then SP subtracted by two and result is stored in MAR and SP. TR1 is placed in the MDRO and the control unit goes to the exec1. If LSB of SP is not zero then stack error occurs, the SP is loaded into DFH and control unit jumps to stkerr0.

PUSHF

If the LSB of SP is ‘0’ then SP subtracted by two and result is stored in MAR and SP. FLAGS is placed in the MDRO and the control unit goes to the exec1. If LSB of SP is not zero then stack error occurs, the SP is loaded into DFH and control unit jumps to stkerr0.

POP Rn / POPF / RET / IRET
Control unit checks the LSB of SP, if its zero then SP will be placed in the MAR and SP is incremented by two and control unit goes to exec1 state. Otherwise stack error occurs, SP is loaded into DFH and control goes to stkerr0.

ACALL Rn / LCALL Rn / SCALL imm11
Control unit checks the LSB of SP, if it is zero then the SP is subtracted by two and the result will be placed in SP and MAR. PC is loaded into the MDRO and the control unit goes to the exec1 state otherwise stack error occurs, SP is loaded into DFH and control unit goes to stkerr0 state.
INT

Control unit checks the LSB of SP, if it is zero then SP is subtracted by two and the result will be placed in SP and MAR. FLAGS are loaded into the MDRO and the control unit goes to the exec1 state. Otherwise if SP(0) = 1 then double fault occurs, “intno” interrupt number will be stored in the MDRO, SP is placed in the DFH and control goes to DF0.
INTO
Control unit checks the LSB of SP, if it is zero then control unit check the status of “jcc_ok”. If “jcc_ok” signal is ‘1’ then the SP is subtracted by two and the result will be placed in SP and MAR. FLAGS are loaded into the MDRO and the control unit goes to the exec1 state. if “jcc_ok” is ‘0’ then the next state will be fetch0. Otherwise if SP(0) = 1 then double fault occurs, “intno” interrupt number will be stored in the MDRO, SP is placed in the DFH and control goes to DF0.

AJMP Rb
Zero is added to TR2 and result is loaded into PC. The control unit jumps to the int_chk state.

LJMP Rb
TR2 is added to PC and control unit jumps to the int_chk state.

SJMP imm11
TR3 is added to PC and control unit jumps to the int_chk state.

JCC imm7
Control unit checks the “jcc_ok” signal, if its ‘1’ then TR4 is added to PC. The control unit jumps to the int_chk state. Otherwise the control unit directly jumps to the int_chk state.

CLC
Control unit clear the carry flag and jumps to int_chk state.

CMC
Control unit complement the carry flag and jumps to int_chk state.
STC
Control unit set the carry flag and jumps to int_chk state.

CLI
Control unit clear the interrupt flag and jumps to int_chk state.

STI
Control unit set the interrupt flag and jumps to int_chk state.

NOP
No any operation will be performed in this state. Control unit jumps to int_chk state.

HLT
Control unit set the interrupt flag and goes to halted state

INVALID OPCODE
Control unit jumps to invalid0 state.

7.6
Exec1
In this stage control signals are generated according to type of instruction:
LD Rn, Rb / LD Rn, SP / POP Rn / POPF / RET / IRET
The control signal will be generated to read a word from the memory into MDRI. Control unit goes to exec2 state.

LD Rn, (Rb + disp) / LD Rn, (SP + disp) / ST Rn, (Rb + disp) / ST Rn, (SP + disp) / LBZX Rn, (Rb + disp) / LBSX Rn, (Rb + disp) / SB Rn, (Rb + disp) / LI Rn, imm16 / LI SP, imm16 / ALUop Rn, imm16 / CMP Rn, imm16 / TST Rn, imm16/ ADD SP, imm16 / SUB SP, imm16
The control signal will be generated to read a constant word from the memory into MDRI. Control unit goes to the exec2 state.

ST Rn, Rb / ST Rn, SP / PUSH Rn / PUSHF / ACALL Rn / LCALL Rn / SCALL imm11 / INT N/ INTO
The control signals will be generated to write a word. Control unit goes to the exec2 state.
LBZX Rn, Rb / LBSX Rn, Rb
The control unit checks the LSB of MAR, if it is ‘0’ then the control signals will be generated to read the upper byte otherwise control signals will be generated to read the lower byte, into MDRI. Control unit then goes to exec2 state.

SB Rb, Rn

The control unit checks the LSB of MAR, if it is ‘0’ then control signals will be generated to write the higher byte. Otherwise control signals will be generated to write the lower byte. Control unit then goes to the exec2 state.
INC Rn / Dec Rn / ALUop Rn, Rm / Shiftop Rn, Rm / Shiftop Rn, imm4
The contents of TR5 will be loaded into “Rn” in register file. The control unit goes to the int_chk state to check any interrupt after executing this instruction.

7.7
Exec2
In this stage the control signals are generated according to type of instruction:
LD Rn, Rb / LD Rn, SP
Control unit checks the ‘ack’ signal, if it is ‘1’ then MDRI will be loaded into ‘Rn’ in register file and control unit goes to int_chk state. Otherwise the control signals will be generated to read a word into MDRI and the control unit will remain in exec2 state.

LD Rn, (Rb + disp)/ LBZX Rn, (Rb + Disp)/ LBSX Rn, (Rb + Disp)
If the ‘ack’ signal is ‘1’ then TR2 will be added to the MDRI register and the result is stored in the MAR and control unit goes to the exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

LD Rn, (SP + disp)
Control unit checks the ‘ack’ signal, if its ‘1’ then MDRI and SP will be added and the result will be loaded into MAR and control unit goes to exec3. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.
ST Rn, Rb / ST Rn, SP
The control unit check the ‘ack’ signal, is its ‘1’ then the control unit move onto int_chk state otherwise the control signals will be generated to write a word and control unit will remain in exec2 state.

ST Rn, (Rb + disp)

If the ‘ack’ signal is ‘1’ then TR2 will be added with MDRI and the result will be stored in the MAR. MDRO will be loaded with TR1 and control unit goes to exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

ST Rn, (SP + disp)
If the ‘ack’ signal is ‘1’ then SP will be added with MDRI and the result will be stored in the MAR. MDRO will be loaded with TR1 and control unit goes to exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

LBZX Rn, Rb

First the control unit checks the ‘ack’, if its ‘1’ then the LSB of MAR will be checked, if its ‘0’ then MDRI(15..8) will be loaded in the ‘Rn’ register in register file with zero extension, if LSB is not ‘0’ then MDRI(7..0) will be loaded in the ‘Rn’ register in register file, with zero extension. If ‘ack’ is ‘0’ then control unit checks the LSB of MAR if its ‘0’ then control signals will be generated to read the upper byte otherwise the lower byte will be read into MDRI and the control unit will remain in exec2 state.

LBSX Rn, Rb

First the control unit checks the ‘ack’, if its ‘1’ then the LSB of MAR will be checked, if its ‘0’ then MDRI(15..8) will be loaded in the ‘Rn’ register in register file with sign extension, if LSB is not ‘0’ then MDRI(7..0) will be loaded in the ‘Rn’ register in register file, with sign extension. If ‘ack’ is ‘0’ then control unit checks the LSB of MAR if its ‘0’ then control signals will be generated to read the upper byte otherwise the lower byte will be read into MDRI and the control unit will remain in exec2 state.
SB Rn, Rb
If ‘ack’ is ‘1’ then the control unit move onto the int_chk state, otherwise the control unit check the LSB of MAR, if its ‘0’ then the control signals will be generated to write the upper byte otherwise the control signals will be generated to write lower byte and the control unit will remain in exec2 state.

SB Rn, (Rb + disp)

If the ‘ack’ signal is ‘1’ then TR2 will be added to the MDRI and the result will be stored in the MAR and control unit goes to exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

LI Rn, imm16

Control unit checks the ‘ack’ signal, if it is ‘1’ then “Rn” in register file is loaded with MDRI and control goes to int_chk state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.
LI SP, imm16

Control unit checks the ‘ack’ signal, if it is ‘1’ then SP is loaded with MDRI and control goes to int_chk state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.
ALUop Rn, imm16
Control unit checks the ‘ack’ signal if its ‘1’ then the ALU operation will be performed between the TR1 register and MDRI and result will be stored in the TR5. FLAGS will also be updated except the IF. Control unit will move onto the exec3 state. If ‘ack’ is ‘0’ then the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.
CMP Rn, imm16
Control unit checks the ‘ack’ signal, if its ‘1’ then MDRI will be subtracted with TR1 and result will be stored in the TR5. FLAGS will be updated except the IF. Control unit will move onto the int_chk state. If ‘ack’ is ‘0’ then the control signals will be generated to read a constant word to load into MDRI and the control unit will remain in exec2 state.
TST Rn, imm16
Control unit checks the ‘ack’ signal, if its ‘1’ then MDRI will be anded with TR1 and result will be stored in the TR5. FLAGS will be updated except the IF. Control unit will move onto the int_chk state. If ‘ack’ is ‘0’ then the control signals will be generated to read a constant word to load into MDRI and the control unit will remain in exec2 state.
ADD SP, imm16
If the ‘ack’ signal is ‘1’ then MDRI will be added to SP and control unit goes to exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

SUB SP, imm16
If the ‘ack’ signal is ‘1’ then MDRI will be subtracted from SP, the result will be stored in the SP and control unit goes to exec3 state. Otherwise the control signals will be generated to read a constant word into MDRI and the control unit will remain in exec2 state.

PUSH Rn/ PUSHF

The control unit check the ‘ack’ signal, if it is ‘1’ then the control unit move onto int_chk state otherwise the control signals will be generated to write a word and control unit will remain in exec2 state.

POP Rn
Control unit checks the ‘ack’ signal, if its ‘1’ then “Rn” register in register file is loaded by MDRI and control unit goes to int_chk state. Otherwise the control signals will be generated to read a word to load into MDRI and control unit will remain in exec2 state.
POPF

Control unit checks the ‘ack’ signal, if its ‘1’ then FLAGS is loaded by MDRI and control unit goes to int_chk state. Otherwise the control signals will be generated to read a word to load into MDRI and control unit will remain in exec2 state.
ACALL Rn

Control unit checks the ‘ack’ signal, if its ‘1’ then TR2 will be added with zero and result will be placed in PC and control unit goes to int_chk state. Otherwise the control signals will be generated to write a word and the control unit will remain in exec2 state.
LCALL Rn
Control unit checks the ‘ack’ signal, if its ‘1’ then TR2 is added to PC and control unit goes to int_chk state otherwise the control signals will be generated to write a word and the control unit will remain in exec2 state.
SCALL imm11
Control unit checks the ‘ack’ signal, if its ‘1’ then TR3 is added to the PC and control unit goes to int_chk state otherwise the control signals will be generated to write a word and the control unit will remain in exec2 state.
RET

If ‘ack’ is ‘1’ then PC will be loaded by MDRI and the control unit goes to the int_chk state otherwise the control signals will be generated to read a word into MDRI and the control unit will remain in exec2 state.
INT N/ INTO

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP. PC will be loaded into the MDRO and the control unit will jump onto exec3 state otherwise the control signals will be generated to read a word and the control unit will remain in exec2 state.

IRET

If ‘ack’ is ‘1’ then MDRI contents will loaded in the PC, (old) SP contents will be placed in MAR and SP will be incremented by two. The control unit will jump to exec3 state otherwise if ack = 0 then control signals will be generated to read a word into MDRI and the control unit will remain in exec2 state.

7.8
Exec3
In this stage control signals are generated according to type of instruction:
LD Rn, (Rb + Disp)/ LD Rn, (SP + Disp)
If the LSB of MAR is ‘0’ then the control signals will be generated to read a word to load the MDRI and the control unit goes to exec4 state else the alignment exception occurred and the control unit will jump to align0 state.

ST Rn, (Rb + Disp)/ ST Rn, (SP + Disp)
If the LSB of MAR is ‘0’ then the control signals will be generated to write a word and the control unit goes to exec4 state else the alignment exception occurred and the control unit will jump to align0 state.
LBZX Rn, (Rb + Disp)/ LBSX Rn, (Rb + Disp)
If MAR contains even address then the control signals will be generated to read upper byte else to read the lower byte to load the MDRI. The control unit will move onto exec4 state.
SB Rn, (Rb + Disp)
If MAR contains even address then the control signals will be generated to load TR1(7..0) into MDRO(15..8) else signals are generated to load TR1(7..0) into MDRO(7..0). The control unit will move onto exec4 state.
ALUop Rn, imm16
TR5 will be loaded into the ‘Rn’ in register file and the control unit goes to the int_chk state to check any interrupt.

INT N/ INTO

Control signals will be generated to write the data onto the bus and the control unit goes to exec4 state.

IRET

Control signals will be generated to read a word and the control unit goes to exec4 state

7.9
Exec4

In this stage control signals are generated according to type of instruction being executed.

LD Rn, (Rb + Disp)/ LD Rn, (SP + Disp)
If ‘ack’ is ‘1’ then the MDRI will be loaded into the ‘Rn’ in register file and the next state will be int_chk state else the control signals will be generated to read a word to load the MDRI register and control unit will remain in exec4 state.

ST Rn, (Rb + Disp)/ ST Rn, (SP + Disp)
If ‘ack’ is ‘1’ then the next state will be int_chk else the control signals will be generated to write a word and the control unit will remain in exec4 state.

LBZX Rn, (Rb + Disp)
If ‘ack’ is ‘1’ then if the LSB of MAR is ‘0’ then MDRI(15..8) with zero extension will be loaded into the ‘Rn’ in register file else MDRI(7..0) with zero extension will be stored in ‘Rn’ and control unit goes to int_chk state. If the ‘ack’ is ‘0’ then the control unit checks the LSB of MAR, if its zero then the control signals will be generated to read the upper byte otherwise read the lower byte to load the MDRI and the control unit will remain in exec4 state.

LBSX Rn, (Rb + Disp)
If ‘ack’ is ‘1’ then if the LSB of MAR is ‘0’ then MDRI(15..8) with sign extension will be loaded into the ‘Rn’ in register file else MDRI(7..0) with sign extension will be stored in ‘Rn’ and control unit goes to int_chk state. If the ‘ack’ is ‘0’ then the control unit checks the LSB of MAR, if its zero then the control signals will be generated to read the upper byte otherwise read the lower byte to load the MDRI and the control unit will remain in exec4 state.

SB Rn, (Rb + Disp)
The control unit check the LSB of MAR, if it is ‘0’ then the control signals will be generated to write the upper byte else the lower byte and the control unit goes to exec5 state.

INT N/ INTO

If ‘ack’ is ‘1’ then the IR(3..0) are multiplied by ‘8’ and the result will be loaded into PC. The control unit jumps to the int_chk state else the control signals will be generated to write word and the control unit remain in exec4 state.
IRET

If ‘ack’ is ‘1’ then the MDRI will be loaded onto the FLAGS register. The control unit jumps to the int_chk state else the control signals will be generated to read a word to load the MDRI and the control unit remain in exec4 state.

7.10
Exec 5

Only instruction which reaches this stage is:
Sb Rn, (Rb + disp)
If ‘ack’ is ‘1’ then data have been written in memory and next state will be int_chk, otherwise control checks MAR(0). If MAR contains even address, control unit continue writing upper byte otherwise continue writing lower byte and remain in exec5.

7.11
Int_chk

In this state, control checks the interrupt flag, if it is ‘0’ then control jumps to state fetch0, else if interrupt flag is ‘1’ then control checks status of “intr_sync”. If “intr_sync” is ‘1’ then control unit starts interrupt acknowledge cycle to read interrupt vector and goes to int0 state else it jumps to fetch0 state.

7.12
Int0

Control checks the “ack” input, if ‘ack’ is ‘1’ then if the LSB of SP is ‘0’ then SP will be subtracted by two and the result will be stored into MAR and SP. FLAGS register will be loaded into MDRO and the control unit will jump to the int1 state. If the LSB of SP is not ‘0’ then the ‘intno’ from INTR will be loaded into the MDRO, SP will be loaded into the DFH and the next state will be DF0. Else if ‘ack’ is ‘0’ then control signals will be generated to read the vector into INTR register. The control unit will remain in Int0 state.

7.13
Int1

Control signals will be generated to write a word (FLAGS) and the control unit will move onto Int2 state.

7.14
Int2

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP. PC will be loaded into the MDRO and the control unit will jump onto Int3 state otherwise the control signal will be generated to write a word and the control unit will remain in Int2 state.

7.15
Int3

The control signals will be generated to write a word (PC) and the control unit will jump to int4 state.

7.16
Int4
If ‘ack’ is ‘1’ then the INTR will be multiplied by ‘8’ the result will be loaded into the PC. The control unit will jump to the Fetch0 state. Else if ack is ‘0’ then control signal will be generated to write a word and the control unit will remain in Int4 state.

7.17
Invalid0

If SP(0) = 0 then SP will be subtracted by two and the result will be placed in MAR and SP registers. FLAGS register will be loaded into the MDRO and the control unit will jump to Invalid1 state else “invalid_exp_vector” will be placed in the MDRO, SP will be loaded into the DFH register and the control unit will jump to the DF0 state.
7.18
Invalid1

The control signal will be generated to write a word (FLAGS) on memory and the control unit will jump to the next state Invalid2.
7.19
Invalid2

If 'ack' is '1' then SP will be subtracted by two and the result will be placed in MAR and SP registers. PC will be loaded into the MDRO and the control unit will jump to Invalid3 state otherwise the control signal will be generated to write a word and the control unit will remain in the invalid2 state.
7.20
Invaild3

The control signal will be generated to write a word (PC) and the control unit will jump to the next state invalid4.
7.21
Invaild4
If ‘ack’ is ‘1’ then the “invalid_exp_vector” will be loaded into the PC and the control unit will jump to fetch0 state otherwise the control signal will be generated to write a word and the control unit will remain in the Invalid4 state.
7.22
Align0

If SP(0) = 0 then SP will be subtracted by two and the result will be placed in MAR and SP registers. FLAGS register will be loaded into the MDRO and the control unit will jump to align1 state else “align_exp_vector” will be placed in the MDRO, SP will be loaded into the DFH register and the control unit will jump to the DF0 state.

7.23
Align1

The control signal will be generated to write a word (FLAGS) on memory and the control unit will jump to the next state align2.

7.24
Align2

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP registers. PC will be loaded into the MDRO and the control unit will jump to align3 state otherwise the control signal will be generated to write a word and the control unit will remain in the align2 state.

7.25
Align3

The control signal will be generated to write a word (PC) and the control unit will jump to the next state align4.

7.26
Align4
If ‘ack’ is ‘1’ then the “align_exp_vector” will be loaded into the PC and the control unit will jump to fetch0 state otherwise the control signal will be generated to write a word and the control unit will remain in the align4 state.

7.27
Stkerr0
SP will be asynchronously reset and the control unit goes to stkerr1 state.

7.28
Stkerr1
The SP will be subtracted by two and the result will be placed in MAR and SP registers. DFH will be loaded into the MDRO and the control unit will jump to stkerr2 state.

7.29
Stkerr2

The control signal will be generated to write a word (DFH) and the control unit will jump to the next state stkerr3.

7.30
Stkerr3

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP registers. FLAGS register will be loaded into the MDRO and the control unit will goes to stkerr4 state. Otherwise the control signal will be generated to write a word and the control unit will remain in the stkerr3 state.

7.31
Stkerr4

The control signal will be generated to write a word (FLAGS) and the control unit will jump to the next state stkerr5.

7.32
Stkerr5

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP registers. PC will be loaded into the MDRO and the control unit will jump to stkerr6 state otherwise the control signal will be generated to write a word and the control unit will remain the stkerr5 state.

7.33
Stkerr6

The control signal will be generated to write a word (PC) and the control unit will jump to the next state stkerr7
7.34
Stkerr7
If ‘ack’ is ‘1’ then the “stk_err_vector” will be loaded into the PC and the control unit will jump to fetch0 state otherwise the control signal will be generated to write a word and the control unit will remain in the stkerr7 state.

7.35
DF0

SP will be asynchronously reset and the control unit goes to DF1 state.

7.36
DF1
SP will be subtracted by 2 and the result will be placed in MAR and SP registers and the control unit will goes to DF2 state.

7.37
DF2

Control signals will be generated to write a word (prev interrupt no.) on memory and the control unit will jump to DF3 state.

7.38
DF3

If ‘ack’ is ‘1’ then SP will be subtracted by 2 and the result will be placed in MAR and SP registers. DFH register will be loaded into the MDRO and the control unit will jump to DF4 state. Otherwise if ack = 0, the control signals will be generated to write the word and the control unit will remain in the DF3 state.

7.39
DF4

Control signal will be generated to write a word (DFH) on memory and the control unit will jump to DF5 state.

7.40
DF5

If ‘ack’ is ‘1’ then SP will be subtracted by 2 and the result will be placed in MAR and SP registers. FLAGS will be loaded into the MDRO and the control unit goes to DF6 state. Otherwise if ack = 0, the control signals will be generated to write the word and the control unit will remain in the DF5 state.

7.41
DF6

Control signal will be generated to write a word (FLAGS) and the control unit will jump to DF7 state.

7.42
DF7

If ‘ack’ is ‘1’ then SP will be subtracted by two and the result will be placed in MAR and SP registers. PC will be loaded into the MDRO and the control unit will jump to DF8 state. Otherwise the control signal will be generated to write a word and the control unit will remain in DF7 state.

7.43
DF8

Control signal will be generated to write a word (FLAGS) and the control unit will jump to DF9 state
7.44
DF9
If ‘ack’ is ‘1’ then the “df_err_vector” will be loaded into the PC and the control unit will jump to Fetch0 state otherwise the control signal will be generated to write a word and the control unit will remain in the DF9 state.

7.45
Halted
If “int_sync” is ‘1’ then the control signals will be generated for interrupt acknowledge cycle, to read a vector into the INTR, control unit will then jump to int0 state otherwise the control unit will remain in halted state.

PAGE
12

