HPC-16: impl0 in VHDL

M. Umair Siddiqui

Change Log

	Date
	Description
	Authors

	Sep 3, 2005
	First Release
	M. Umair Siddiqui


Table of Contents

iHPC-16: impl0 in VHDL


iiChange Log


iiiTable of Contents


11
Introduction


12
HPC-16 Building Blocks


12.1
Sync – Synchronizer


12.2
Con1 – Control Unit


22.3
Regfile – Register File


32.4
Flags – FLAGS register


32.5
Fcmp


42.6
Shifter


42.7
ALU


52.8
Datapath


53
CPU – Top Level Entity


54
Synthesis with Xilinx ISE 6.1




1
Introduction
In this section we describe the important aspects of VHDL implementation of HPC-16. In implementation phase we have written VHDL modules (entity-architecture pairs) of CPU building blocks at RTL level of complexity, except Arith module for which we used schematic entry. Our overall goal was to keep CPU simple as possible and still meet its functional requirements. Detailed information related to functionality of these modules has been specified in previous sections. File organization and module dependency is as follows:

CPU (cpu.vhd & cpu_pkg.vhd)


DP (dp.vhd & dp_pkg.vhd)



ALU (alu.vhd)




Arith (arith.sch)




Log (log.vhd)



Shifter (shifter.vhd)



Regfile (regfile.vhd)



Fcmp (Fcmp.vhd)



Flags (flags.vhd)


Con1 (con1.vhd & con_pkg)


Sync (sync.vhd)
2
HPC-16 Building Blocks

The basic building blocks of HPC-16 are as follows:
2.1
Sync – Synchronizer

In control unit there are two asynchronous inputs RST_I and INTR_I. To avoid the meta-stability problems, these signals are synchronized. Therefore in control unit we use two sync modules. Sync module has three ports: one data input, a clock input and a data output port and basically consists of two cascaded DFFs.     

2.2
Con1 – Control Unit

The control unit is implemented as big synchronous mealy machine. EDA tools provide the facility, of supporting hardware synthesis from state diagrams of state machine. Drawing bigger state diagram is as difficult as drawing bigger schematics; our control unit has 43 states and more than 200 transitions. Using HDL (VHDL/Verilog) we can easily write bigger FSM with out any hassle. The FSM code is written in “con1.vhd”. Constant, type and component declarations are given in “con_pkg.vhd”. The con1.vhd starts with entity declaration of control unit; as specified in analysis and design part the 

control unit has many output ports: bus controls, mux selection lines, register reset/preset, register clock enables and fewer inputs: “ir_high”, “if’, “jcc_ok”, LSB of PC, SP, MAR, TR2, RST_I, INTR_I and CLK_I. 

In architecture declaration we have declared signals, in which three of them are important: “cur_state”, “nxt_state” and “cur_ic”. In architecture body, we instantiated two synchronizers for signals RST_I and ACK_I. Then there is instruction decoding logic which is implemented as single big “when-else” construct. The decoding logic based on ir_high input, assigns appropriate value to cur_ic signal, the cur_ic signal is used by the FSM during execN states to identify the instruction type. 

The FSM consist of two processes: one combinational process for both output and next state logic, and a sequential process for changing the state. These two processes use “cur_state” and “nxt_state” signals. The sequential process model the state registers, it perform the signal assignment (cur_state <= nxt_state) on rising edge of clock or asynchronously reset on assertion of rst_sync (cur_state <= reset). In combinational process, there is a big case statement which on basis of “cur_state”, change the “nxt_state” and value on output ports of control unit.

For example if cur_state = fetch1, combinational process asserts these bus control signals: 

SEL_O <= "11", STB_O <= '1', CYC_O <= '1', I_CYC_O <= '1' 

assert clock enable of IR:

ir_ce <= ‘1’.

and change next state signal:

nxt_state <= fetch2

now the sequential process, on next rising edge change cur_state:

cur_state <= nxt_state

or asynchronously reset if rst_sync is asserted

cur_state <= reset

and then combinational process generate appropriate signals for fetch2 or reset state, and so on.

2.3
Regfile – Register File

The register file is implemented as 16x16 dual-port SRAM with one data write port, supporting asynchronous read and synchronous write operations. For its implementation we used generic VHDL, instead of instantiating RAM primitives provided in vendor library. In declaration part of architecture, there is array signal “ram”. In architecture body there are two concurrent statements for read operation and a process which controls write operation, on rising edge if write enable signal is asserted then data is written in array at desired index.    

2.4
Flags – FLAGS register

In VHDL implementation, Flags implemented as 5-bit DFF with combination logic to provide all the required control signals. Providing more control signals to FLAGS simplify the control unit, for example providing a control signal to set the interrupt flag i.e. Flags(0), help to execute STI instruction, the control need to assert only one signal. 

2.5
Fcmp

In VHDL implementation, Fcmp is simple combinational module. It has two 4-bit inputs, tttn and flags_in, and one output jcc_ok. In architecture body, there is only one process. In this process, fcmp check its tttn input using “case” statement and accordingly check the condition related to bit-status of flags_in. If condition satisfied then it asserts jcc_ok output. The following table, shows tttn field and corresponding “flags_in” condition which is checked by fcmp. In datapath, tttn(3..0) input is connected to IR(7..4) and flags_in(3..0) is connected to (Carry, Overflow, Sign and Zero) Flags, therefore the conditions are also specified accordingly.

Table: 2.1 – Fcmp operation – “tttn” field and corresponding “flags_in” conditions

	tttn
	Flags_in Condition

	“0000”
	OF = 1

	“0001”
	OF = 0

	“0010”
	CF = 1

	“0011”
	CF = 0

	“0100”
	ZF = 1

	“0101”
	ZF = 0

	“0110”
	CF = 1 or ZF = 1

	“0111”
	CF = 0 and ZF = 0

	“1000”
	SF = 1

	“1001”
	SF = 0

	“1100”
	SF != OF

	“1101”
	SF = OF

	“1110”
	ZF = 1 or SF != OF

	“1111”
	ZF = 0 and SF = OF


2.6
Shifter

This module is pure combinational shifter. It has one 16-bit data input “a”, a 4-bit “b” input for specifying the shift amount, 3-bit operation select input and carry input. It has 16-bit result, carry out and overflow outputs. The shifter support four types of shift and four types of rotate operations: sll, slr, sal, sar, rol, ror, rcl and rcr. For this purpose there are eight combinational processes to perform these operations and generates result and carry out. A 16-bit 8-1 mux select the desired result output and carry out. A separate process generates overflow output, which is valid for one bit shifts and rotate operations.

2.7
ALU

It has two 16-bit data inputs “a” and “b”, 3-bit operation select input and carry input. It has 16-bit result, carry out and overflow outputs. The ALU supports four arithmetic and four logical operations: sub, add, sbb, adc, not, and, or, xor. The ALU contain two submodules: Arith and Log. The Arith performs the four arithmetic operations and build using schematic entry. Arith primarily consist of Xilinx macro ADSU16, Cascadable Adder/Subtracter with Carry-In, Carry-Out and Overflow. This macro efficiently uses the fast carry logic, present in Xilinx FPGAs. Log unit perform four logical operations. The MSB of opsel(2..0), is used by output muxes to select the result, carry out and overflow.

2.8
Datapath

The datapath consists of several registers, functional units and muxes as described in previous sections. The datapath inputs are control signals like registers’ load control signals, muxes’ data select signals, operation select signals of ALU and Shifter, Clock input. The data bus is used for both input and output operations. The datapath outputs are address bus, interrupt flag, IR(15..8), Jcc_ok (Fcmp output), LSB of PC, SP, MAR and TR2 registers. These input and output are ports of datapath entity. In architecture declaration part, there are several internal signals. We do not created entity architecture pairs of all submodules of datapath, simple modules like registers and muxes are implemented using “processes”. Only complex submodules ALU, shifter, Flags, regfile and fcmp have separate entity-architecture pairs. In datapath, there is generic clause to specify the appropriate preset values of SP and PC, for given application.

3
CPU – Top Level Entity

This is the top level entity, which simply instantiates datapath and control units and connect them using internal signals declared in architecture declaration part. The entity declaration contains only the outer bus interfacing signals.

4
Synthesis with Xilinx ISE 6.1

We implemented the design in VHDL using Xilinx ISE 6.1 tool and its Spartan-3 device family FPGA's. Currently, the whole project utilizes 50% of one Xilinx Spartan-3 (XC3S200) device and supports maximum 44 MHz Clock.  The table 5.2 and table 5.3 summarize the device report and timing report respectively, generated by synthesis tool for this project.  

Table: 4.1 - Device Utilization

	Number of Slices
	990 out of 1920 (51%)

	Number of Slice Flip Flops
	254 out of 3840 (6%)  

	Number of 4 input LUTs
	1745 out of 3840 (45%)  

	Number of bonded IOBs
	44 out of 173 (25%)  

	Number of GCLKs
	1 out of 8 (12%)


Table: 4.2 – Timing Summary 
	Min period
	22.355ns 

	Min input arrival time before clock
	2.234ns

	Max output required time after clock
	20.296ns
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