12C Master/Slave Core Verification Plan

The block diagram shows the basic VMM methodology which will be followed to verify this I12C

core.

TB Configuration

Scenario Generator

W/B 12C
Master @ (] M/S
Driver Driver

D

U

T
Monitor

Interface

|

Coverage Collector

= Scoreboard
T

Description:

The verification of I12C can be divided into different test-case category. Following are
the categories which are gonna do exhaustive verification of 12C Core:
e Data Transmission Test case.
e Register's Writing and Reading.
e Reset Operation.

The Selection of which category of test-case to run can be done either at command line
or by using configuration class. For command line selection, $value$plusargs system task will be
used to pass value from command line.

The TB Configuration is used to configure the test case. This configuration block is
commonly used in VMM to configure the test cases. In this verification environment the
configuration class will be having only one field which will control no. of transaction to be done

Scenario Generator is used to generate different scenarios depending on the test case
configuration's fields selection. It uses different packets to generate and pass packet to both
master as well as slave driver.

Scenario Generator first randomizes a packet (scenario packet) to generate random mode
(type) of test-case to be run. Scenario Packet class has following random fields:

Master/Slave selection
Transmit/Receive Operation
Reset Check

Register check.

After randomization of scenario packet, Scenario Generator randomizes stimulus packet
and data packet. Stimulus packet contains following randomized fields:

Interrupt enable/disable bit

No. of bytes to transmit/receive
Register data

Register address

Slave address

In data packet only dynamic array of data byte is used. The size of this array will be
assigned after randomization of stimulus packet and then this array will be randomized.

Scenario Generator will send stimulus packet to both drivers W/B Driver
(vmm_i2c_driver.v) and I2C M/S Driver or Responder(i2c_slave_driver.v). W/B driver then
writer internal register for DUT configuration and I2C driver will respond accordingly.

3. Functionalities to be Covered/Checked:

Following are the functionalities which will be checked and their respective cover

groups/points are mention in brackets next to them:

Data transfer (CG1)

o Both Possible mode of DUT which are given below: (m_s)

Master
Slave
Both side of transaction which are : (tx_rx)
Transmitter
Receiver
No. of bytes to be transfer.
This can be divided into 3 categories: (data_in)
low
mid
high
Cross Coverage between master_slave , transmit /receive and data byte to make sure that
all possible mode are checked for all category of data byte size. (data_mode_cross).
Slave Address match. Again this address can be divided into 2-3 categories. (slave_addr)
low
mid
high

Protocol Validation (CG3)

Generation and detection of Start signal during data transfer. (start_bit).

Generation and detection of Stop signal during data transfer. (stopt_bit

Generation and detection of Slave Address Acknowledgment. (slave_ack).
Generation and detection of Data Byte Acknowledgment. (data_ack)

Generation and clearing the interrupt. (intr_ack)

Cross Coverage between Start signal and all possible (four) modes of operation.
(start_mode_c ross)

Cross Coverage between Stop signal and all possible (four) modes of operation.
(stop_mode_cross)

Cross Coverage for slave address acknowledgment and all possible modes of operation.
(sack_mode_cross)

Cross Coverage between data acknowledgment and all possible modes of operation.
(dack_mode_cross)

Cross Coverage between interrupt generation and all possible modes of operation.
(iack_mode_cross)

Registers and Reset Check (CG2)

Cover point with bins for all internal register's addresses.(register_addr)

e Write into a register or read from a register. (write_read).
Cross Coverage between write/read and register address to insure all registers have been
written and read. (cross_reg_addr_wr)

o Write the same register twice and see if newer value is updated in register for the
transition coverage. (txn)

o Apply reset test-case randomly. Any time reset test can be selected. (reset_test)

