O
\ OpenCores.Org

i2cSlave
Specification

Author: Steve Fielding
sfielding(@base2designs.com

Rev. 1.0
November 7, 2008

@
\} OpenCores 11/7/2008

Revision History

Rev. \ Date Author Description

1.0 | 11/07/08 Sfielding Created

WWW.opencores.org Rev 1.0 ii

http://www.opencores.org/

O

OpenCores 11/7/2008

Contents

INTRODUCTION...cuuuiiuirirennenanssnnsaessnsssesssessasssessassssssssssssssassssssassssssssssssssassssssassssssssssasss 1
ARCHITECTURE.......cuuiniiinninnennnsnensnessesssessaesssssssssssssssssessassssssasssssssssssessassssssasssssssses 2
OPERATION....uuuiitenneennnnsnnnsnessnnsssnssssnssssssssnssassssssassssans 3
CLOCKS S
LO PORTS...uuietinnrenninnnnnsnnsssnssssnssasssssssssnsssssssanssssssssssssssssssssssssssssssssssassssassssssssssssassssassss 6
RESOURCE UTILIZATION....uuiinieiuecsnnssansssncsssessssssssssssssssasssssssssssssssssssssssassssssssassssss 7

WWW.opencores.org Rev 1.0 iii

http://www.opencores.org/

O

OpenCores 11/7/2008

1

Introduction

i2cSlave is a minimalist 12C slave IP core that provides the basic framework for the
implementation of custom 12C slave devices. The core provides a means to read and write
up to 256 8-byte registers. These registers can be connected to the users custom logic,
thus implementing a simple control and status interface.

WWW.Opencores.org Rev 1.0 10f12

http://www.opencores.org/

@
\) OpenCores 11/7/2008

2

Architecture

WWW.Opencores.org Rev 1.0 20f12

http://www.opencores.org/

O

OpenCores 11/7/2008

3

Operation

The core has up 256 registers that can be accessed via [2C. I2C write operations are used
to set the register address pointer, and write the register data. I2C reads are used to read
the register data. Successive data reads or writes result in data being read or written from
incremental register addresses. There is no limit on how much data can be read or written
in a single access, but the internal register address pointer will wrap round to 0 once it
reaches 255. Note that the address pointer is not initialized at reset, and the address
pointer must be set via 12C.

Operation is explained through the use of examples. Examples assume 4 R/W registers at
address 0x0, and 4 read only registers at address 0x4, with contents = 0x12345678

Set register address pointer = 0x00:

‘Byte No.‘Data ‘R/W ‘Description Start/Stop ‘Ack/Nak ‘
1 0x78 W Device address WR STA
2 0x00 W Set register address = 0x00 STO

Write 4 bytes of data starting at register address 0x00:

‘ Byte No. ‘ Data ‘R/W ‘Description Start/Stop Ack/Nak
1 0x78 W Device address WR STA

2 0x00 W Set register address = 0x00

3 0x89 W Write reg[0x00]

4 Oxab W Write reg[0x01]

5 Oxed W Write reg[0x02]

6 Oxef W Write reg[0x03] STO

Read 4 bytes of data starting at register address 0x00:

‘Byte No.‘Data ‘R/W‘Description Start/Stop ‘Ack/Nak‘
1 0x78 W Device address WR STA

WWW.opencores.org Rev 1.0 30f12

http://www.opencores.org/

@
\) OpenCores 11/7/2008

2 0x00 W Setregister address =0x00 STO
3 0x79 W Device address RD STA
4 0x89 R Read reg[0x00] ACK
5 Oxab R Read reg[0x01] ACK
6 Oxed R Read reg[0x02] ACK
7 Oxef R Read reg[0x03] NAK

Read 4 bytes of data starting at register address 0x04:

Byte No. Data R/W Description Start/Stop Ack/Nak
1 0x78 W Device address WR STA

2 0x04 W Setregister address = 0x04 STO

3 0x79 W Device address RD STA

4 0x12 R Read reg[0x04] ACK

5 0x34 R Read reg[0x05] ACK

6 0x56 R Read reg[0x06] ACK

7 0x78 R Read reg[0x07] NAK

Modify the existing files

You will need to modify i2cSlave to suit your individual application. Specifically you
will need to modity;

i2cSlave_define.v

Change I2C_ADDRESS to your 12C device address.
Change CLK_FREQ to match your system clock frequency.
registerInterface.v

Modity the input/output ports and the read and write processes to implement your own
register interface.

i2cSlave.v

Modify the input/output ports and the instantiation of registerInterface to connect the
modified registerInterface ports to the i2cSlave ports. The tri-state buffer is included here
for convenience, but you may wish to remove it, and implement the tri-state buffer in
your top level module. Note that only sdaln and sdaOut are defined. If you wish for a
more conventional tri-state interface, you can implement the following;

assign sda_i = sdaln;

WWW.opencores.org Rev 1.0 4 of 12

http://www.opencores.org/

@
\} OpenCores 11/7/2008

assign sda_o = 1'b0;

assign sda_oe n = sdaOut;

Add your own custom logic

Now you can include i2cSlave in your own top level module that connects the registers to
your own custom logic, and connects sda and scl to your top level ports.

WWW.opencores.org Rev 1.0 50f12

http://www.opencores.org/

O

OpenCores

11/7/2008

4

Clocks

Name Source

clk Input
Pad

WwWw.opencores.org

Rates (MHz) Remarks
Max Min Res
Limited TBD. - Duty cycle
by Only 50/50.
hardware @ tested at

48MHz

Table 1: List of clocks

Rev 1.0

Description

System clock.

6 of 12

http://www.opencores.org/

O

OpenCores 11/7/2008

Port ‘ Width ‘ Direction Description

clk 1 input Clock. If you change this clock from 48MHz
you may need to alter some constants in the
i2cSlave define.v file

rst 1 input 1 = reset. Synchronous to clk. Resets all logic.

sda 8 inout 12C SDA

scl 8 inout 12C SCL

MyReg|[3:0] 8 output 12C accessible output registers. Modify to
implement your own custom outputs

MyReg[7:4] 8 input 12C accessible input registers. Modify to

www.opencores.org

implement your own custom inputs

Table 2: List of 10 ports

Rev 1.0

7 of 12

http://www.opencores.org/

@
\) OpenCores 11/7/2008

6

Resource Utilization

Target Device Logic Cells / Macrocells Memory bits
EPM7256 (256 macrocell 143 macrocells 0
CPLD)
EP2C20 218 logic cells 0

Table 3 Resource utilization for Altera CycloneEP2C20, and EPM7256

WWW.0opencores.org Rev 1.0 8 of 12

http://www.opencores.org/

	Revision History
	Modify the existing files
	Add your own custom logic

