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This file contains usage instructions and notes about the Ion CPU core project. The core
structure is briefly explained in sections 1 to 5. The rest of this doc describes other aspects of
the project: code samples, utility scripts, etc.

This document is not yet a full reference on the Ion core or a data sheet. Instead, it should be
taken as a companion and commentary to the source code.

This document assumes you know in some depth the MIPS-I architecture. Terms and con-
cepts from [1, ’See MIPS Run’] and [2, ’IDT R3K Reference Manual’] are used throughout the text.

Last modified: June 20, 2012



Section

1
Introduction

1.1 Features

This is a MIPS-I compatible CPU, aiming at compatibility with IDT’s R3000 MIPS derivative:

Key features

1. Binary compatible to R3000 series of CPUs.
Can use regular R3000 toolchains despite a few unimplemented opcodes listed below.

2. Kernel/user mode operation as per the architecture definition.

3. Exception handling compatible to MIPS-I standard.

4. 4KB direct-mapped code cache.

5. 4KB direct-mapped, writethrough data cache.

6. Simplified CP0, mostly compatible to R3000.

7. All unimplemented opcodes trigger the proper traps.

8. Includes minimalistic memory handler with interfaces for external SRAM (or FLASH)
on 8- and 16-bit data bus.

9. Size and speed comparable to other free MIPS cores.

10. Fully sinchronous (rising clock edge only). No latches.

11. Source HDL is fully vendor independent (Only tested on Xilinx and Altera synthesis
tools).

5



6 SECTION 1. INTRODUCTION

The implementation departs from the standard R3000 in some points:

Non-standard features

1. No MMU and no TLB – meaning no memory address translation at all.

2. Cache management simplified in an incompatible way.

3. A number of R3000 opcodes are unimplemented or implemented in an incompatible
way:
Unaligned load/store instructions (formerly patented).
All CPA instructions.
All CP0 instructions related to TLB and the cache.

4. Some other R3000 CP0 features have been omitted.
This includes the CP0 timer.

5. Interrupt mask handling simplified in an incompatible way.

Finally, there are some flaws and missing features meant to be fixed in subsequent versions:

Missing features to be implemented eventually

1. Hardware interrupts not implemented.

2. Memory handler does not support dynamic RAM.

3. Caches are not configurable or parametrizable.

4. Real documentation (specs doc & data sheet) missing.



Section

2
Usage

2.1 Main Modules

The core is split in three main modules:

1. The CPU (mips_cpu.vhdl).

2. The cache+memory controller (mips_cache.vhdl).

3. A ’SoC’ entity which combines CPU+Cache (mips_soc.vhdl).

The entity you should use in your projects is the SoC module. The project includes a ’hard-
ware demo’ built around this module (see section 9.1) which is meant as an usage example.

2.2 Bootstrap Code

Though the core is meant to run mostly from off-chip memory, the current version of the SoC
module includes a small ROM implemented as FPGA BRAM and called ’bootstrap BRAM’. In
the current version of the core, this BRAM can be loaded with arbitrary code and its size can be
configured by using generics, but it can’t be removed from the SoC. Even though the memory
map can be modified to boot from external FLASH and not use a BRAM at all, a BRAM will still
be inferred within the SoC – subsequent versions will fix this.

As can be seen in table 3.3, the internal BRAM is mirrored all over a wide area starting at
0xb8000000. In practice, this means the BRAM will be mapped at the CPU reset address (0xbfc00000)
and thus the bootstrap code should be placed there. Unless the bootstrap BRAM is very small, it
will span over the interrupt vector address too (0xbfc00180).

For example, the ’Adventure’ demo included with the project uses bootstrap code included
in file /src/common/bootstrap.s. This bootstrap code is fairly incomplete (interrupt response
code is mostly a stub) yet it’s enough to boot most applications. Note that the C startup code,

7



8 SECTION 2. USAGE

which deals with things like initializing the static variables on the data segment, etc. is not part
of this bootstrap code. It can be found in file /src/common/c_startup.s

So, in short, the code loaded onto the startup BRAM should include the most basic system
initialization (cache initialization at least) and the entry point for the interrupt response code;
plus a jump to the main program entry address.

Anyone trying to build some application on this core is advised to use the code samples as
starting points, specially the makefiles.

Loading Bootstrap Code on the SoC Module

Once the code that is to be loaded on the bootstrap BRAM has been built, you need to load it
onto the bootstrap BRAM within the FPGA.

As you probably already know, there are several possible ways to deal with this and most of
them involve using ’Memory Initialization Files’ of some sort. This project is different.

So far, this project does not include any support for using IMF files of any kind. Instead, the
bootstrap BRAM is inferred and initialized using regular VHDL constructs and a constant passed
to the SoC module as a generic.

This scheme has a big drawback: every time the object code within the FPGA changes, the
whole synthesis needs to be re-run. This drawback is manageable as long as the core is not used
in any big project or if the bootstrap code does not change often.

On the other hand, I see some big advantages in using regular BRAM inference in this stage
of the project:

1. The whole scheme is totally vendor agnostic.

2. Object code embedded on VHDL constants can very easily be used in both simulation and
synthesis.

So, whatever object code is to be used to initialize the SoC bootstrap BRAM has to be passed
to the SoC module instance as a generic constant (see section 3.1). The constant must be of
type t_obj_code, which is defined in package mips_pkg.

Building the Bootstrap Initialization Constant

The project includes a python script (/tools/build_pkg/build_pkg.py) whose purpose is to
build an VHDL t_obj_code constant out of a binary object code file.

This script will read one or more big-endian, binary object files and will produce a VHDL
package file that will contain initialization constants for the bootstrap BRAM and for some other
memories that are only used in the simulation test bench. The package can optionally include
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too some simulation and synthesis configuration constants – such as the size of the bootstrap
BRAM.

The makefiles included in the code samples invoke this script twice: once to generate a pack-
age called sim_params_pkg and used in the simulation test bench; and once to build a package
called bootstrap_code_pkg used for synthesis.

Please refer to the makefiles for usage examples, and read the script source for more detailed
usage instructions.





Section

3
SoC Module

The main purpose of the SoC module is to encapsulate the somewhat complex interconnection
between the CPU and the Cache/Memory Controller module.

If some project demands that some piece of hardware be directly connected to the CPU,
bypassing the cache, this is where it should be – an MMU comes to mind.

Any peripherals deemed common enough that they will be present in all projects might be
placed in the SoC module too.

In the current version of the SoC module, there is only one peripheral included in it – a hard-
wired UART module. There is no penalty for placing peripherals ouside the SoC module, so
there is no incentive to place them inside. This is an implementation option of yours.

Bear in mind that, in its current state, the SoC module is little more than a vehicle for building
demos around the ION CPU. It is not meant as a real-world SoC, though it might be deloped into
one eventually.

3.1 SoC Generics

The SoC needs to be configured upon instantiation by setting the following generics:

Table 3.1: SoC module generics

Name Type Default value Description

BOOT_BRAM_SIZE integer 1024 Bootstrap BRAM size in 32-bit words.
OBJ_CODE t_obj_code (void code) Bootstrap BRAM contents.

CLOCK_FREQ integer 50e6 Main clock rate.
BAUD_RATE integer 19200 UART baud rate.

SRAM_ADDR_SIZE integer 17 Size of SRAM address bus.

11



12 SECTION 3. SOC MODULE

The current version of the SoC is not very strict in the enforcement of limits for the generics.
You are advised to use only ’reasonable’ values. This will be fixed, eventually.

Generic CLOCK_FREQ is only needed in order to compute the default baud period for the in-
ternal UART (from the value of generic BAUD_RATE).

Generic BOOT_BRAM_SIZEwill determine the size of the internal bootstrap BRAM. This generic
can’t be zero; in the current version of the SoC, the BRAM can’t be disabled or omitted.

Note that if the size of the bootstrap BRAM is not enough to hold the whole bootstrap code
provided in generic OBJ_CODE, the code will be sineltly truncated!. Usually this will result in an
early crash.

Generic OBJ_CODE is used at synthesis time to initialize the bootstrap BRAM. This generic is
meant to contain boostrap code, as seen in section 2.2). It can be omitted, in which case the
bootstrap BRAM will be initialized to all zeros.

3.2 SoC Ports

Figure 3.1: SoC module interface

As you can see in figure 3.1 (symbol generated by Xilinx ISE), the SoC has the following inter-
faces:

1. Interface to external static asynchronous memory (SRAM, FLASH...).
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Table 3.2: SoC module interface ports

Name Type Width Description

clk in 1 Clock input, active rising edge.
reset in 1 Synchronous global reset.

sram_address out 16 Memory word address (bit 0 absent).
sram_data_wr out 16 Memory write data. Only valid when one of the

memory byte write enable outputs is active.
sram_data_rd in 16 Memory read data. Latched when xxx.
sram_byte_we_n out 2 Memory byte write enable, active low.

(0) enables the low byte (7 downto 0)
(1) enables the high byte (15 downto 8).

io_rd_addr out 30 I/O port read address (bits 1..0 absent).
Only valid when io_rd_vma is high.

io_wr_addr out 30 I/O port write address (bits 1..0 absent).
io_wr_data out 32 I/O write data. Only valid when one of the

i/o byte write enable outputs is active.
io_rd_data in 32 I/O read data. Latched when xxx.
io_byte_we out 4 I/O byte write enable, active high.

(0) enables the low byte (7 downto 0)
(3) enables the high byte (31 downto 24).

io_rd_vma out 1 Active high on i/o read cycles.

uart_rxd in 1 RxD input to internal UART.
uart_txd out 1 TxD output from internal UART.

interrupt in 8 Interrupt request inputs, active high.

2. Interface to on-chip peripherals.

3. Interrupt inputs.

4. Debug port.

These interfaces will be explained in the following subsections. The top module for the demo
supplied with the project (c2sb_demo.vhdl) will be used for illustration.

NOTE: This section needs a lot of elaboration – ideally this should be equivalent to a datasheet
in thoroughness and detail. This work, like many other parts of this project, will have to wait.

SoC interface to static memory

The interface to external memory in the SoC module is essentially that of the internal cache/memory
controller. Its timing is described in section 5.4.
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The SoC inputs are meant to be connected straight to the FPGA i/o pins. The only trick is the
bidirectional memory data bus: as you can see, the SoC data buses are unidirectional and thus
you will need to provide an interconnection external to this module. This interconnection shall
include the requisite 3-state buffers:

sram_databus <= sram_data_wr when sram_byte_we_n/="11" else (others => 'Z');

The top level c2sb_demo module can be used as a fully tested example of how to use this
interface to connect to a common 16-bit-wide SRAM chip (ISSI IS61LV25616).

In reviewing the top module source, note that I had to adapt the dual byte-write-enable out-
puts to the SRAM configuration of a single write-enable plus dual byte-enable inputs.

Note too that the static memory bus of the SoC module is used to access both the 16-bit
wide SRAM and an 8-bit wide FLASH. These chips are connected to separate buses on the target
board, so the top c2sb_demo module needs to conflate both buses before connecting them to
the SoC. This is why a multiplexor is used in the mpu_sram_data_rd bus. A real-world board
would probably have the SRAM and the FLASH connected to the same bus, simplifying the in-
terface logic.

SoC interface to peripherals

Every CPU access to an area designated as I/O (see 3.3, memory map) will trigger a read/write
cycle on this interface.

I/O ports are synchronous, byte accesible registers meant to be implemented within the
FPGA. I/O ports do not support wait states.

The I/O interface has separate input and output buses.

In an output cycle, one or more lines of signal io_byte_we will be asserted for one clock
cycle. Signals io_wr_addr and io_wr_addr will be valid as long as io_byte_we is asserted.

In an input cycle, io_rd_vma will be asserted for one cycle and the input data should be
present at io_rd_data at the end of the following clock cycle. The full read operation extends
over two clock cycles.

SoC interrupt inputs

The present version of the CPU does not have support for hardware interrupts and therefore
these signals are not used yet and are unconnected. Hardware interrupts will be implemented
in some future version as time permits.
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SoC debug port

The debug port is a VHDL record (t_debug_info, defined in package mips_pkg), which holds
some internal CPU status flags that can be useful while debugging the core. It is not meant to be
useful for a real application.

Currently the record holds only two flags:

• cache_enabled, asserted when the cache is enabled.

• unmapped_access, asserted when some access to an unmapped address is made.

The current version of the demo connects these signals to some on-board LEDs.

3.3 SoC Memory Map

The memory map determines the type of memory that is connected to each of a number of
predefined address rangess (see section 5.3). It is defined in package mips_pkg and it is imple-
mented in the mips_cache module.

Table 3.3: SoC module memory map

Address range Type Wait States Intended usage

0xb8000000-0xbfffffff BRAM 0 SoC internal boot BRAM.

0x00000000-0x07ffffff SRAM-16 2 Off-chip SRAM.
0x80000000-0x87ffffff SRAM-16 2 Off-chip SRAM.
0x20000000-0x27ffffff I/O 0 On-chip I/O registers.
0xb0000000-0xb7ffffff SRAM-8 7 Off-chip SRAM or FLASH.

3.4 SoC UART

The current revision of the SoC includes a single peripheral, a hardwired 8-bit UART (file uart.vhdl).

This UART is an 8-bit module built for some other unrelated project of mine and comman-
deered to serve on this SoC. Therefore, it has some features (like its 8-bit interface) which are
sub-optimal for this application and/or are not used.

The UART is ’hardwired’ because some of its operational parameters are hardcoded and can’t
be changed even at synthesis time. Namely:

• Stop bits: 1.
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• Parity: None.

• Bits per character: 8.

All other parameters can at least be configured at synthesis time, and under some conditions
can be configured at run time too. The interested user must read the module source for a bet-
ter explaination of these features. This document will only deal with the UART module as it is
instantiated in the SoC.

These are the UART control registers:

Table 3.4: UART control registers

Byte Address Word Address Register

0x20000003 0x20000000 Tx/Rx Buffer
0x20000007 0x20000004 Status.
0x2000000b 0x20000008 Baud rate period, low byte.
0x2000000f 0x2000000c Baud rate period, high byte.

All of these registers are mapped to the byte address given in the table, that is, they are
mapped on the low byte of the 32-bit word they belong to – you don’t have to worry about this
unless you use a word pointer to access these registers.

UART Usage

Until hardware interrupts are implemented, you have to rely on polling to use the UART.

When you want to transmit, you wait until flag TxRdy is ’1’ and then write to the Tx Buffer.
That will clear TxRdy until the transmission is done. Writing to the Tx Buffer will NOT clear flag
TxIrq.

Writing to the Tx Buffer while TxRdy is ’0’ will have no effect.

When you want to read received data, you wait until RxRdy is ’1’ and then read the Rx Buffer.
Reading the Rx Buffer will clear flag RxRdy until a new byte arrives. Reading the RxBuffer while
RxRdy is ’0’ will return undefined data. Reading the Rx Buffer will NOT clear flag RxIrq.

Of course, once hardware interrupts are implemented, you will use them instead of polling,
but this is the basic mechanics. Same as any old UART, really.

UART Status Register

These are the flags present in the status register:
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UART Status Register

7 6 5 4 3 2 1 0

+-------+-------+-------+-------+-------+-------+-------+-------+

| 0 | 0 | RxIrq | TxIrq | 0 | 0 | RxRdy | TxRdy |

+-------+-------+-------+-------+-------+-------+-------+-------+

h h W1C W1C h h r r

Bits marked ’h’ are hardwired and can’t be modified.

Bits marked ’r’ are read only; they are set and clear by the UART core.

Bits marked W1C (’Write 1 Clear’) are set by the UART core when an interrupt has been trig-
gered and must be cleared by the software by writing a ’1’.

• Status bit TxRdy is high when there isn’t any transmission in progress. It is cleared when
data is written to the transmission buffer and is raised at the same time the transmission
interrupt is triggered.

• Status bit RxRdy is raised at the same time the receive interrupt is triggered and is cleared
when the data register is read.

• Status bit TxIrq is raised when the transmission interrupt is triggered and is cleared when
a 1 is written to it.

• Status bit RxIrq is raised when the reception interrupt is triggered and is cleared when a 1
is written to it.

When writing to the status/control registers, only flags TxIrq and RxIrq are affected, and only
when writing a ’1’ as explained above. All other flags are read-only.

UART Baud Rate Registers

When the UART module generic ’HARDWIRED’ is set to ’false’, these registers can be written to
in order to configure the baud rate – see the source for details.

When the UART module generic ’HARDWIRED’ is set to ’true’, these registers are frozen and
can’t be modified. This is how the module is instantiated in the current version of the SoC.

In either case, these are write-only registers: reading them will return the contents of the
status register (simplified multiplexor).

The baud rate is configured by loading these registers with the baud period in clock cycles.
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UART Interrupt

The UART can trigger an interrupt (i.e. assert its interrupt output for one clock cycle) whenever
a character is received or transmitted. The UART source explains in detail exactly when these
interrupts are triggered.

The interrupt status is kept in two flags on the status register that can be used for interrupt
polling. Note there’s no way to tell what kind of interrupt we got other than looking at those
flags.

Since the current CPU revision does not support hardware interrupts, this feature is still un-
used and the interrupt line is unconnected. Again, details can be found in the UART module
source.



Section

4
CPU Description

This section is about the ’core’ cpu (mips_cpu.vhdl), excluding the cache.

Figure 4.1: CPU module interface

the CPU module is not meant to be used directly. Instead, the SoC module described in chap-
ter 3 should be used.

The following sections will describe the CPU structure and interfaces.

19



20 SECTION 4. CPU DESCRIPTION

4.1 Bus Architecture

The CPU uses a Harvard architecture: separate paths for code and data. It has three separate,
independent buses: code read, data read and data write. (Data read and write share the same
address bus).

The CPU will perform opcode fetches at the same time it does data reads or writes. This is not
only faster than a Von Neumann architecture where all memory cycles have to be bottlenecked
through a single bus; it is much simpler too. And most importantly, it matches the way the CPU
will work when connected to code and data caches.

(Actually, in the current state of the core, due to the inefficient way in which load interlocking
has been implemented, the core is less efficient than that – more on this later).

The core can’t read and write data at the same time; this is a fundamental limitation of the
core structure: doing both at the same time would take one more read port in the register bank
– too expensive. Besides, it’s not necessary given the 3-stage pipeline structure we use.

In the most basic use scenario (no external memory and no caches), code and data buses
have a common address space but different storages and the architecture is strictly Harvard.
When cache memory is connected the architecture becomes a Modified Harvard – because data
and code ultimately come from the same storage, on the same external bus(es).

Note that the basic cpu module (mips_cpu) is meant to be connected to internal, synchronous
BRAMs only (i.e. the cache BRAMs). Some of its outputs are not registered because they needn’t
be. The parent module (called ’mips_soc’) has its outputs registered to limit tco to acceptable
values.

Code and data read bus interface

Both buses have the same interface:

?_rd_addr Address bus
?_rd Data/opcode bus
?_rd_vma Valid Memory Address (VMA)

The CPU assumes SYNCHRONOUS external memory (most or all FPGA architectures have
only synchronous RAM blocks):

When ?_rd_vma is active (’1’), ?_rd_addr is a valid read address and the memory should
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provide read data at the next clock cycle.

The following ascii-art waveforms depict simple data and code read cycles where there is no
interlock – interlock is discussed in section 2.3.
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==== Chronogram 3.1.A: data read cycle, no stall ======================

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

_________ _________

data_rd_vma ____/ \_________/ \____________________

data_rd_addr XXXX| 0x0700 |XXXXXXXXX| 0x0800 |XXXXXXXXX|XXXXXXXXX|

data_rd XXXX|XXXXXXXXX| [0x700] |XXXXXXXXX| [0x800] |XXXXXXXXX|

(target reg) ????|?????????|?????????| [0x700] |?????????| [0x800] |

(data is registered here...)--^ (...and here)--^

==== Chronogram 3.1.B: code read cycle, no stall =====================

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

__________________________________________________

code_rd_vma ____/ | | | | |

????| 0x0100 | 0x0104 | 0x0108 | 0x010c | 0x0200 |

code_rd XXXX|XXXXXXXXX| [0x100] | [0x104] | [0x108] | [0x10c] |

p1_ir_reg ????|?????????|?????????| [0x100] | [0x104] | [0x108] |

(first code word is registered here)--^

========================================================================

The data address bus is 32-bit wide; the lowest 2 bits are redundant in read cycles since the
CPU always reads full words, but they may be useful for debugging.

Data write interface

The write bus does not have a vma output because byte_we fulfills the same role:
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?_wr_addr Address bus
?_wr Data/opcode bus
byte_we WE for each of the four bytes

Write cycles are synchronous too. The four bytes in the word should be handled separately
– the CPU will assert a combination of byte_we bits according to the size and alignment of the
store.

When byte_we(i) is active, the matching byte at data_wr should be stored at address data_wr_addr.
byte_we(0) is for the LSB, byte_we(3) for the MSB. Note that since the CPU is big endian, the MSB
has the lowest address and LSB the highest. The memory system does not need to care about
that.

Write cycles never cause data-hazard stalls. They would take a single clock cycle except for
the inefficient cache implementation, which stalls the CPU until the writethrough is done.

This is the waveform for a basic write cycle (remember, this is without cache; the cache would
just stretch this diagram by a few cycles):
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==== Chronogram 3.2: data write cycle =================================

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

byte_we XXXX| 1111 | 0000 | 0100 | 1100 | 0000 |

data_wr_addr XXXX| 0x0700 |XXXXXXXXX| 0x0800 | 0x0900 |XXXXXXXXX|

data_wr XXXX|12345678h|XXXXXXXXX|12345678h|12345678h|XXXXXXXXX|

[0x0700] ????|????????h|12345678h|12345678h|12345678h|12345678h|

[0x0800] ????|????????h|????????h|????????h|??34????h|??34????h|

[0x0900] ????|????????h|????????h|????????h|????????h|1234????h|

========================================================================

Note the two back-to-back stores to addresses 0x0800 and 0x0900. They are produced by two
consecutive S? instructions (SB and SH in the example), and can only be done this fast because
of the Harvard architecture (and, again, because the diagram does not account for the cache
interaction).

CPU stalls caused by memory accesses

In short, the ’mem_wait’ input will unconditionally stall all pipeline stages as long as it is active.
It is meant to be used by the cache at cache refills.

The cache/memory controller stops the cpu for all data/code misses for as long as it takes to
do a line refill. The current cache implementation does refills in reverse order (i.e. not ’target
address first’).

Note that external memory wait states are a separate issue. They too are handled in the
cache/memory controller. See section 5 on the memory controller.

4.2 Pipeline

Here is where I would explain the structure of the cpu in detail; these brief comments will have
to suffice until I write some real documentation.
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This section could really use a diagram; since it can take me days to draw one, that will have
to wait for a further revision.

This core has a 3-stage pipeline quite different from the original architecture spec. Instead of
trying to use the original names for the stages, I’ll define my own.

A computational instruction of the I- or R- type goes through the following stages during ex-
ecution:

FETCH-0 Instruction address is in code_rd_addr bus
FETCH-1 Instruction opcode is in code_rd bus
ALU/MEM ALU operation or memory read/write cycle is done OR

Memory read/data address is on data_rd/wr_address bus OR
Memory write data is on data_wr bus

LOAD Memory read data is on data_rd bus

In the core source (mips_cpu.vhdl) the stages have been numbered:

FETCH-1 = stage 0
ALU/MEM = stage 1
LOAD = stage 2

Here’s a few examples:

==== Chronogram 3.3.A: stages for instruction "lui gp,0x1" ============

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

code_rd_addr | 0x099c |

code_rd_data |3c1c0001h|

rbank[$gp] | 0x0001 |

|< fetch0>|< 0 >|< 1 >|

=======================================================================
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==== Chronogram 3.3.B: stages for instruction "lw a0,16(v0)" ==========

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

code_rd_addr | 0x099c |

code_rd_data |8c420010h|

data_rd_addr | $v0+16 |

_________

data_rd_vma _____/ \______

data_rd | <data> |

rbank[$a0] | <data> |

|< fetch1>|< 0 >|< 1 >|< 2 >|

========================================================================

In the source code, all registers and signals in stage <i>are prefixed by "p<i>_", as in p0_*,
p1_* and p2_*. A stage includes a set of registers and all the logic that feeds from those registers
(actually, all the logic that is between registers p0_* and p1_* belongs in stage 0, and so on). Since
there are signals that feed from more than one pipeline stage (for example p2_wback_mux_sel,
which controls the register bank write port data multiplexor and feeds from p1 and p2), the
naming convention has to be a little flexible.

FETCH-0 would only include the logic between p0_pc_reg and the code ram address port, so
it has been omitted from the naming convention.

All read and write ports of the register bank are synchronous. The read ports belong logically
to stage 1 and the write port to stage 2.

IMPORTANT: though the register bank read port is synchronous, its data can be used in stage
1 because it is read early (the read address port is loaded at the same time as the instruction
opcode). That is, a small part of the instruction decoding is done on stage FETCH-1, by feeding
the source register index field straight from the code bus to the register bank BRAM.

Bearing in mind that the code cache ram is meant to be the exact same type of block as the
register bank (or faster if the register bank is implemented with distributed RAM), and we will
cram the whole ALU delay plus the reg bank delay in stage 1, it does not hurt moving a tiny part
of the decoding to the previous cycle.
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All registers but a few exceptions belong squarely to one of the pipeline stages:

Stage 0:
p0_pc_reg PC
(external code ram read port register) Loads the same as PC

Stage 1:
p1_ir_reg Instruction register
(register bank read port register)
p1_rbank_forward Feed-forward data (hazards)
p1_rbank_rs_hazard Rs hazard detected
p1_rbank_rt_hazard Rt hazard detected

Stage 2:
p2_exception Exception control
p2_do_load Load from data_rd
p2_ld_* Load control
(register bank write port register)

Note how the register bank ports belong in different stages even if it’s the same physical de-
vice. No conflict here, hazards are handled properly (logic defined with explicit vendor-independent
vhdl code, not with synthesis pragmas, etc.).

There is a small number of global registers that don’t belong to any pipeline stage:

pipeline_stalled Together, these two signals...
pipeline_interlocked ...control pipeline stalls

And of course there are special registers accessible to the CPU programmer model:

mdiv_hi_reg register HI from multiplier block
mdiv_lo_reg register LO from multiplier block
cp0_status register CP0[status]
cp0_epc register CP0[epc]
cp0_cause register CP0[cause]

These belong logically to pipeline stage 1 (can be considered an extension of the register
bank) but have been spared the prefix for clarity.

Note that the CP0 status and cause registers are only partially implemented.
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Again, this needs a better explaination and a diagram.

4.3 Interlocking and Data Hazards

There are two data hazards we need to care about:

a) If an instruction needs to access a register which was modified by the previous instruction,
we have a data hazard – because the register bank is synchronous, a memory location can’t be
read in the same cycle it is updated – we will get the pre-update value.

b) A memory load into a register Rd produces its result a cycle late, so if the instruction after
the load needs to access Rd there is a conflict.

Conflict (a) is solved with some data forwarding logic: if we detect the data hazard, the regis-
ter bank uses a ’feed-forward’ value instead of the value read from the memory file.
In file mips_cpu.vhdl, see process ’data_forward_register’ and the following few lines, where the
hazard detection logic and data register and multiplexors are implemented. Note that hazard is
detected separately for both read ports of the reg bank (p0_rbank_rs_hazard and p0_rbank_rt_hazard).
Note too that this logic is strictly regular vhdl code – no need to rely here on the synthesis tool to
add the bypass logic for us. This gets us some measure of vendor independence.

As for conflict (b), in the original MIPS-I architecture it was the job of the programmer to
make sure that a loaded value was not used before it was available – by inserting NOPs after the
load instruction, if necessary. This is what I call the ’load delay slot’, as discussed in [2, p. 13-1].

The C toolchain needs to be set up for MIPS-I compliance in order to build object code com-
patible with this scheme.
But all succeeding versions of the MIPS architecture implement a different scheme instead,
’load interlock’ ([1, p. 28]). You often see this behavior in code generated by gcc, even when
using the -mips1 flag (this is probably due to the precompiled support code or libc, I have to
check).
In short, it pays to implement load interlocks so this core does, but the feature should be op-
tional through a generic.

Load interlock is triggered in stage 1 (ALU/MEM) of the load instruction; when triggered, the
pipeline stages 0 and 1 stall, but the pipeline stage 2 is allowed to proceed. That is, PC and IR are
frozen but the value loaded from memory is written in the register bank.

In the current implementation, the instruction following the load is UNCONDITIONALLY
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stalled; even if it does not use the target register of the load. This prevents, for example, inter-
leaving read and write memory cycles back to back, which the CPU otherwise could do.
So the interlock should only be triggered when necessary; this has to be fixed.

==== Chronogram 3.4.A: data read cycle, showing interlock =============

____ ____ ____ ____ ____

clk ____/ \____/ \____/ \____/ \____/ \____/

code_rd_addr XXXX| 0x099c | 0x09a0 | 0x09a4 | 0x09a8 |

byte_we XXXX| 0000 | 1111 | 0000 | 0000 | 1100 |

|< >|

________________________ ____________________

code_rd_vma \_________/

_________

data_rd_vma ________________________/ \____________________

data_rd_addr XXXX|XXXXXXXXX|XXXXXXXXX| 0x0700 |XXXXXXXXX|

data_rd XXXX|XXXXXXXXX|XXXXXXXXX|XXXXXXXXX| [0x700] |XXXXXXXXX|

(target reg) ????|?????????|?????????|?????????| [0x700] |?????????|

(data is registered here)--^

========================================================================

Note how a fetch cycle is delayed.

This waveform was produced by this code:

...

998: ac430010 sw v1,16(v0)

99c: 80440010 lb a0,16(v0)

9a0: a2840000 sb a0,0(s4)

9a4: 80440011 lb a0,17(v0)

9a8: 00000000 nop

...
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Note how read and write cycles are spaced instead of being interleaved, as they would if in-
terlocking was implemented efficiently (in this example, there was a real hazard, register $a0,
but that’s coincidence – I need to find a better example in the listing files...).

4.4 Exceptions

The only exceptions supported so far are software exceptions, and of those only the instructions
BREAK and SYSCALL, the ’unimplemented opcode’ trap and the ’user-mode access to CP0’ trap.
Memory privileges are not and will not be implemented. Hardware/software interrupts are still
unimplemented too.

Exceptions are meant to work as in the R3000 CPUs except for the vector address.
They save their own address to EPC, update the SR, abort the following instruction, and jump to
the exception vector 0x0180. All as per the specs except the vector address (we only use one).

The following instruction is aborted even if it is a load or a jump, and traps work as specified
even from a delay slot – in that case, the address saved to EPF is not the victim instruction’s but
the preceding jump instruction’s as explained in [1, p. 64].

Plasma CPU used to save in epc the address of the instruction after break or syscall, and used
an unstandard vector address (0x03c). This core will go the standard R3000 way instead.

Note that the epc register is not used by any instruction other than mfc0. RTE is implemented
and works as per R3000 specs.

4.5 Multiplier

The core includes a multiplier/divider module which is a slightly modified version of Plasma’s
multiplier unit. Changes have been commented in the source code.

The main difference is that Plasma does not stall the pipeline while a multiplication/division
is going on. It only does when you attempt to get registers HI or LO while the multiplier is still
running. Only then will the pipeline stall until the operation completes.
This core instead stalls always for all the time it takes to do the operation. Not only it is simpler
this way, it will also be easier to abort mult/div instructions.

The logic dealing with mul/div stalls is a bit convoluted and coud use some explaining and
some ascii chronogram. Again, TBD.
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Section

5
Cache/Memory Controller Module

The project includes a cache+memory controller module from revision 114.

Both the I- and the D-Cache are implemented. But the parametrization generics are still
mostly unused, with many values hardcoded. And SDRAM is not supported yet. Besides, there
are some loose ends in the implementation still to be solved, exlained in section 5.5.

5.1 Cache Initialization and Control

The cache module comes up from reset in an indeterminate, unuseable state. It needs to be
initialized before being enabled.
Initialization means mostly marking all D- and I-cache lines as invalid. The old R3000 had its
own means to achieve this, but this core implements an alternative, simplified scheme.

The standard R3000 cache control flags in the SR are not used, either. Instead, two flags from
the SR have been repurposed for cache control.

Cache control flags

Bits 17 and 16 of the SR are NOT used for their standard R3000 purpose. Instead they are used
as explained below:

• Bit 17: Cache enable [reset value = 0]

• Bit 16: I- and D-Cache line invalidate [reset value = 0]

You always use both these flags together to set the cache operating mode:

33
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• Bits 17:16=’00’
Cache is enabled and working.

• Bits 17:16=’01’
Cache is in D- and I-cache line invalidation mode.
Writing word X.X.X.N to ANY address will invalidate I-Cache line N (N is an 8-bit word and
X is an 8-bit don’t care). Besides, the actual write will be performed too; be careful...

Reading from any address will cause the corresponding D-cache line to be invalidated; the
read will not be actually performed and the read value is undefined.

• Bits 17:16=’10’
Cache is disabled; no lines are being invalidated.

• Bits 17:16=’11’
Cache behavior is UNDETERMINED – i.e. guaranteed crash.

Now, after reset the cache memory comes up in an undetermined state but it comes up dis-
abled too. Before enabling it, you need to invalidate all cache lines in software (see routine
cache_init in the memtest sample).

5.2 Cache Tags and Cache Address Mirroring

In order to save space in the I-Cache tag table, the tags are shorter than they should – 14 bits
instead of the 20 bits we would need to cover the entire 32-bit address:

_________ <-- These address bits are NOT in the tag

/ \

31 .. 27| 26 .. 21 |20 .. 12|11 .. 4|3:2|

+---------+-----------+-----------------+---------------+---+---+

| 5 | | 9 | 8 | 2 | |

+---------+-----------+-----------------+---------------+---+---+

^ ^ ^ ^- LINE_INDEX_SIZE

5 bits 9 bits LINE_NUMBER_SIZE
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Since bits 26 downto 21 are not included in the tag, there will be a ’mirror’ effect in the cache.
We have effectively split the memory space into 32 separate blocks of 1MB which is obviously
not enough but will do for the initial versions of the core.

In subsequent versions of the cache, the tag size needs to be enlarged AND some of the top
bits might be omitted when they’re not needed to implement the default MIPS memory map
(namely bit 30 which is always ’0’).

5.3 Memory Controller

The cache functionality and the memory controller functionality are so closely related that I
found it convenient to bundle both in the same module: I have experimented with separate
modules and was unable to come up with the same performance with my synthesis tools of
choice. So, while it would be desirable to split the cache from the memory controller at some
later version, for the time being they are a single module.

The memory controller interfaces the cache to external memory, be it off-core or off-chip.
The memory controller implements the refill and writethrough state machines, that will neces-
sarily be different for different kinds of memory.

Memory Map Definition

The MIPS architecture specs define a memory map which determines which areas are cached
and which is the default address translation [2, p. 2-8].
Neither the memory translation nor the cacheable/uncacheable attribute of the standard MIPS
architecture have been implemented. In this core, program addresses are always identical to
hardware addresses.

When requested to perform a refill or a writethrough, the memory controller needs to know
what type of memory it is to be dealing with. The type of memory for each memory area is de-
fined in a hardcoded memory map implemented in function ’decode_address_mips1’, defined
in package ’mips_pkg.vhdl’. This function will synthesize into regular, combinational decode
logic.

For each address, the memory map logic will supply the following information:

1. What kind of memory it is.

2. How many wait states to use.

3. Whether it is writeable or not (ignored in current version).
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4. Whether it is cacheable or not (ignored in current version).

In the present implementation the memory map can’t be modified at run time.

These are the currently supported memory types:

Identifier Description
MT_BRAM Synchronous, on-chip FPGA BRAM
MT_IO_SYNC Synchronous, on-chip register (meant for I/O)
MT_SRAM_16B Asynchronous, off-chip static memory, 16-bit wide
MT_SRAM_8B Asynchronous, off-chip static memory, 8-bit wide
MT_DDR_16B Unused yet
MT_UNMAPPED Unmapped area

Invalid memory accesses

Whenever the CPU attempts an invalid memory access, the ’unmapped’ output port of the
Cache module will be asserted for 1 clock cycle.

The accesses that will raise the ’unmapped’ output are these:

1. Code fetch from address decoded as MT_IO_SYNC.

2. Data write to memory address decoded as other than RAM or IO.

3. Any access to an address decoded as MT_UNMAPPED.

The ’unmapped’ output is ignored by the current version of the parent MCU module – it is
only used to raise a permanent flag that is then connected to a LED for debugging purposes,
hardly a useful approach in a real project.

In subsequent versions of the MCU module, the ’unmapped’ signal will trigger a hardware
interrupt.

Note again that the memory attributes ’writeable’ and ’cacheable’ are not used in the current
version. In subsequent versions ’writeable’ will be used and ’cacheable’ will be removed.

Uncacheable memory areas

There are no predefined ’uncacheable’ memory areas in the current version of the core; all mem-
ory addresses are cacheable unless they are defined as IO (see mips_cache.vhdl).
In short, if it’s not defined as MT_UNMAPPED or MT_IO_SYNC, it is cacheable.
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5.4 Cache Refill and Writethrough Chronograms

The cache state machine deals with cache refills and data writethroughs. It is this state machine
that ’knows’ about the type and size of the external memories. when DRAM is eventually imple-
mented, or when other widths of SRAM are supported, this state machine will need to change.

The following subsections will describe the refill and writethrough procedures. Bear in mind
that there is a single state machine that handles it all – refills and writethroughs can’t be done
simultaneously.

SRAM interface read cycle timing – 16-bit interface

The refill procedure is identical for both D- and I-cache refills. All that matters is the type of
memory being read.

==== Chronogram 4.1: 16-bit SRAM refill -- DATA ============================

__ __ __ __ __ __ _ __ __ __ __

clk _/ \__/ \__/ \__/ \__/ \__/ \__/ ..._/ \__/ \__/ \__/

cache/ps ?| (1) | (2) | ... | (2) |??

refill_ctr ?| 0 | ... | 3 |??

chip_addr ?| 210h | 211h | ... | 217h |--

data_rd -XXXXX [218h] XXXXX [219h] | ... XXXXX [217h] |--

|<- 2-state sequence ->|

_ __

sram_oe_n \____________________________________ ... __________________/

|<- Total: 24 clock cycles to refill a 4-word cache line ->|

============================================================================

(NOTE: signal names left-clipped to fit page margins)

In the diagram, the data coming into bram_data_rd is depicted with some delay.

Signal cache/ps is the current state of the cache state machine, and in this chronogram it takes
the following values:

1. data_refill_sram_0

2. data_refill_sram_1

Each of the two states reads a halfword from SRAM. The two-state sequence is repeated four
times to refill the four-word cache entry.
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Signal refill_ctr counts the word index within the line being refilled, and runs from 0 to 4.

SRAM interface read cycle timing – 8-bit interface

The refill from an 8-bit static memory is essentially the same as depicted above, except we need
to read 4 bytes (over the LSB lines of the static memory data bus) instead of 2 16-bit halfwords.
The operation takes correspondingly longer to perform and uses an extra address line but is
otherwise identical.

TODO: 8-bit refill chronogram to be done.

16-bit SRAM interface write cycle timing

The path of the state machine that deals with SRAM writethroughs is linear so a state diagram
would not be very interesting. As you can see in the source code, all the states are one clock
long except for states data_writethrough_sram_0b and data_writethrough_sram_1b, which will
be as long as the number of wait states plus one. This is the only writethrough parameter that is
influenced by the wait state attribute.

A general memory write will be 32-bit wide and thus it will take two 16-bit memory accesses
to complete. Unaligned, halfword or byte wide CPU writes might in some cases be optimized
to take only a single 16-bit memory access. This module does no such optimization yet. For
simplicity, all writethroughs take two 16-bit access cycles, even if one of them has both we_n
signals deasserted.

The following chronogram has been copied from a simulation of the ’hello’ sample. It’s a 32-
bit wide write to address 00000430h. As you can see, the ’chip address’ (the address fed to the
SRAM chip) is the target address divided by 2 (because there are 2 16-bit halfwords to the 32-bit
word). In this particular case, all the four bytes of the long word are written and so both the we_n
signals are asserted for both halfwords.

In this example, the SRAM is being accessed with 1 WS: WE_N is asserted for two cycles. Note
how a lot of cycles are used in order to guarantee compliance with the setup and hold times of
the SRAM against the we, address and data lines.
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==== Chronogram 4.3: 16-bit SRAM writethrough, 32-bit wide =================

__ __ __ __ __ __ __ __ __ _

clk _/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/

cache/ps ?| (1) | (2) | (3) | (4) | (5) | (6) | (7) |?

sram_chip_addr ?| 218h | 219h |?

sram_data_wr -------| 0000h | 044Ch |-

_____________ ___________ _______

sram_byte_we_n(0) \___________/ \___________/

_____________ ___________ _______

sram_byte_we_n(1) \___________/ \___________/

_________________________________________________________

sram_oe_n

============================================================================

Signal cache/ps is the current state of the cache state machine, and in this chronogram it takes
the following values:

1. data_writethrough_sram_0a

2. data_writethrough_sram_0b

3. data_writethrough_sram_0c

4. data_writethrough_sram_1a

5. data_writethrough_sram_1b

6. data_writethrough_sram_1c

5.5 Known Problems

The cache implementation is still provisional and has a number of acknowledged problems:

1. All parameters hardcoded – generics are almost ignored.

2. SRAM read state machine does not guarantee internal FPGA Thol d . In my current target
board it works because the FPGA hold times (including an input mux in the parent mod-
ule) are far smaller than the SRAM response times, but it would be better to insert an extra
cycle after the wait states in the sram read state machine.

3. Cache logic mixed with memory controller logic.





Section

6
Logic Simulation

The project has been simulated using Modelsim 6.3g. The test bench uses some features not
present in earlier versions (namely library Signal Spy) so if you use some other simulator or
some earlier version of Modelsim, see section on Modelsim dependencies (6.5) below.

In short, the simulation test bench is meant to run any of the code samples provided in di-
rectory /src, under a controlled environment, while logging the cpu state to a text log file.

This log file can then be compared to a log file generated by a software simulator for the same
code sample (see section 7.1). The software simulator is the ’golden model’ against which the
cpu is tested, so any difference between both log files means trouble.

This method is far easier than building a fully automated test bench, and much more conve-
nient and reliable than a visual inspection of the simulation state.

In addition to the main log file, there is a console log file to which all data written to the UART
is logged (see section 6.4).

The simulation test bench can be found in file ’/vhdl/tb/mips_tb.vhdl’. This test bench is
meant to be used with all the code samples.

Each of the code samples configures the simulation test bench with certain parameters (such
as simulation length or memory sizes) and of course each sample has a different object code to
be run. The way to pass these parameters to the simulation is through a simulation package, in
file ’/vhdl/tb/sim_params_pkg.vhdl’.

This file is generated from a template whenever you ’make’ each code sample (see section 8).
The package is built using oe of the provided tools, ’build_pkg’, explained in section ??.

Note that all code samples share the same vhdl files: you need to run the makefile target ’sim’
for the sample you want to simulate; that will overwrite the package file mentioned above. So

41
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there’s no vhdl file that is specific to a particular code sample.

While the test benches and sample code are good enough to catch MOST errors in the full
system (i.e. cache included) they don’t help with diagnostic; once you know there’s an error, and
the approximate address where it’s triggered (approximate because of the cache) you have to dig
into the simulation waveforms to find it.

6.1 Running the Simulation

A simulation script can be found at ’/sim/mips_tb.do’. This script will simulate the test bench
entity in file ’/vhdl/tb/mips_tb.vhdl’.

All the code samples are run with the same script.

The test bench files mentioned in the previous section are automatically generated for each
of the sample programs. This is automatically done by the sample code makefile, assuming you
have a MIPS cross-toolchain in your computer (see section 8).

For convenience, a pre-generated file ’sim_params_pkg.vhdl’ is included so you can launch a
simulation without having to install toolchains, etc. The code is that of the ’hello world’ sample.

I guess that if you are interested in this sort of stuff then you probably know more about
Modelsim than I do. Yet, here’s a step-by-step guide to simulating the ’hello world’ sample:

1. Run ’make hello_sim’ from directory ’/src/hello’. This will compile the program sources,
build the necessary binary object files and then create the package file mentioned above.
Read the makefile and comments in the python script ’/src/bin2hdl.py’ for details.

ALTERNATIVELY, if you don’t have a toolchain you can just skip this step and use the de-
fault vhdl files provided, which are those of the ’hello world’ sample.

2. Within Modelsim, change directory to /syn. Modelsim will create its stuff in this directory.
This includes the log file, which by default will be ’/syn/hw_sim_log.txt’, and the console
log file ’/syn/hw_sim_console.log’.
(You could use any other directory, this is just a convenient place to put modelsim data
out of the way. Just remember where the log files are.).
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3. Run script ’/sim/mips_tb.do’ (menu tools->tcl->execute macro) The simulation will run
to completion and print a message in Modelsim’s transcript window when it’s done. You
can open the console log file to see the program output, in this case the ’Hello world’ mes-
sage.

The test bench terminates the simulation when:

1. It detects two consecutive code fetches from the same address.

2. The simulation timeout is reached.

Condition 1 is meant to detect single-instruction loops such as those commonly found after
the invocation of the main() function in a C program. This is a convenient way for the software
to signal its termination.

The timeout is one of the simulation parameters which is defined in the makefiles. It is arbi-
trarily fixed for each sample by trial and error so that the program has time to execute. Change
them if necessary.

6.2 Simulation File Logging

The simulation test bench will log any of the following events:

• Changes in the register bank.

• Changes in registers HI and LO (implemented even if mul/div is not).

• Changes in registers EPC and SR.

• Data loads (any resulting register change is logged separately).

• Data stores.

Note that changes in other internal registers, including PC, are not logged. This means that
for example a long chain of NOPs, or MOVEs that don’t change register values, will not be seen
in the log file. This is on purpose.

Events are logged with the address of the instruction that triggered the change. This holds
true even for load instructions.
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The simulation log file is stored by default in modelsim’s working directory (see above). I
don’t provide any automated script to do the comparison, you should use whatever diff tool you
like best.

6.3 Log File Format

There is a text line for each of the following events:

• Register change

"(pc) [reg_num]=value"

Where:

pc =>PC value (8-digit hex)
reg_num =>Register index (2-digit hex), or any of LO,HI,EP
value =>New register value (8-digit hex)

• Write cycle (store)

"(pc) [address] |mask|=value WR"

Where:

pc =>PC value (8-digit hex)
address =>Write address
mask =>Byte-enable mask (2-digit hex)
value =>Write data

The PC value is the address of the instruction that caused the logged change, NOT the
actual value of the PC at the time of the change. This is so to make the hardware logger’s
life easier – the SW simulator and the real HW don’t work exactly the same when the cache
starts stalling the cpu (which the SW does not simulate) and the best reference point for
all instructions is their own adddress.

The mask will have a ’1’ at bits 3..0 for each byte write-enabled. MSB is bit 3, LSB is bit
0. Note that the data is big endian, so the MSB is actually the LOWER address. The upper
nibble of the mask is always 0.

The value will match the behavior of the ion cpu; the significant byte(s) will have the ac-
tual write data and the other bytes will not be relevant but will behave exactly as the real
hardware (so that the logs are directly comparable).

The WR at the end of the line is for visual reference only.
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• Read cycle (load)

"(pc) [address] <** >=value RD"

Where:
pc =>PC value (8-digit hex)
address =>Read address
<** > =>Padding (ignore)
value =>Read data

Note that in the real machine, the data is read into the cpu one cycle after the address bus
is output (because the memory is synchronous) so that the full read cycle spans 2 clock
cycles (when proper interlocking is implemented, the load will overlap the next instruc-
tion; right now it just stalls the pipeline for 1 cycle). This is simplified in the log files for
readability.

Note that the size of the read (LH/LB/LW) instruction is not recorded: the CPU always
reads 32-bit words.

The RD at the end of the line is for visual reference only.

For example, these are lines 1153-1162 of the simulation log for the default ’hello world’ test
program:

...

(BFC009AC) [05]=20000000

(BFC009B0) [20000020] <**>=00000003 RD

(BFC009B0) [03]=00000003

(BFC009B8) [03]=00000002

(BFC009C0) [03]=20000000

(BFC009C4) [20000000] |0F|=00000070 WR

(BFC00E74) [12]=00000004

(BFC00E78) [10]=BFC01048

(BFC00E7C) [BFC01048] <**>=00000069 RD

(BFC00E7C) [05]=00000069

...

(NOTE: this example taken from revision 176, yours may vary)

The read cycle at pc=0xbfc009b0 modifies register 0x03; that’s why there are two lines with
the same pc value.

The code that produced that log is this (from hello.lst):
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...

bfc009ac: 3c052000 lui a1,0x2000

bfc009b0: 8ca30020 lw v1,32(a1)

bfc009b4: 00000000 nop

bfc009b8: 30630002 andi v1,v1,0x2

bfc009bc: 1060fffc beqz v1,0xbfc009b0

bfc009c0: 3c032000 lui v1,0x2000

bfc009c4: ac620000 sw v0,0(v1)

bfc009c8: 03e00008 jr ra

bfc009cc: 00000000 nop

...

bfc00e74: 26520001 addiu s2,s2,1

bfc00e78: 26100001 addiu s0,s0,1

bfc00e7c: 92050000 lbu a1,0(s0)

bfc00e80: 00000000 nop

...

(Remember the register numbers: $v0=0x02, $v1=0x03, $a1=0x05, $s0=0x10, $s2=0x12)

Note that, unlike previous versions of this project, all changes are logged with the address of
the instruction that caused them.

The log file format is hardcoded into vhdl package mips_sim_pkg and the software simulator
C source that implement it. It will be probably modified as the project moves on so it is best if
you verify all of this yourself with the project version you intend to use before using this infor-
mation.

Note that the software simulation log and the modelsim log need not be the same size even
if both CPUs behave identically; the one that spans a longer simulated time will be longer.
The point is that both need to be identical up to the last line of the shortest file.

6.4 Console Output Logging

Every byte written to the UART TX register is logged (in ascii) to a text file which by default is
’/syn/hw_sim_console.log’. Apart from the automatic insertion of a CR after every LF, the data
is logged verbatim.
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Though the UART is included in the test bench, the actual UART operation is bypassed: The
test bench forces the ’tx ready’ high so that the CPU never has to wait for a character to be trans-
mitted. This is a simplification that saves me the trouble to do a cycle-accurate simulation of
the UART in the software simulator.

The UART input is not simulated at all, for simplicity. So, for example, the Adventure sam-
ple, which does read the console input, can’t be properly simulated past the first console input
– there is plenty of code to simulate before that so this is no problem for the moment.

6.5 Use of Modelsim Features

Apart from the format of the simulation scripts, which would be easy to port to any other simu-
lation tool, the simulation test bench uses a feature of Modelsim 6.3 that is not even present in
earlier versions – SignalSpy.

The test bench uses SignalSpy to examine internal cpu signals from the top entity, including
the whole register bank. There is no other way to examine those signals in vhdl, unless you want
to add them to the module interface.

The test bench needs to access those signals in order to detect changes in the internal cpu
state that should be logged. That is, it really needs to look at those signals if it is to be of any use.

If you are using any other simulation tool, look for an alternative method to get those internal
signals or just add them to the core interface. I would suggest adding a debug port of type record
to mips_cpu – and hope the synthesis tool does not choke on it. Adding individual debug ports
would be a PITA.
I guess this is why Mentor people took the trouble to write SygnalSpy.

I plan to move to Symphony EDA eventually, so I’ll have to fix this.

Using GHDL would be an option, except because it only supports vhdl. The project will use
a SDRAM model in verilog for which I could not find a vhdl replacement. If the project is to be
ported to GHDL (a very desirable goal even if only because not everybody has access to Model-
sim) this will have to be worked around.
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7
Tools

Directory ’/tools’ of the project includes a few tools – small C or Python programs purpose-built
for this project.

What follows is a brief description of each of the tools. This document won’t go into the
implementation or usage details. The tools themselves have brief usage instructions and for
any further details the user must read the source code.

7.1 MIPS Software Simulator

Plasma project includes a MIPS-I simulator made by Steve Rhoads, called ’mlite.c’. According
the the author, it was used as a golden model for the construction of the cpu, the same as I have
done.
I have made some modifications on Rhoads’ code, mostly for logging, and called the new pro-
gram ’slite’ (’/tools/slite/src/slite.c’).

The most salient features are:

• Logs CPU state to a text file. The format is identical to that of the vhdl test bench log. You
can select the code address that triggers the logging.

• Echoes CPU UART output to the host console or to a log file.

• Can be run in interactive mode (like a monitor).
Step by step execution, breakpoints, that kind of thing.

• Can be run in batch (unattended) mode.
So that you can easily run a program to compare logs with the vhdl test bench.

• Does not simulate the cache at all.

Each code sample includes a DOS batch file named ’swsim.bat’ that runs the simulator in
batch mode. Note that the BAT file invokes a windows binary which is included in the SVN
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repository and should be immediately useable after checkout.

The program includes usage help (a short description of the command line parameters). The
source code (very simple and straighforward) is included in the project. The BAT files provide
an usage example. And anyone who is interested and finds trouble can always contact me.

For all these reasons I think it is not necessary to explain the simulator in detail. Nothing to
do with laziness, as you can see.

Many system parameters are hardcoded, including the log file name, the simulated memory
sizes and the code and data addresses.

The hardcoded log file name is "sw_sim_log.txt" and it is generated in the same directory
from which the simulator is run.

7.2 Configuration Package Builder Script build_pkg.py

This tools is used to build a simulation and synthesis configuration package.

The generated package contains configuration constants used by the simulation test bench
’mips_tb.vhdl’ and by the hardware demo ’c2sb_demo.vhdl’.

It too includes memory initialization constants containing object code, used to initialize sim-
ulated and inferred memories, both in simulation and in synthesis.

In the code samples, this script is used to generate two separate packages for simulation and
synthesis. Please refer to the makefiles for detailed usage examples.

7.3 Conversion Script bin2hdl.py

NOTE: This script was used in previous versions of the project – it came in handy to initialize
byte-sliced memories when the caches were under development.
It has been abandoned because it was far too complicated and no longer necessary. The VHDL
templates it refers to and the script itself have been moved from the /src directory to their own
subdirectory in /tools.
It is being retained in case it becomes useful again but it is no longer used.

This Python script reads one or more binary files and ’inserts’ them in a vhdl template. It
makes the conversion from binary to vhdl strings and slices the data in byte columns, as re-
quired by the RAM implementation (in which each byte in a word is stored in a different RAM
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with a separate WE, 4 blocks in all).

The 3 binary files the script can read are the object code image, the data image (initialized
data sections) and a FLASH image.

The script inserts a number of simulation parameters in the template file, as illustrated by
the makefiles.

The makefiles of the code samples can be used as an example. The script code is a bit convo-
luted but it is understandable if you do know Python, and includes some usage instructions.

The vhdl templates (/src/*_template.vhdl) have placeholder ’tags’ that are replaced with real
application data by this script.

Some of the tags are these:

"@code0@" : Contents of RAM block for slice 0 (lsb) of code
...
"@code3@" : Contents of RAM block for slice 3 (msb) of code
"@code31@" : Contents of RAM block for slices 3 & 1 (odd) of code
"@code20@" : Contents of RAM block for slices 2 & 0 (odd) of code
"@data0@" : Contents of RAM block for slice 0 (lsb) of data
...
"@data3@" : Contents of RAM block for slice 3 (msb) of data
"@data31@" : Contents of RAM block for slices 3 & 1 (odd) of data
"@data20@" : Contents of RAM block for slices 2 & 0 (odd) of data
"@flash@" : Contents of simulated FLASH
"@data-32bit@" : Contents of 32-bit-wide RAM block of data
"@entity_name@" : Name of entity in target vhdl file
"@arch_name@" : Name of architecture in target vhdl file
"@code_table_size@" : Size of RAM block to be used for code, in words
"@code_addr_size@" : ceil(log2(@code_table_size@))
"@data_table_size@" : Size of RAM block to be used for data, in words
"@data_addr_size@" : ceil(log2(@data_table_size@))

There’s a few more tags; they are described in the script source and the usage help.

These placeholders will be replaced with object code or with data values provided by the
script command line (see makefiles).

The script has been used with Python 2.6.2. It should work with earlier or later versions but I
haven’t tested.
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Note: all of the above info is in the script itself, and can be shown with command line option
–h. Since it will be more up to date than this doc, you’re advised to read the script.
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8
Code samples

Directory /src directory contains a few test applications that can be simulated and run on real
hardware, except for the opcode test which can only be simulated. See the readme file and the
makefile for each program.

Please read the /src/reame.txt file for information that will probably be more up-to-date than
this doc.

The makefiles have been tested with the CodeSourcery toolchain for windows (that can be
downloaded from www.codesourcery.com) and with the Buildroot toolchain for GNU/Linux.

Most makefiles have two targets, to create a simulation test bench and a synthesizable demo.

Target ’sim’ will build the simulation test bench package files as described in section 6.

Target ’demo’ will build a synthesizable demo; it will compile the sample sources and place
the resulting object code in file ’/vhdl/SoC/bootstrap_code_pkg.vhdl’.

The build process will produce two or more binary files (’*.code’ and ’*.data’, or ’*.bin’) that
can be run on the software simulator, plus a listing file (*.lst) handy for debugging.

All projects include a DOS batch file ’swsim.bat’ that invokes the software simulator with the
proper parameters. As an example, these are the contents of the ’swsim.bat’ file for the ’hello’
demo:
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@rem Run software simulator in hands-off mode

..\..\tools\slite\slite\bin\Debug\slite.exe ^

--bram=hello.code ^

--trigger=bfc00000 ^

--noprompt ^

--nomips32 ^

--map=hello.map ^

--trace_log=trace_log.txt

As you can see, the simulator is invoked in ’batch’ or ’hands-off’ mode, so the simulated
program will be run to completion, generating a simulation log. The point of this is comparing
that log to the log generated by the Modelsim simulation of the same program, as has already
been explained.

The python script ’bin2hdl.py’ is used to insert binary data on vhdl templates. Assuming you
have Python 2.5 or later in your machine, call the script with:

python bin2hdl.py --help

to get a short description (see section 7.3).

8.1 Support Code

Bootstrap Code

File ’/src/common/bootstrap.s’ contains the reset code and the stub interrupt handler.

This code is meant to be placed at the reset vector address; in the present revision of the
project, the bootstrap code would be placed in the bootstrap BRAM of the SoC module (see
section 2.2). It can be placed in external memory if the SoC memory map and the makefiles are
altered accordingly.

The reset code initializes both I-Cache and D-Cache and jumps to symbol 'entry' with the
CPU in kernel mode and interrupts disabled.

The interrupt code is somewhat more elaborate but nevertheless is still a stub. The interrupt
code will find out the cause of the interrupt and will proceed.

Table 8.1 shows interrupt sources recognized in the current version, and how the interrupt
code deals with them.

Please note that the interrupt code does not even know there is such a thing as a hardware
interrupt – hardware interrupts are not implemented yet in the CPU.
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Table 8.1: Interrupt handling

Cause Processing

SYSCALL instruction Return immediately (STUB).
BREAK instruction Return immediately (STUB).
Invalid opcode Return immediately (STUB).
Unimplemented MIPS-32 opcode Emulate opcode.

As can be seen, most of the interrupt processing is missing, replaced by stubs. Eventually,
those stubs will be replaced with calls to C functions that will be defined in the supporting li-
braries. I have yet to work out exactly how to do it without reinventing the wheel.

The only interrupt processing that is performed (even if only partially) is the emulation of
some MIPS-32 opcodes.

MIPS-32 Opcode Emulation

I have found out that most MIPS toolchains target the MIPS-32 architecture and can only be
made to work with the MIPS-I architecture with some difficulty. This applies specially to the
C support libraries, where MIPS-32 opcodes are used occasionally. Other reasons, such as the
availability of MIPS-32 ports of uClinux, make at least partial compatibility to MIPS-32 very de-
sirable.

On the other hand, extending the core to implement the full MIPS-32 specs (as opposed to
the far simpler MIPS-I) might not be possible without running into a patent minefield – I may
be wrong in this.

Therefore, I have chosen to just emulate whatever subset of the MIPS-32 ISA is enough to
overcome the above obstacles. I have run some experiments with uClinux and have found out
that only a few MIPS-32 opcodes need to be emulated – see table 8.2.

Opcode emulation is implemented in file /src/common/opcode_emu.s.

The emulation code has been tested (code sample ’opcodes’) but is still unfinished: not only
are there opcodes to be emulated, as can be seen in table 8.2, but the emulation does NOT work
when the MIPS-32 opcode is in a delay slot; or more precisely, the jump instruction of the delay
slot is not emulated as it should – this is just work to be done, nothing specially difficult.

If the trapped MIPS-32 opcode is not one of the emulated opcodes, it is ignored exactly as if
it was a NOP. A flag is raised in a special, reserved area of the BSS segment – see the source for
details. Eventually the trap handling will be complete and unimplemented MIPS-32 opcodes
will be dealt with as undefined opcodes.

Note that opcode emulation can be disabled in the makefiles, by defining symbol NO_EMU_MIPS32
when assembling bootstrap.s.
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Table 8.2: Emulated MIPS-32 opcodes

Opcode Emulation

EXT Fully emulated.
INS Fully emulated.
CLO Fully emulated.
CLZ Fully emulated.

MUL (3-reg version) To Be Done.
LWL To Be Done.
LWR To Be Done.
SWL To Be Done.
SWR To Be Done.

C Startup Code

File ’/src/common/c_startup.s’ contains the C startup code used in all C code samples.

This startup code does what’s usual in these cases, namely:

1. Initialize the stack at the end of the bss area.

2. Clear the bss area.

3. Move the data section from FLASH to RAM (if applicable).

4. Call main().

5. Freeze in endless loop after main() returns, if it does.

See the makefile of any of the C code samples for examples on how to assemble, configure
and link the startup code.

C Support Library Replacement

The core will eventually be tested with one of the regular, free libc replacement libraries avail-
able. It isn’t yet because building those libraries for a MIPS-I target (i.e. with no MIPS-32 stuff
mixed in) has turned out to be much more difficult than I had anticipated.

In order to be able to use the C toolchain and provide some code samples in C, I have built a
minimalistic libc replacement called ’libsoc’. The source code can be found in /src/common/libsoc/src.

This mini-libc provides only those C support functions I have found necessary so far; it will
be extended with new functionality as I add more code samples, until I can finally use some real
C library.
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Apart from a number of utility functions that the C runtime needs, libsoc provides the fol-
lowing:

• Floating point support (SW, float and double).

• putchar and getchar using the SoC UART.

• Replacement for the built-in printf provided by gcc.

That’s it. Yet, even this little is enough to run the Adventure demo...

All the source code has been lifted from the original Plasma supporting code or has been
scavenged from the net – see credits in the file headers.
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9
Hardware Demo

9.1 Pre-generated demo

The project includes a few synthesizable code samples, including a ’Hello world’ demo and a
memory tester. Only the ’hello’ demo is included in pre-generated form, the others have to be
built using the included makefiles – assuming you have a mips toolchain.

’Pre-generated’ in this context means that all the vhdl files necessary for building the demo
are already included with the project, including the configuration package that contains the
program’s object code, and the only tool needed is the synthesis tool.

The pregenerated demo is included just for convenience, so that you can launch some small
application on hardware without installing a C toolchain.

A constraints file is provided (’/vhdl/demo/c2sb_demo.csv’) which includes all the pin con-
straints for the default target board, in CSV format. This constraints file is shared by all demos
targeted to the DE-1 board.

The default target board is TerasIC’s DE-1, with a Cyclone-II FPGA (EP2C20F484C7). This is
the only hardware platform the core has been tested in, so far.

I have used the free Altera IDE (Altera Quartus II 9.0). This version of Quartus does not even
require a free license file and can be downloaded for free from the altera web site. But if you
have a DE-1 board on hand I guess you already know that.

I assume you are familiar with Altera tools but anyway this is how to set up a project using
Quartus II:

1. Create new project with the new project wizard. Top entity should be c2sb_demo. Sug-
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gested path is /syn/altera/(project name).

2. Set target device as EP2C20F484C7. This choice tells the synth tool what speed grade and
chip package we’ll be targetting.

3. ’Next’ your way out of the new project wizard.

4. Add to the project all the vhdl files in /vhdl and /vhdl/demo, except mips_cache_stub.vhdl
and sdram_controller.vhdl.

5. Add to the project all the vhdl files in /vhdl/SoC.

6. Select file c2sb_demo.vhdl as top.

7. Import pin constraints file (assignments->import assignments).

8. Create a clock constraint for signal clk (51 MHz or some other suitable speed which gives
us some minimal slack).

9. In the device settings window, click "Device and pin options...".

10. Select tab "Dual-Purpose pins".

11. Double-click on nCEO value column and select "use as regular I/O". IMPORTANT: other-
wise the synthesis will fail; we need to use a FPGA pin that happens to be dual-purpose
(programming and regular).

12. Select ’speed’ optimization.

13. Save the project and synthesize.

14. Make sure the clock constraint is met (timing analyzer report). There is a random element
to the synthesis process, as you know, but the core as shipped should pass the constraint.

15. Program the FPGA from Quartus-2

16. If you have a terminal hooked to the serial port (19200/8/N/1) you should see a welcome
message after depressing the reset button. (by default this is pushbutton 2).

In the present version, the synthesis will produce a lot of warnings. The ugliest are about
unused pins and an undeclared clock line. None of them should be really scary.

Note that none of the on-board goodies are used in the demo except as noted in section 9.2
below.

In order to generate the demos (not using the pre-generated file) you have to use the make-
files provided with the code samples. Please see the sample readme files and the makefiles for
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details. In short, provided you have a MIPS toolchain installed and Python 2.5+, all you have to
do is run make (which will automatically build all the vhdl files where they need to be, etc.) and
run the synthesis.

9.2 Porting to other dev boards

I will only deal here with the ’hello’ demo, the process is the same for all other samples that don’t
involve external FLASH.

The ’hello’ demo should be easily portable to any board which has all of this:

• An FPGA capable enough (the demo uses internal memory for code).

• At least 4KB of 16-bit wide external, asynchronous, old-fashioned SRAM.

• A reset pin (possibly a pushbutton).

• A clock input (uart modules assume 50MHz, see below).

• RXD and TXD UART pins, plus a connector, header or whatever.

The only module that care at all about clock rate is the UART embedded into the SoC module.
It’s hardwired to 19200 bauds when clocked at 50MHz, so if you use a different frequency you
must edit the generics in the demo entity accordingly – the demo generics are passed all the way
down to whatever module needs them.
The UART has hardly been tested at clock rates other than 50MHz and has not passed any inde-
pendent test bench; try the core first at 50 MHz.

Though there is no reset control logic, the reset input is synchronized internally, so you can
use a raw pushbutton – you may trigger multiple resets if your pushbutton isn’t tight but you’ll
never cause metastability trouble.

Assuming you take care of all of the above, the easiest way I see to port the demo is just edit-
ing the top module ports (’/vhdl/demo/c2sb_demo.vhdl’) to match your board setup. The only
tricky part is the interface to FLASH and SDRAM.

All the code in this project is vendor agnostic (or should be, I have only tried it on Quartus
and ISE). Specifically, it does not instantiate memory blocks (relying instead on memory infer-
ence) or clock managers or buffers. This has its drawbacks but is an stated goal of the project –
in the long run it pays, I think, and it certainly makes the porting easier.
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9.3 ’Adventure’ demo

There is another demo targeting the same hardware as the ’hello’ demo above: a port of ’Adven-
ture’. The C source (included) has been slightly modified to not use any library functions nor
any filesystem (instead uses a built-in constant string table).

Build steps are the same as for the hello demo (the make target is ’demo’).

Since the binary executable is too large to fit internal BRAM, it has to be executed from the
DE-1 onboard flash. You need to write file ’adventure.bin’ to the start of the FLASH using the
’Control Panel’ tool that came with your DE-1 board. That’s the only salient difference. That and
the amount of SRAM; The 512KB present on the DE-1 are enough but I don’t remember right
now what is the minimum, please look at the map file. This should only matter if you want to
port to another board.

The game will offer you an auto-walkthrough option. Answer ’y’ and it will play itself for
about 250 moves, leaving you at an intermediate stage of the game from which you can play on.

Now, admittedly ’Adventure’ is no standard benchmark and even running it to completion
does not guarantee that there are no bugs hidden in the cache or any of the opcodes. On the
other hand, when you get to the maze of twisty little passages you know you have a computer,
finished or not. The ’Adventure’ demo is great as a confidence builder.

Besides, running Adventure on a computer built by myself is something I’ve always wanted
to do :)
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Design Notes

10.1 Project Goals

The first iteration of the project will be deemed finished when it can do the following:

1. Run a minimal set of MIPS-I opcodes.
Excluding unaligned load/store (formerly patented).
Excluding all CPA instructions.
Excluding all CP0 instructions related to TLB.
Cache instructions will not be implemented as defined.

2. Catch all undefined opcodes (and trigger exception).

3. Operate in kernel/user mode as per the architecture definition.

4. Handle exceptions in a manner compatible to MIPS-I standard.

5. Code cache and data cache, even if not standard.
No MMU and no TLB, and no cache-related instructions.

6. Implement as much of CP0 as necessary for the above goals.

7. Interface to external SRAM (or FLASH) on 8- and 16-bit data bus.

8. Be no bigger than Plasma in a Spartan-3 or Cyclone-2 device, and no slower – Plasma is
used as a reference in many ways.
Speed measured in raw clock frequency for the time being. (I.e. don’t not consider stalls,
interlocks, etc. yet)

9. Interlock behavior of MUL/DIV and L* compatible to toolchain.
That is, interlock loads instead of relying on a delay slot.
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Unaligned load/stores are excluded not because of patent concerns (the patents already ex-
pired) but because they’re not essential for a first version of the core. The same goes for all other
exclusions.

As of rev. 154 all the 1st block goals have been accomplished (but not very heavily tested;
many bugs remain, probably).

For a second iteration I plan on the following:

1. Proper interlocking of load cycles (with no wasted cycles).

2. External interrupt support.

3. Trap handlers (instruction emulation) for unaligned load and store instructions.

4. Trap handlers (instruction emulation) for the most usual MIPS32 instructions.

5. Some much needed optimization of the caches.

None of these things have been done.

Note that 32-bit memory interfaces are not to be implemented any time soon, mainly be-
cause I don’t have any actual hardware with which to test it.

10.2 Development status

The CPU is already able to execute almost any MIPS-I code (excluding some unimplemented
instructions such as cache control).
It can pass a basic opcode test and can execute some basic applications compiled with standard
gcc tools (specifically, it can run an ’Adventure’ demo and a tiny ’hello world’ program, see sec-
tion 6).

Hardware interrupt support is entirely missing.

The most important limitations are the very basic memory interface, with no support for
SDRAM, and the absence of MIPS32 trap handlers – which means that the ubiquitous MIPS32
toolchains can’t be easily used with this core.

The memory controller can already access external static memory (SRAM or FLASH) on 8-bit
and/or 16 bit buses. Still does not support SDRAM, nor static RAM in other bus widths. My main
development target is a DE-1 board from Terasic (Cyclone-2) and I have focused in the kind of
memory it has.
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Wait states can be configured at synthesis, see section 5.3. Code sample ’memtest’ takes
advantage of this to do a basic test of the external SRAM, and code sample ’Adventure’ uses both
Flash and SRAM. All the code samples habe been tested with the cache enabled and disabled,
and they ship with the cache enabled (i.e. with C startup code that initializes and enables the
cache).

The code samples can be found in the /src directory (see section 8).

This is a summary of the state of the CPU at this time:

• MIPS-I things not implemented

1. External hardware interrupts.

• Things implemented but not fully tested.

1. Rte instruction.

2. Kernel/user modes.

• Things with provisional implementation

1. Load interlocks: the pipeline is stalled for every load instruction, even if the target
register is not used in the following instruction. So that every load takes two cycles.
The interlock logic should check register indices and stall only if there is a data haz-
ard.
Note that all that’s needed is a better identification of stall conditions; the logic to
enable a load instruction that does not stall to overlap the next instruction is already
in place.
The interlock logic needs a stronger test bench anyway.

2. Documentation is too sparse and source code is barely commented.

3. The D-Cache handles RAW hazards in a very inefficient way.
Data refills in a SW+LW sequence should only be triggered when the SW invalidates
the same line the LW is loading. Instead, the current cache triggers the data refill al-
ways (for a SW+LW sequence, that is).
This performance drag has to be fixed without ruining the clock rate (that’s the catch).

10.3 Performance

In my main test system, a Cyclone-2 grade -7, the core with caches and with mul/div and all
other necessary functionality, plus a barebones UART, will be below 2500 LEs + 18 BRAMs, run-
ning at least at 50 MHz (with ’balanced optimization’ on Quartus-II).
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As soon as the core is in a stable state I will include a few synthesis performance numbers for
common configurations.

As soon as I can build a dhrystone benchmark I will post results (and commit the code). The
core needs a timer before I can do that.

My first performance target will be a real R3000 at the same clock rate. I can anticipate that
performance will be MUCH lower than that (by a factor of 4 or more) due to the bus widths and
the wait states, AND the inefficient cache implementation. I’ll work on that as soon as the basic
stuff is done.

10.4 Next steps

• Implement efficient load interlock detection with no wasted cycles.

• Do whatever it takes to use standard C library functions.

• Alternatively, build a small C library replacement.

• Add a couple of benchmarks, including one with FP arithmetic.

• Modify the software simulator so it can boot uClinux.

• Make a uClinux port suitable for a R3000 derivative, from BuildRoot.

• Make a freeRTOS port suitable for a R3000 derivative.

Some of the above items are done, others are in progress and others are pipe dreams at this
point.
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