KLC32

[image: image1]

Table of Contents

1
Table of Contents

4Goals:

5Hardware Interface

5Signal Description

7Programming Model

8General Registers

9Condition Code Register

9Status Register

9TICK Register

10RESET

11Vector Table

12Instructions

13Instruction Formats

16ADD[.]

16ADDI.

17AND[.]

17ANDI.

18Bcc

19CMPI

21JSR (Ra+Rb)

21JSR a32

22LB

22LBU

22LBUX

24LH

24LHU

25LHUX

25LHX

26LINK

27LW

27LWX

28MULU[.]

28MULS[.]

29ORI.

30POP

31RTS

32SETcc

33SB

33SBX

34SH

34SHX

35SUBI.

36SW

36SWX

37TRAPcc

38UNLK

KLC32 - Description

Design Approach

Goals:

Overall processor performance is not as critical as high clock rate.

The author desires a processor with a reasonably high clocking rate. Several designs have been done by the author for which an additional low frequency clock domain was required in order to support a processor. Ideally, a video timing clock may be used as the processor clock.

It's okay for the processor to consume clock cycles while performing internal operations as long as it's not using the bus. In the small system-on-a-chip several devices share the system bus. There will be periods of time when the system bus is not available to the processor, or periods of time where it's desirable for the processor to not be using the system bus.

The multi-clock cycles per instruction approach leaves open windows during which other devices in the system may access the bus.

A typical pipelined RISC approach can achieve a CPI (clock per instruction) of less than 2. The KLC32 requires 3 or more clock cycles to execute an instruction; however it will typically be able to use a higher clock frequency.
Hardware Interface
- WISHBONE bus master.

- Uses a 68000 style interrupt model.

- The processor uses the same vector table layout as the 68000 and supports a 68000 style

 interrupt acknowledge mechanism.

Signal Description

	Signal
	Width
	
	Description

	rst_i
	1
	Reset
	This input signal resets the processor.

	clk_i
	1
	Clock
	

	ipl_i
	3
	Interrupt inputs
	Placing a non-zero value on this bus causes the processor to begin interrupt processing.

	vpa_i
	1
	Vector pull input
	Asserting this signal instead of ack_i will cause the processor to use the automatic interrupt vector numbers.

	halt_i
	1
	Halt input
	Asserting this signal causes the processor to halt processing at the end of the current instruction. The processor will remain halted as long as this signal is asserted.

	inta_o
	1
	Interrupt acknowledge
	This signal indicates that an interrupt acknowledge cycle is taking place.

	fc_o
	1
	Function code
	The function codes indicate the type of bus cycle taking place.

	rst_o
	1
	Reset output
	This signal is asserted for 16 clock cycles when the ‘RESET’ instruction is executed.

	cyc_o
	1
	Cycle is valid
	Indicates a valid bus cycle is taking place

	stb_o
	1
	Strobe
	Indicates valid data is on the bus

	ack_i
	1
	acknowledge
	Asserting this signal terminates the bus cycle.

	err_i
	1
	Error
	Asserting this signal terminates the bus cycle and causes the processor to execute the bus error trap.

	sel_o
	4
	Byte lane select
	This signal indicates which byte lanes are in use during the data transfer

	we_o
	1
	Write Enable
	When asserted, this signal indicates that a write cycle is taking place.

	adr_o
	32
	Address bus
	This bus contains the memory / device address during a bus transfer.

	dat_i
	32
	Data input
	This bus contains data being transferred into the processor.

	dat_o
	32
	Data output
	This bus contains data being transferred from the processor to memory / device.

Programming Model

- 32 x 32 bit registers, register zero reads as zero, register 31 is the stack pointer.

- Multiple condition code registers akin to the PowerPC.

- Two processing modes, user mode and system mode. Two stack pointers, user and system.

- Register indirect with displacement, and indexed addressing modes.

Register File
KLC32 uses a single ported register file. Multiple clock cycles are used to access the register file in order to read as many as three operands, and write-back a result.

General Registers

	Reg No.
	Name
	Comment

	0
	R0 / 0
	this register always reads as zero

	1
	R1
	subroutine return parameter

	2
	R2
	subroutine return parameter

	3
	R3
	

	4
	R4
	

	5
	R5
	

	6
	R6
	

	7
	R7
	

	8
	R8
	

	9
	R9
	

	10
	R10
	

	11
	R11
	

	12
	R12
	

	13
	R13
	

	14
	R14
	

	15
	R15
	

	16
	R16
	

	17
	R17
	

	18
	R18
	

	19
	R19
	

	20
	R20
	

	21
	R21
	

	22
	R22
	

	23
	R23
	

	24
	R24
	

	25
	R25
	

	26
	R26
	

	27
	R27
	

	28
	R28
	

	29
	R29
	

	30
	FP
	frame pointer

	31
	USP
	user stack pointer

	31
	SSP
	system stack pointer

Condition Code Register

There are eight four-bit condition registers

	cr7
	cr6
	cr5
	cr4
	cr3
	cr2
	cr1
	cr0

	NZVC
	NZVC
	NZVC
	NZVC
	NZVC
	NZVC
	NZVC
	NZVC

Any condition code register may be set as a result of a compare instruction. Most instructions can set cr0. Any condition code register may be tested with a branch instruction.
Effective use of multiple condition code registers can result in higher performance in a pipelined processor, because it can eliminate branches which cause pipeline bubbles. Multiple condition codes allow a higher degree of code linearization which is good for performance. Although the KLC is non-pipelined, it supports the multiple condition code register paradigm.
Status Register

The status register contains the interrupt mask, system mode, and trace flags.

TICK Register

The processor tick register increments every clock cycle. The tick register is reset to zero by an external reset.

Memory Operation Switch

A reg (mopcode) is used for the memory operation in order to allow both indexed and register displacement modes to use the same code.

RESET

On reset the initial stack pointer is loaded from address zero, and the initial program counter is loaded from address four. The processor is set to system mode. Trace is disabled, and the interrupt mask is set to level seven. The tick register is set to zero. All other registers are undefined.

Vector Table

	Address
	Vector
	

	00
	Initial stack pointer
	

	04
	Initial program counter
	

	08
	Bus Error Vector
	

	10
	Illegal Instruction
	

	1C
	Trap overflow
	

	20
	Privilege violation vector
	

	24
	Trace vector
	

	64
	IRQ vector
	

	7C
	NMI vector
	

	80
	Trap vector
	

	
	
	

Instructions
Instruction Formats

	Opcode
	
	
	
	Format

	
	
	
	
	

	Opcode6
	Ra5
	Rt5
	Immediate16
	RI

	Opcode6
	Ra5
	Rt5
	8000h16
	RIX

	Immediate32
	

	Opcode6
	Ra5
	Rt5
	
	
	Rc
	Func6
	R

	Opcode6
	Ra5
	Rb5
	Rt5
	
	Rc
	Func6
	RR

	Opcode6
	Ra5
	Rb5
	Crt3
	
	
	Func6
	CMP

	Opcode6
	Ra5
	Crt3
	
	Immediate16
	CMPI

	Opcode6
	Cra3
	
	
	Cond4
	Rt5
	
	
	SETcc

	Opcode6
	Cra3
	
	
	Cond4
	
	
	
	TRAPcc

	Opcode6
	Cra3
	
	
	Cond4
	Displacement16
	BRcc

	Opcode6
	Ra5
	Rb5
	Rc5
	Rd5
	Re5
	
	PSH / POP

	Opcode6
	Address26
	JMP / JSR

	Opcode6
	Offs4
	Immediate16
	Func6
	RTS

	
	
	
	
	

	26
	Ra5
	Rb5
	Rt5
	
	Rc
	Func6
	RR

	Function
	
	

	4
	ADD
	

	5
	SUB
	

	6
	CMP
	

	
	
	

	8
	AND
	

	9
	OR
	

	10
	EOR
	

	11
	ANDC
	bitwise and with compliment

	12
	NAND
	bitwise and then not

	13
	NOR
	Bitwise or then not

	14
	ENOR
	bitwise exclusive nor

	15
	ORC
	bitwise or with compliment

	16
	SHL
	shift left

	17
	SHR
	shift right

	18
	ROL
	rotate left

	19
	ROR
	rotate right

	20
	
	

	21
	
	

	22
	MAX
	maximum of two values

	23
	MIN
	minimum of two values

	24
	MULU
	unsigned multiply

	25
	MULUH
	unsigned multiply – return high order bits

	26
	MULS
	signed multiply

	27
	MULSH
	signed multiply – return high order bits

	28
	DIVU
	unsigned divide

	29
	DIVS
	signed divide

	30
	MODU
	unsigned remainder

	31
	MODS
	signed remainder

	
	
	

	Function
	
	

	48
	LWX
	load word using indexed addressing

	49
	LHX
	load half- word, indexed addressing

	50
	LBX
	load byte

	51
	LHUX
	load half-word unsigned

	52
	LBUX
	load byte unsigned

	
	
	

	56
	SWX
	store word using indexed addressing

	57
	SHX
	store half-word

	58
	SBX
	store byte

	
	
	

	60
	BCDADD
	binary coded decimal add

	61
	BCDSUB
	binary coded decimal subtract

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

ADD[.] – add register

	26
	Ra5
	Rb5
	Rt5
	
	Rc
	46
	RR

Operation:

The sum of Ra and the immediate value supplied in the instruction are loaded into Rt.

Rt <= Ra + immediate

If Rc is true then Cr0 is updated.

ADDI. – add immediate

	46
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The sum of Ra and the immediate value supplied in the instruction are loaded into Rt.

Rt <= Ra + immediate
Cr0 is updated.
AND[.] – and register

	26
	Ra5
	Rb5
	Rt5
	
	Rc
	86
	RR

Operation:

The bitwise AND of Ra and Rb are loaded into Rt.

Rt <= Ra and Rb

If Rc is true then Cr0 is updated.

ANDI. – and immediate

	86
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The bitwise AND of Ra and the immediate value supplied in the instruction are loaded into Rt.

Rt <= Ra and immediate
Cr0 is updated.
Bcc – branch on condition

	166
	Cra3
	
	
	Cond4
	Displacement16
	BRcc

Operation:

If the specified condition in the condition register is true, then branch, otherwise NOP. Any condition register may be tested. The sign extended sixteen bit displacement is added to the program counter, if the branch is taken.
If (condition true) then

pc <= pc + displacement

	Cond
	Mne.
	
	Condition

	0
	BRA
	Branch always
	1

	1
	BRN
	Branch never
	0

	2
	BHI
	Unsigned branch higher
	!cf & !zf

	3
	BLS
	Unsigned branch lower or same
	cf | zf

	4
	BHS
	Unsigned branch higher or same
	!cf

	5
	BLO
	Unsigned branch lower
	 cf

	6
	BNE
	Branch if not equal
	!zf

	7
	BEQ
	Branch if equal
	 zf

	8
	BVC
	Branch if overflow clear
	!vf

	9
	BVS
	Branch if overflow set
	 vf

	10
	BPL
	Branch if plus
	!nf

	11
	BMI
	Branch if minus
	 nf

	12
	BGE
	Signed branch greater or equal
	

	13
	BLT
	Signed branch less than
	

	14
	BGT
	Signed branch greater than
	

	15
	BLE
	Signed branch less or equal
	

CMPI – compare immediate
	Opcode6
	Ra5
	Crt3
	
	Immediate16
	CMPI

Operation:

The target condition register Crt is loaded with result flags of the operation. The operation is a subtract operation of Ra minus the immediate value supplied in the instruction.

Crt <= flags (Ra – immediate)

Comment:

Any one of the eight condition registers may be the target.
Example:

The following branches if R3 is equal to 1, 5 or 7.

CMPI
CR0,R3,#1

CMPI CR1,R3,#5

CMPI CR2,R3,#7

OR CR0.z,CR0.z,CR1.z

OR CR0.z,CR0.z,CR2.z

BEQ CR0,sometarget

EORI. – exclusive or immediate

	106
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The bitwise exclusive OR of Ra and the immediate value supplied in the instruction are loaded into Rt.

Rt <= Ra eor immediate

Cr0 is updated.

JMP a26 – jump absolute

	206
	Address26
	JSR

Operation:

The low order 26 bits of the program counter are loaded with the constant supplied by the instruction. The high order six bits of the program counter are not affected.

Address26 => PC[25:0]

JMP (Ra+Rb) – jump register indirect

	26
	Ra5
	Rb5
	
	
	0
	206
	RR

Operation:

The program counter is loaded with the sum of registers Ra and Rb.

Ra + Rb => PC

JMP a32 – jump to subroutine absolute

	06
	
	
	
	
	
	326
	

	Address32
	

Operation:

The program counter is loaded with the constant supplied by the instruction.

Address32 => PC

JSR a26 – jump to subroutine absolute

	216
	Address26
	JSR

Operation:

The return address is saved on the stack, then the low order 26 bits of the program counter are loaded with the constant supplied by the instruction. The high order six bits of the program counter are not affected.

pc => -(SP)

Address26 => PC[25:0]
JSR (Ra+Rb) – jump to subroutine, register indirect

	26
	Ra5
	Rb5
	
	
	0
	216
	RR

Operation:

The return address is saved on the stack, then the program counter are loaded with the sum of registers Ra and Rb.

pc => -(SP)

Ra + Rb => PC

JSR a32 – jump to subroutine absolute

	06
	
	
	
	
	
	336
	

	Address32
	

Operation:

The return address is saved on the stack, then the program counter is loaded with the constant supplied by the instruction.

pc => -(SP)

Address32 => PC

LB – load byte

	506
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Register Rb is loaded with the byte addressed at the memory location. The byte value is sign extended to the width of the register.

ea <= Ra + immediate

Rb <= Mem[ea][7:0]
LBU – load unsigned byte

	526
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Register Rb is loaded with the byte addressed at the memory location. The byte value is zero extended to the width of the register.

ea <= Ra + immediate

Rb <= Mem[ea][7:0]
LBUX – load unsigned byte, indexed addressing
	26
	Ra5
	Rb5
	Rt5
	
	Rc
	526
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Register Rt is loaded with memory at the memory address. The byte value is zero extended to the width of the register. If the Rc bit is set in the instruction, then condition register zero is updated, otherwise no condition codes are affected.
ea <= Ra + Rb

Rt <= Mem[ea][7:0]
IF Rc then update cr0

LBX – load byte, indexed addressing
	26
	Ra5
	Rb5
	Rt5
	
	Rc
	506
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Register Rt is loaded with memory at the memory address. The byte value is sign extended to the width of the register. If the Rc bit is set in the instruction, then condition register zero is updated, otherwise no condition codes are affected.
ea <= Ra + Rb

Rt <= Mem[ea][7:0]
IF Rc then update cr0

LH – load half-word

	496
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Register Rb is loaded with the half-word addressed at the memory location. The half-word value is sign extended to the width of the register.

ea <= Ra + immediate

Rb <= Mem[ea][15:0]
LHU – load unsigned half-word

	516
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Register Rb is loaded with the half-word addressed at the memory location. The half-word value is zero extended to the width of the register.

ea <= Ra + immediate

Rb <= Mem[ea][15:0]
LHUX – load unsigned half-word, indexed addressing
	26
	Ra5
	Rb5
	Rt5
	
	Rc
	516
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Register Rt is loaded with memory at the memory address. The half-word value is zero extended to the width of the register. If the Rc bit is set in the instruction, then condition register zero is updated, otherwise no condition codes are affected.
ea <= Ra + Rb

Rt <= Mem[ea][15:0]
IF Rc then update cr0

LHX – load half-word, indexed addressing
	26
	Ra5
	Rb5
	Rt5
	
	Rc
	496
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Register Rt is loaded with memory at the memory address. The half-word value is sign extended to the width of the register. If the Rc bit is set in the instruction, then condition register zero is updated, otherwise no condition codes are affected.
ea <= Ra + Rb

Rt <= Mem[ea][7:0]
IF Rc then update cr0

LINK

Link is used at the beginning of a subroutine in order to establish a stack frame.

	546
	Ra5
	Rt5
	Immediate16
	RI

Operation

Ra => (SP)+

; Ra is pushed onto the stack

Rt <= SP

; Rt is set equal to the stack pointer

SP <= SP – Immediate
; a stack frame is allocated

Comment:

Rt and Ra should be the same register

Example Code:

A_Subroutine:

LINK R30,#24
; setup stack frame, reserved 24 bytes

…….

UNLK R30

; deallocate stack frame, restore stack pointer

RTS

LW – load word

	486
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Register Rb is loaded with the word addressed at the memory location.

ea <= Ra + immediate

Rb <= Mem[ea]
LWX – load word, indexed addressing
	26
	Ra5
	Rb5
	Rt5
	
	Rc
	486
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Register Rt is loaded with memory at the memory address. If the Rc bit is set in the instruction, then condition register zero is updated, otherwise no condition codes are affected.
ea <= Ra + Rb

Rt <= Mem[ea]
IF Rc then update cr0
MULU[.] – unsigned multiply

	26
	Ra5
	Rb5
	Rt5
	
	Rc
	246
	RR

Operation:

The target register Rt is loaded with the product of Ra and Rb. Condition code register zero may be updated with result flags. IF the high order bits of the product are non-zero, then the overflow flag may be set.

Rt <= Ra * Rb

If Rc then Cr0 updated
Example:

MULU.
R1,R2,R3

TVS

CR0

MULS[.] – signed multiply

	26
	Ra5
	Rb5
	Rt5
	
	Rc
	266
	RR

Operation:

The target register Rt is loaded with the product of Ra and Rb. Condition code register zero may be updated with result flags. IF the high order bits of the product are not equal to the sign bit, then the overflow flag may be set.

Rt <= Ra * Rb

If Rc then Cr0 updated

ORI. – or immediate

	96
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The bitwise OR of Ra and the immediate value supplied in the instruction are loaded into Rt.

Rt <= Ra or immediate

Cr0 is updated.

PUSH – push registers onto stack

PUSH is used to push registers onto the stack. Up to five registers may be pushed by this instruction.

	596
	Ra5
	Ra5
	Rc5
	Rd5
	Re5
	
	PUSH / POP

Operations

For reg = a to e

if regno <> 0

R[regno] => -(SP)

POP – pop registers from stack

POP is used to pop registers back off the stack. Up to five registers may be popped from the stack by this instruction

	536
	Ra5
	Ra5
	Rc5
	Rd5
	Re5
	
	PUSH / POP

Operations

For reg = a to e

if regno <> 0

(SP)+ => R[regno]

RTS – return from subroutine

	06
	Offs4
	Immediate16
	346
	RTS

Operation:

First, the program counter is popped from the stack. The four bit offset field is shifted left twice and added to the program counter. Next the stack pointer is incremented by a 16 bit constant.

PC <= (SP)+ + Offs4 << 2

SP <= SP + Immediate16
Comment:

The offset field can cause the program counter to be reset to a point several words after calling instruction. This can be used to skip over static parameters which are placed in-line.

Example Code:

PUSH
R1/R2/R3

; push three words

JSR
someroutine

DC.L
0x1234

; first static parameter

DC.L
0x5678

; second static parameter

……

…….

someroutine:

LINK R30,#24

…….

UNLK R30

RTS #2,#12

; bypass 2 static parameters, add 12 to SP

SETcc - set register based on condition

	186
	CRa3
	
	
	Cond4
	Rt5
	
	
	SETcc

Operation:

If the condition in the specified condition code register is true, then the target register is set to one, else it is set to zero.
if condition(CRa) is true

Rt <= 1

else

Rt <= 0

SB – store byte

	586
	Ra5
	Rb5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Memory at the memory address is set equal to the low order byte of Rb.

ea <= Ra + immediate

Mem[ea] <= Rb[7:0]
SBX – store byte, indexed addressing
	26
	Ra5
	Rb5
	Rc5
	
	0
	586
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Memory at the memory address is set equal to the low order byte of Rc.

ea <= Ra + Rb

Mem[ea] <= Rc[7:0]
SH – store half-word

	576
	Ra5
	Rb5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Memory at the memory address is set equal to the low order 16 bits of Rb.

ea <= Ra + immediate

Mem[ea] <= Rb[15:0]
SHX – store half-word, indexed addressing
	26
	Ra5
	Rb5
	Rc5
	
	0
	576
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Memory at the memory address is set equal to the low order 16 bits of Rc.

ea <= Ra + Rb

Mem[ea] <= Rc[15:0]
STOP – stop clock

	06
	
	
	
	sf
	tf
	Im3
	536
	R

Operation:

The STOP instruction causes the processor’s internal clock to be disabled, resulting in all activity in the processor ceasing. In addition, the interrupt mask, trace and system mode flags may be set by the instruction. The clock may be restarted by a reset, or non-maskable interrupt.

Im <= Ir[8:6]

Tf <= ir[9]

Sf <= ir[10]

SUBI. – subtract immediate

	56
	Ra5
	Rt5
	Immediate16
	RI

Operation:

The difference of Ra and the immediate value supplied in the instruction is loaded into Rt.

Rt <= Ra - immediate

Cr0 is updated.

SW – store word

	566
	Ra5
	Rb5
	Immediate16
	RI

Operation:

The memory address is calculated as the sum of Ra and the immediate value supplied in the instruction. Memory at the memory address is set equal to Rb.

ea <= Ra + immediate

Mem[ea] <= Rb
SWX – store word, indexed addressing
	26
	Ra5
	Rb5
	Rc5
	
	0
	586
	RR

Operation:

The memory address is calculated as the sum of Ra and Rb. Memory at the memory address is set equal to Rc.

ea <= Ra + Rb

Mem[ea] <= Rc
TRAPcc - trap based on condition

	176
	CRa3
	
	
	Cond4
	
	
	
	Tcc

Operation:

If the condition in the specified condition code register is true, then trap, else NOP.

if condition(CRa) is true

trap

Comment:

TVS, TVC use the overflow trap vector.

Example – trap on add overflow:

ADDI
R1,R2,#1234

TVS
CR0
UNLK – unlink stack frame

UNLK is used at the end of a subroutine in order to de-allocate the stack frame.

	16
	Ra5
	Rt5
	
	
	246
	R

Operations:

SP <= Ra
; stack pointer is set equal to Ra

Rt <= (SP)+
; Rt is popped from the stack

Comment:

Ra and Rt should be the same register.

PAGE
40

