
Leros: A Tiny Microcontroller for FPGAs
Martin Schoeberl

Department of Informatics and Mathematical Modeling
Technical University of Denmark

masca@imm.dtu.dk

Abstract—Leros is a tiny microcontroller that is optimized for
current low-cost FPGAs. Leros is designed with a balanced logic
to on-chip memory relation. The design goal is a microcontroller
that can be clocked in about half of the speed a pipelined on-chip
memory and consuming less than 300 logic cells.

The architecture, which follows from the design goals, is a
pipelined 16-bit accumulator processor. An implementation of
Leros needs at least one on-chip memory block and a few hundred
logic cells.

The application areas of Leros are twofold: First, it can be used
as an intelligent peripheral device for auxiliary functions in an
FPGA based system-on-chip design. Second, the very small size
of Leros makes it an attractive softcore for many-core research
with low-cost FPGAs.

I. INTRODUCTION

In this paper we present Leros, a microcontroller that is
optimized for low-cost FPGAs. Leros is a minimalistic 16-
bit processor intended for utility functions in an FPGA based
System-on-Chip (SoC) design. The design goals of Leros are
a good balance between the number of logic cells and on-
chip memories, reasonable performance, and a high maximum
clock frequency. The last point is important for usage as utility
processor in an SoC to not be the frequency bottleneck of the
whole design.

These design goals are achievable by a pipelined accumula-
tor architecture with additional directly addressable registers
in an on-chip memory for local variables. The on-chip data
memory is shared for those registers and general data. With
an additional on-chip memory for the instructions only two
memory blocks are needed and the pipeline can execute one
instruction per clock cycle. For short programs the instruction
memory can even be built out of logic cells (LC).

Leros is named after the greek island Leros,1 where it has
been designed during an enjoyable vacation. Leros is available
under open-source and if you use Leros in your application or
research, consider a visit to the nice island Leros and sending
a postcard from there to the author.

The paper is organized as follows. Section II presents related
work. Background on the design decisions for Leros is pre-
sented in Section III. The concrete implementation is described
in Section IV, followed by an evaluation and comparison
with other FPGA microcontrollers in Section V. The paper
is concluded with Section VI.

1http://www.leros.gr/

II. RELATED WORK

Many small processor cores for FPGAs are available and
University courses on computer architecture often contain
assignments to implement a simple pipeline in an FPGA. In the
following section we restrict the description to a few successful
cores and point out the differences of our Leros design.

PicoBlaze is an 8-bit microcontroller for Xilinx FPGAs [12].
The processor is highly optimized for low resource usage. This
optimization results in restrictions such as maximal program
size of 1024 instructions and 64 byte data memory. The benefit
of this puristic design is a processor that can be implemented
with one on-chip memory and 96 logic slices in a Spartan-3
FPGA. PicoBlaze provides 16 8-bit registers and executes one
instruction in two clock cycles. The interface to I/O devices
is minimalistic in the positive sense: it is simple and very
efficient to connect simple I/O devices to the processor.

The Leros approach is similar to the concept of PicoBlaze
to provide a small processor for utility functions. Compared to
PicoBlaze, Leros has fewer restrictions on program and data
size as it is a full blown 16-bit processor. Leros is optimized
to balance the resource usage between on-chip memory and
logic cells. Therefore, the LC count of Leros is slightly higher
than the one of PicoBlaze. PicoBlaze is coded at a very low-
level abstraction by using Xilinx primitive components such
as LUT4 or MUXCY. Therefore, the design is optimized for
Xilinx FPGAs and practically not portable. Leros is written in
vendor agnostic VHDL and compiles unmodified for Altera
and Xilinx devices.

The SpartanMC is a small microcontroller optimized for
FPGA technology [4]. One interesting feature is that the
instruction width and the data width is 18 bits. The argument
is that current FPGAs contain on-chip memory blocks that are
18-bit wide (originally intended to contain parity protection).
The processor is a 16 register RISC architecture with two
operand instructions and is implemented in a three-stage
pipeline. To avoid data forwarding within the register file,
the instruction fetch and the write-back stage are split into
two phases, similar to the original MIPS pipeline [5]. This
decision slightly complicates the design as two phase-shifted
clocks are needed. We assume that this phase splitting also
limits the maximum clock frequency. As on-chip memories
for register files are large, this resource is utilized by a
sliding register window to speedup function calls. SpartanMC
performs comparable to the 32-bit RISC processors LEON-
II [2] and MicroBlaze [13] on the Dhrystone benchmark.

0	

200	

400	

600	

800	

1000	

1200	

0	
 10000	
 20000	
 30000	
 40000	
 50000	
 60000	
 70000	
 80000	
 90000	
 100000	

Lo
gi
c	

ce
lls
	
 p
er
	
 o
n-­‐
ch
ip
	
 m

em
or
y	

bl
oc
k	

Size	
 in	
 logic	
 cells	

Spartan-­‐3	

Spartan-­‐3E	

Spartan-­‐3A	

Spartan-­‐6	

Cyclone	

Cyclone	
 II	

Cyclone	
 III	

Cyclone	
 IV	

Fig. 1. Number of logic cells per on-chip memory block of low-cost FPGAs from Xilinx and Altera.

Compared to the SpartanMC, Leros is further optimized for
FPGAs using fewer resources and avoiding unusual clocking
of pipeline stages. Leros simplifies the access to registers in
on-chip memory by implementing an accumulator architecture
instead of a register architecture. Although an accumulator
architecture is theoretical less efficient, the resulting maximum
achievable clock frequency offsets the higher instruction count.

Altera provides a softcore, the Nios II [1], for Altera FPGAs.
The Nios RISC architecture implements a 32-bit instruction
set similar to the MIPS instruction set architecture. Although
Nios II represents a different design point than Leros, it
is interesting to note that Nios II can be customized to
meet the application requirements. Three different models are
available [1]: the Fast core is optimized for high performance;
the Standard core is intended to balance performance and size;
and the Economy core is optimized for smallest size. The
smallest core is comparable to Leros and can be implemented
in less than 700 LCs. It is a sequential implementation and
each instruction takes at least 6 clock cycles. Leros is a smaller
(16-bit), accumulator-based architecture and full pipelining
allows to execute each instruction in a single clock cycle.

The super small processor [9] is optimized for low resource
consumption (half of the NIOS economy version). Resources
are reduced by serializing ALU operations to single bit opera-
tions. The LC consumption is comparable with Leros, but the
on-chip memory consumption is not reported.

III. LEROS DESIGN DECISIONS

To optimize a tiny processor core we evaluate the relation
of on-chip memories to logic resources on current low-cost
FPGAs. Furthermore, the maximum clock frequency of Leros
shall be high enough to not constraint the overall maximum
clock frequency of an SoC, where Leros is used as an
intelligent peripheral device. We aim for a clock frequency

half of the frequency of on-chip memories with input and
output registers.

A. Optimal Logic Size

The basic building blocks in current FPGAs are logic cells,
on-chip memories, and DSP blocks. For a utility processor we
are interested in the optimal relation between logic cell and
on-chip memory consumption. We find the main difference
between Xilinx and Altera FPGAs in the granularity of the
on-chip memory blocks. With the Spartan-3 series Xilinx
has switch from 4 Kbit memories to 16 Kbit memories.
Altera uses in the low-cost devices Cyclone and Cyclone II
4 Kbit memories and switched to 8 Kbit memories with the
Cyclone III device.2

Figure 1 shows the number of logic cells per on-chip
memory block for the low-cost devices from Xilinx and
Altera. We have omitted the largest device from the Spartan-
6, Cyclone III, and Cyclone IV devices to keep the numbers
for older devices readable. The Spartan-6 device contains 6-
bit LUTs and the numbers are scaled to 4-bit LUTs. We used
the Leros design to derive the scaling factor of one 6-bit LUT
being worth 1.4 4-bit LUT.

The trend is that smaller FPGAs contain more memory
blocks in relation to the logic, about 200 LCs per memory
block. The larger devices of the Spartan-3 series increase the
logic resources considerable more then the memory resources.
It is interesting to note that for Altera Cyclone chips and
newer Spartan chips the relation between LCs and memory
blocks stays in the range of 200 to 400 LCs per memory
block independent of the device size. Therefore we conclude
that the sweet spot for a microcontroller in current FPGAs is
around 300 LCs per on-chip memory block.

2Current devices contain additional parity bits that can also be used as data
bits.

 DM
 read IM

PC

+
Dec

A

 DM
 write

D

+

im

IO
1

Fig. 2. Pipeline of Leros with the fetch/decode and the read/execute/memory stages.

B. Architectural Decisions

To restrict the consumption of on-chip memories they are
used only for the instruction memory3 and the data memory.
Therefore, we avoid using additional on-chip memories for
a register file. A standard register file would need two read
and one write ports and therefore would consume another two
on-chip memory blocks (to implement the two read ports).

Minimal resource consumption can be achieved by an
accumulator design. Only a single dedicated register (the
accumulator) is connected to the ALU output and provides one
input to the ALU. To provide fast data locations, similar to a
register file, the first 256 words in the on-chip data memory
can be directly addressed for an ALU operation. Therefore,
an ALU operation on two local variables takes two cycles to
execute and another cycle if the result needs to written back
to a local variable. This might sound expensive, but compared
to the PicoBlaze and Nios II it is not so expensive. PicoBlaze
needs two clock cycles for each instruction and the economy
version of Nios II 6 clock cycles.

C. Instruction Set

Leros is a 16-bit architecture with 16-bit data and instruc-
tions. In an accumulator design the addresses of one source
operand and the destination are implicit. Therefore, only one
operand (address) needs to be encoded in the instruction.
Furthermore, this relaxed instruction encoding allows for 8-
bit immediate values in the instruction. The common ALU
operations are supported with one operand from the register
area (256 words) in the data memory or with an 8-bit immedi-
ate value. The data memory can be accessed via indirect loads

3Very small programs can even be implemented using LCs for the instruc-
tion memory. Quartus automatically instantiates either an on-chip memory or
LC based instruction memory from the same VHDL source.

and stores. I/O ports are accessed with dedicated instructions
and an 8-bit address.

Conditional and unconditional branches use 8 bit relative
offsets. For longer jump destinations, function calls, return
from a function call, and computed jump destinations an
indirect jump via the address in the accumulator is supported
(jump-and-link). The jump-and-link instruction saves the pro-
gram counter into a register.

IV. LEROS IMPLEMENTATION

Based on the former described design decisions, Leros is
implemented in a two-stage pipeline with following visible
architectural state: the program counter (PC), the accumula-
tor register (A), the instruction memory (IM), and the data
memory (DM).

A. The Pipeline

Figure 2 shows the pipeline of Leros. It shows the main
data path, the pipeline registers, and the on-chip memories.
The DM is shown twice as it is read in one pipeline stage and
written in a different one. Register A is the accumulator and
PC the program counter.

Leros is implemented with two pipeline stages. The first
stage fetches an instruction from the IM and decodes the
instruction. The second stage reads an operand from the DM
and executes. In both stages the combinational logic is fed
by the asynchronous output of the memory. According to
our design decisions, the pipeline stage is balanced when the
combinational logic (plus the routing) delay is as long as the
access time of the on-chip memory.

As the input registers of on-chip memories cannot be read,
the PC is duplicated. The address of the IM and the PC is either
an increment of the PC by 1, an addition with a constant from
the instruction (relative branch), or the content of A (indirect
jump).

The read and write address of the DM is either a constant
from the instruction (for the on-chip registers) or an indirection
via the DM plus an offset (for loads and stores). The write data
for the DM is either A for store instructions or the PC for a
jump-and-link instruction to save the PC in a register.

A memory load and store uses a based register and an
offset for the address. As the data memory is shared for
registers and general data, load and stores are implemented
by two instructions. With the first instruction the address for
the register, which is used as base address for the load/store,
is sent to the DM. The following instruction uses the value
of the DM (the register content) and adds an offset, which is
part of that instruction, to form the effective address. The data
word to be written is provided by A; the result of a load is
stored into A. This split of the indirect memory access into
two instructions costs an additional cycle, but allows efficient
reuse of the DM for registers and general data.

For on-chip memories with independent read and write port
the question arises what happens on a concurrent write to
and read from the same address in the same cycle. There
are three options: (1) read the newly written value, (2) read
the old value, or (3) undefined. The actual behavior depends
on the FPGA family and is sometimes configurable. A safe
way would be to forward the written result to the read output,
which is in the actual version of Quartus automatically inferred
(depending on the VHDL style used to describe memory).
However, for an accumulator machine there is no benefit in
forwarding this memory access. The last value written to DM
is still in register A and can just be reused when needed by
the next instruction.

B. I/O Interface

I/O read data is fed into the pipeline via the ALU. The
I/O write data is the content of A. The address for the I/O
instruction is part of the instruction.

The interface to I/O devices is similar to the PicoBlaze
design and consists of an 8-bit I/O address, a read and write
signal, and 16-bit input and output data signals. For the write
instructions the address, the data, and the write signal are valid
for a single cycle. For the read instruction the I/O device needs
to deliver the result in the same cycle as the address and the
read signal are valid. No busy or wait signals are supported.
For devices with a longer access time software based polling
needs to be implemented. The argument for this I/O interface
is simplicity and the fact that most I/O devices already support
single cycle access.

C. Extensions

One application area of Leros is a processor to implement
intelligent I/O devices. Such devices often need to generate
exactly timed outputs. To simplify this timing generation a so-
called deadline instruction can be used [6], [11]. A deadline
instruction is a programmable timer with combined with the
facility in the pipeline to wait cycle accurate (or in the range
of a few cycles) until the timeout. With such an instruction a

PWM based DA converter or a serial interface (UART) can
be implemented completely in software.

For experiments with a Leros based many-core system it
shall be possible to dynamically change the content of the
instruction memory and the data memory. To access the shared
off-chip memory a memory controller and an arbiter needs to
be attached to the I/O interface. We will reuse the available
components from a Java chip-multiprocessor [8].

To transfer instructions from the shared main memory
into the instruction memory of Leros, the on-chip instruction
memory needs an additional write port, which is already
available (instruction fetch uses only a read port). Furthermore
an instruction needs to be defined to write the content of A
into the instruction memory.

We plan to use Leros for experiments with a ring-based
network-on-chip [3]. With the small size of a processor node
we can perform real experiments in an FPGA with a huge
number of processing nodes (e.g., 100+ in the FPGA of the
Altera DE2-70 board).

D. Software Tools

We started with a simple assembler written in Java with
some reuse of code from the JOP project [10]. Later we
adapted the lexer and grammar tool ANTLR [7] for the assem-
bler. Using the parser generator ANTLR might sound like an
overkill for the implementation of an assembler. However, the
simplicity of defining a grammar enables the implementation
of a higher level assembler, which can simplify assembler
programming. Furthermore, we started to retarget the muvium
Java compiler4 for Leros. Muvium is optimized to compile
simplified Java for resource-constrained microcontrollers, such
as Microchip processors. Therefore, this compiler is an ideal
tool for Leros.

V. EVALUATION

We have implemented Leros on several different FPGA
boards with Altera and Xilinx FPGAs. The VHDL code of
Leros is highly portable. The only changes needed for a port
are the pin definitions for the board and a device specific PLL
component. For the evaluation we used the free versions of
Altera Quartus 10.1 and Xilinx ISE 12.4.

Table I shows synthesis results of Leros for different FPGA
families. The last column shows the maximum clock frequency
of an on-chip memory of that FPGA family. We have selected
the fastest speed grade for all devices for this table. To derive
the maximum clock frequencies for the Leros design and the
on-chip memory, the designs use a PLL and have been over-
constraint with a high clock frequency. From the table we see
that we have achieved our goals to build a small processor with
a maximum clock frequency in the range of half the on-chip
memory clock frequency. In the benchmarked configuration
Leros consumes only a single on-chip memory. This can
be explained by the small test program (a LED blinking at
0.5 Hz, implemented by 36 instructions) where the ROM is
implemented in logic cells instead of an on-chip memory.

4http://www.muvium.com/

TABLE I
SYNTHESIS RESULTS OF LEROS FOR DIFFERENT FPGAS

Logic Memory Fmax BRAM Fmax
FPGA (LC) (blocks) (MHz) (MHz)

Cyclon 195 1 132 256
Cyclon II 190 1 146 235

Cyclon III 188 1 150 315
Cyclon IV 189 1 160 315
Spartan-3E 188 1 129 297

Spartan-6 112 1 182 320

The Spartan-6 device contains 6-bit LUTs and therefore the
LC count is lower. Furthermore, the available 16 Kbit BRAM
is logically split into two 8 Kbit memories for the instruction
and data memory.

We compare Leros with PicoBlaze on the Nexys2 FPGA
board, which contains a Spartan XC3S500E-4. Both proces-
sors contain an interface to the LEDs and buttons and use a
PLL (DCM) to clock the processor at 100 MHz. To report the
maximum clock frequency we over-constrained the design by
generating a 150 MHz clock with the PLL. For the comparison
of Leros with PicoBlaze we wrote a minimalistic embedded
application: a light control. The light control uses a LED on
the FPGA board as output and can be switched with one button
between three states (off, dimmed, on). Dimming of the LED
is generated by pulse width modulation (PWM) in software.

Table II shows the resource utilization and maximum clock
frequency of the design for a Spartan-3E device.5 Leros is
comparable in resource consumption and maximum clock
frequency with PicoBlaze. However, Leros implements a 16-
bit data path and can execute an instruction in a single cycle,
whereas PicoBlaze is a 8-bit processor and needs 2 clock
cycles for each instruction. In contrast to Leros, SpartanMC
implements a register machine and needs therefore more
resources. Compared to PicoBlaze, SpartanMC executes basic
operations in a single cycle. The lower clock frequency of
SpartanMC is due to the usage of two phase-shifted clocks
for the sub-dividing of two pipeline stages into two phases.

The implementation of Leros on several FPGA boards and
the comparison with PicoBlaze shows that we have achieved
our design goal of a small, fully pipelined processor, which
can be clocked at a reasonable frequency. Except for the
PLL component, all VHDL sources are vendor agnostic.
This experiments also shows that usage of vendor specific
components, as done in the PicoBlaze design, have minimal, or
perhaps no, impact on the achievable size and performance.
Current synthesize tools are mature enough to infer a good
hardware implementation from carefully written VHDL code.

VI. CONCLUSION

This paper presents the design and implementation of a
tiny microcontoller for FPGAs. Leros is a pipelined processor,
optimized to balance the resource consumption between logic

5The maximum clock frequency is slightly lower as in Table I, as the FPGA
on the Nexys2 board is a slower speed grade.

TABLE II
COMPARISON OF LEROS WITH PICOBLAZE AND SPARTANMC ON A

SPARTAN XC3S500E-4

Logic Memory Fmax
Processor (LC) (blocks) (MHz)

Leros 188 1 115
PicoBlaze 177 1 117

SpartanMC 1271 3 50

cells and on-chip memory. The 16-bit processor Leros con-
sumes less than 200 logic cells and 1–2 on-chip memories. To
achieve optimal timing, the combinational logic and routing
resource delays are designed to be equal to the access time of
on-chip memories. Therefore, the maximum clock frequency
of Leros is in the range of half of the maximum clock
frequency of on-chip memories. This tiny processor is an ideal
choice for utility functions, such as implementing an intelligent
peripheral component for an SoC. Due to the small size it
can also be used for research on many-core architectures in
medium sized FPGAs.

SOURCE ACCESS

The Leros design is open source and available from https://
github.com/schoeberl/leros. The distribution currently supports
following FPGA boards directly: Altera DE2-70, Nexys2, and
Cycore. As the interface to the off-chip world is minimal
(clock, buttons, and LEDs), a port to a different FPGA board
is trivial.

REFERENCES

[1] Altera Corporation. Nios II processor reference handbook, 2010. Version
10.1.

[2] J. Gaisler. A portable and fault-tolerant microprocessor based on
the SPARC v8 architecture. In DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, page
409, Washington, DC, USA, 2002. IEEE Computer Society.

[3] F. Gruian and M. Schoeberl. NoC-based CSP support for a Java
chip multiprocessor. In Proceedings of the 28th Norchip Conference,
Tampere, Finland, November 2010. IEEE Computer Society.

[4] G. Hempel and C. Hochberger. A resource optimized processor core
for FPGA based SoCs. In H. Kubatova, editor, Proceedings of the 10th
Euromicro Conference on Digital System Design (DSD 2007), pages
51–58. IEEE, 2007.

[5] J. L. Hennessy. VLSI processor architecture. Computers, IEEE
Transactions on, C-33(12):1221–1246, Dec. 1984.

[6] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-accurate
real-time software. In IFIP International Conference on Embedded and
Ubiquitous Computing (EUC), volume LNCS 4096, pages 449–458,
Seoul, Korea, 2006. Springer.

[7] T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[8] C. Pitter and M. Schoeberl. A real-time Java chip-multiprocessor. ACM
Trans. Embed. Comput. Syst., 10(1):9:1–34, 2010.

[9] J. Robinson, S. Vafaee, J. Scobbie, M. Ritche, and J. Rose. The
supersmall soft processor. In Programmable Logic Conference (SPL),
2010 VI Southern, pages 3 –8, march 2010.

[10] M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.

[11] M. Schoeberl, H. D. Patel, and E. A. Lee. Fun with a deadline
instruction. Technical Report UCB/EECS-2009-149, EECS Department,
University of California, Berkeley, October 2009.

[12] Xilinx. PicoBlaze 8-bit embedded microcontroller user guide, 2010.
[13] Xilinx Inc. MicroBlaze processor reference guide, 2008. Version 9.0.

