
Light52 -- free, open source MCS51 compatible CPU core
Revision 5 - November 13, 2012 Core Datasheet

© José A. Ruiz 2012

OVERVIEW

Light52 is a free, small open-source CPU core
compatible to the Intel MCS51 architecture.

While the core is within the performance
envelope of other free MCS51 cores, the
implementation trades area for speed.
This core is smaller than most free and
commercial MCS51 cores and its speed is
comparable to that of a 6-clocker -- see
sections 8 and 9.

The full original MCS51 instruction set is
implemented with the possible exception of
the BCD opcodes (DA and XCHD) which are
optional.

FEATURES

● 100% binary compatible to MCS51 (except
possibly for optional BCD instructions).

● Speed comparable to a 6-clocker.
● Configurable through VHDL generics.
● Smaller than most other cores.
● Includes 16-bit timer, UART and I/O ports.
● Additional peripherals and SFRs can be

added easily.
● 256 bytes of IRAM -- fixed size.
● Fully synthesizable, static synchronous

design with positive edge clocking and no
internal tri-states.

Light52 lacks some features usually present
in other MCS51 cores and has some
important limitations:

SHORTCOMINGS

● No access to off-chip memory.
● Strictly Harvard: XDATA and XCODE spaces

can't be merged into a Von Neumann
architecture.

● From 2 to 8 clocks per instruction.
● Far slower than most commercial cores:

performance/area ratio is worse even
though area is much smaller.

● No On-Chip Debugging capability.

November 13, 2012 github.com/jaruiz/light52 1

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

1.- Pinout

Table 1: Core Signal Pinout

Signal Direction Description

clk input Clock, active on rising edge.
reset input Active high synchronous reset.
rxd input RxD input for on-board UART.
txd output TxD output from on-board UART.
external_irq[7..0] input High-level-sensitive interrupt inputs
p0_out[7..0] output Port P0 8-bit output.
p1_out[7..0] output Port P1 8-bit output.
p2_in[7..0] input Port P2 8-bit input.
p3_in[7..0] input Port P3 8-bit input.

2.- Functional Description

Since the MCS51 architecture is already well documented elsewhere, this datasheet will only
deal with those aspects of the core which depart from the original.

In this version of the core, there is no support for shared XCODE/XDATA memory spaces (the
core performs simultaneous accesses to XCODE and XDATA and there is no wait state or access
arbitration logic yet). The MCU memory model is therefore strictly Harvard.

The peripherals included in the MCU core are generally not compatible to the MS51 peripherals
and are somewhat less flexible -- the core trades programmability in run-time for configurability
in synthesis time. See section 7 below for a detailed description of available peripherals.
Existing MCS51 programs will generally NOT work unmodified on this core -- code needs to be
ported to the available peripherals and their SFRs like it needs to be in any other MCS51
derivative.

Interrupt operation is identical to the original, except for SFR register IP: interrupt priorities are
fixed to their default values and the IP SFR is unimplemented. Interrupts can be tailored to any
specific application by customizing the MCU VHDL source.

November 13, 2012 github.com/jaruiz/light52 2

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

3.- Special Function Registers

Table 2 lists the SFRs implemented in the current version of the core.

Table 2: Light52 Special Function Registers

Symbol Description Direct
Address

Bit Address and Symbol Reset
Value

ACC Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H
B B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H
DPH DPTR high 83H 00H
DPL DPTR low 82H 00H
IE IQR Enable A8H AF AE AD AC AB AA A9 A8 00H

EA - - ES - - ET0 -
PSW Program D0H D7 D6 D5 D4 D3 D2 D1 D0 00H

Status Word CY AC F0 RS1 RS0 OV - P
SP Stack Pointer 81H 07H

P0 Port 0 outp. 80H 87 86 85 84 83 82 81 80 00H
P1 Port 1 outp. 90H 97 96 95 94 93 92 91 90 00H
P2 Port 2 inp. A0H A7 A6 A5 A4 A3 A2 A1 A0
P3 Port 3 inp. B0H B7 B6 B5 B4 B3 B2 B1 B0

T0CON Timer 0 88H 8F 8E 8D 8C 8B 8A 89 88 00H
Control - - T0CEN T0ARL - - - T0IRQ

T0L 8CH 00H
T0H 8DH 00H
T0CL 8EH FFH
T0CH 8FH FFH

SCON UART 98H 9F 9E 9D 9C 9B 9A 99 98 00H
Control - - RxRdy TxRdy - - RxIrq TxIrq

SBUF Data Buffer 99H
SBPL Baud Rate L 9AH (*1)
SBPH Baud Rate H 9BH (*1)

EXTINT External C0H C7 C6 C5 C4 C3 C2 C1 C0 00H
IRQ Flags EIRQ7 EIRQ6 EIRQ5 EIRQ4 EIRQ3 EIRQ2 EIRQ1 EIRQ0

Notes
1 Only if generic UART_HARDWIRED is false, and then write only.

Registers SBPL and SBPH are initialized as per generics UART_BAUD_RATE and UART_CLOCK_RATE.

November 13, 2012 github.com/jaruiz/light52 3

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

4.- Interrupt Vectors

Interrupt management is identical to the original MCS51. The only difference is that the five
available interrupt request inputs are connected to different sources:

 Table 3: Interrupt Vectors and Sources

IRQ Source Vector Priority 8051 equivalent
0 External IRQ 0003h (highest) IE0
1 Timer 0 000Bh TF0
2 Unassigned 0013h IE1
3 Unassigned 001Bh TF1
4 UART 0023h (lowest) RI+TI

The only other difference is that interrupt priorities are fixed and can't be changed in run time.
SFR IP is not implemented. Since there's full access to the VHDL source of the MCU this is not a
major limitation.

Register IE works exactly like in the original MCS51, and so does instruction RETI.

When an interrupt is serviced, its priority level is stored internally. Until instruction RETI is
executed, no other interrupts of equal or lower priority will be serviced even if enabled in
register IE.
Instruction RETI clears the current interrupt priority level register. Immediately after executing
RETI, and before executing the next instruction of he main program, any pending interrupts of
lower priority will be serviced.

November 13, 2012 github.com/jaruiz/light52 4

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

5.- Object Code Initialization

The object code for the MCU application is contained within the MCU module. The XCODE ROM is
initialized at synthesis time with the contents of generic OBJ_CODE, which is expected to be
defined in a package named obj_code_pkg.
This package must be generated separately for each project and can be considered part of the
program application rather than part of the core source.

The light52 project has adopted the convention that the package obj_code_pkg must be
defined in a vhdl file placed within the MCS51 program directories -- for this purpose, the
obj_code_pkg package can be considered as just another object code format.
This way, the object code for different projects using this core (or for the different code samples
within this project) can be neatly separated from the core sources.

The project includes a Python script (directory /tools/build_rom) which can be used to produce
a suitable obj_code_pkg package file from an Intel-HEX object file. The code samples in
directory /test contain usage examples for this script (makefiles and/or BAT files build.bat).

While the method chosen for object code initialization is clean and vendor-independent, it has a
major drawback: The object code must be available at synthesis time, and every time the code
changes the synthesis has to be re-run. This may be a big handicap in certain applications.

Subsequent versions of the core may provide the option to use memory initialization files so that
the XCODE memory can be initialized post-synthesis.

Included in the same package as the object code are two constants, XCODE_SIZE and
XDATA_SIZE. These constants are set manually in the makefile of each project (only C projects,
see the Dhrystone demo for an example) and then are included in the invocation to the Python
script. These constants are meant to be assigned to the MCU generics XCODE_ROM_SIZE and
XDATA_RAM_SIZE, respectively.

If you use SDCC, you can make the linker check the object code and XRAM usage against these
bounds (again, see the demo makefiles for an example of this).
Thus, you can manually set the ROM and RAM size for your project with the confidence that the
final application will work using the smallest amount of FPGA memory.

November 13, 2012 github.com/jaruiz/light52 5

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

6.- Configuration Generics

Some of the core features can be configured through VHDL generics:

Table 4: Core Configuration Generics

Generic Default Description

CODE_ROM_SIZE 2048 Size of XCODE ROM in bytes. Must be >= 512.
XDATA_RAM_SIZE 0 Size of XDATA RAM in bytes.
OBJ_CODE (dummy) Object code to be placed on ROM. See previous section.
USE_BRAM_FOR_XRAM (*1) false Use extra BRAM as XDATA RAM.
IMPLEMENT_BCD_INSTRUCTIONS false True to implement DA and XCHD, false to execute them as NOPs.
SEQUENTIAL_MULTIPLIER (*1) false Use sequential multiplier instead of combinational.
UART_HARDWIRED true True to hardwire UART baud rate, false to make it configurable at run

time.
CLOCK_RATE 5,00E+00

7
Clock rate (in Hz) assumed by UART and Timer initialization constants.

UART_BAUD_RATE 19200 Default baud rate for UART. Must be <= CLOCK_RATE / 16.
TIMER0_COUNT_RATE 50000 Count frequency of Timer0 (configures T0 prescaler).
Notes
1 Unimplemented, will cause a synthesis assertion failure if given a non-default value.

Object Code and Memory Generics

These generics are meant to be initialized with the constants defined in package obj_code_pkg
(see previous section). This will guarantee that the RAM requirements for the application are
met without any waste of FPGA resources.

Setting XDATA_RAM_SIZE to 0 will remove the XRAM entirely for those projects that don't need it.

The actual size of the synthesized XDATA RAM will of course be a multiple of the underlying
BRAM size for the FPGA architecture, so you are advised to choose the value of the generic
accordingly.

The XCODE memory can obviously not be removed (remember this core has no access to
external memory) and its minimum size has been arbitrarily set to 512 bytes.

Both XCODE and XDATA are limited to the 'natural' addressing range of 64KB. This core does not
support any memory banking scheme.

November 13, 2012 github.com/jaruiz/light52 6

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

7.- Peripheral Modules

The MCU core includes a number of peripheral modules. These peripherals have been designed
hastily in order to provide a working environment for the CPU -- they do not have their own
separate test bench, for example.

The current version of the MCU ships with a simple, hardwired UART, a 16-bit timer and four 8-
bit input/output ports. This is enough for a few demos and maybe for some simple applications.

For real projects, though, the MCU is meant to be modified with new peripherals tailored to the
application. For this purpose, the SFR bus of the CPU has been made accessible within the MCU
entity.

SFR Interface of the CPU Module

Table 5: CPU SFR Interface Signals

Signal Direction Description

sfr_addr output SFR space address, valid when sfr_vma is high.
sfr_vma output Asserted high when a SFR read/write cycle is started.
sfr_rd input Read data. Must be valid by the end of the same cycle sfr_vma is asserted.
sfr_wr output Write data. Valid when sfr_vma is high AND sfr_we is high.
sfr_we output Asserted high (with sfr_vma) for write cycles.

Some of the SFRs are 'internal' cpu SFRs that are, well, internally decoded by the CPU module:
ACC, B, DPH, DPL, IE, PSW and SP -- they are grouped together in table 2.

All SFR read and write cycles take a single clock cycle. The SFRs must behave as an
asynchronous memory when seen from the CPU; the SFR input multiplexor implemented outside
the CPU module must be combinational.

Bit-Addressable SFRs

SFR addresses which are multiple of 8 are bit-addressable. This is exactly the same behavior as
the original 8051. There's nothing special to bit-addressable SFRs other than their address.

In order to make a custom SFR bit-addressable, all you have to do is decode it at an address
multiple of 8, the core will do the rest.

November 13, 2012 github.com/jaruiz/light52 7

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

7.1.- UART

The light52 UART is a simplified version of the original MCS51 serial port.

Some of the operational parameters of the UART are hardwired and non-configurable in the
current version, not even at synthesis time:

1. Number of stop bits hardwired to 1.

2. Parity hardwired to NONE.

3. Number of bits per character hardwired to 8.

Besides, the 9-bit mode of the original MCS51, whith its applications in inter-MCU
communication, is unimplemented yet.

Serial port interrupts work the same as in the original serial port (same vector IRQ4 and same
interrupt enable flag IE.ES).

The UART core has some limited capability to recover from errors, described in the VHDL source
file light52_uart and very similar to that of the original UART:

1. Error conditions such as bad start and stop bits are detected and cause the UART to
discard the received byte and wait for the next start bit.

2. Bit sampling mismatches are detected and the bit values are decided by majority.

A follow-up version of this core will include flags for those detected errors, as well as TX and RX
overruns.

Since all operational parameters are hardwired except possibly the baud rate, the UART setup is
easy: set the baud rate by writing to registers SBPL and SBPH and enable interrupts by setting
flag IE.ES -- the UART can be operated in polling mode too if desired.

November 13, 2012 github.com/jaruiz/light52 8

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Register SCON

This register reflects the status of the serial port:

7 6 5 4 3 2 1 0
SCON 0 0 RxRdy TxRdy 0 0 RxIrq TxIrq
reset 0 0 0 0 0 0 0 0

h h r r h h w1c w1c

Bits marked 'h' are hardwired and can't be modified.
Bits marked 'r' are read only; they are set and reset by the core.
Bits marked 'w1c' (write 1 to clear) are set by the core when an interrupt has been
triggered and must be cleared by the software by writing a 1.

TxRdy Ready to transmit. High when there's no transmission in progress.
It is cleared when data is written to SBUF and is raised at the same time a
TX interrupt is triggered.

RxRdy Received data ready. High when there's data in the RX buffer.
Raised at the same time the RX interrupt is triggered, cleared when SBUF
is read.

RxIrq RX interrupt pending service.
Raised when the RX interrupt is triggered, cleared when 1 is written to it.

TxIrq TX interrupt pending service.
Raised when the TX interrupt is triggered, cleared when 1 is written to it.

When writing to the status/control registers, only flags TxIrq and RxIrq are affected, and only
when writing a '1' as explained above. All other flags are read-only.

Interrupt flags are triggered at the following moments:

TxIrq Last clock cycle of the TX stop bit.

RxIrq At 11/16ths of the RX stop bit, only if the stop bit is valid.

November 13, 2012 github.com/jaruiz/light52 9

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Register SBUF

This is the read/write buffer of the serial port. It gives the software access to the 1-byte-deep
receive and transmit buffers. These buffers work like the original MCS51 serial port.

7 6 5 4 3 2 1 0
SBUF UART Tx/Rx buffer register
reset x x x x x x x x

r/w r/w r/w r/w r/w r/w r/w r/w

Bits marked 'r/w' can be read and written to by the CPU and can be updated by
the core.

SBUF Writing to this register will trigger a serial port transmission unless
SCON.TxRdy=0.
Reading this register will give the last byte received by the UART, if any.

Writing to this register will trigger a transmission unless there is already a transmission going on
(flag SCON.TxRdy=0). In which case the last write access will be ignored. there is no overrun
flag to signal this event; the user must prevent it from happening.

When a byte is received, the core raises flag SCON.RxRdy=1. If a new byte is received before
the last one has been read (i.e. with flag SCON.RxRdy=1), the receive buffer register will be
overwritten with the new data. Again, there is no indication that this has happened; the user
must make sure to prevent these overruns.

Reading from this register when flag SCON.RxRdy=1 will clear the flag and return the last
received byte.
Reading from this register when flag SCON.RxRdy=0 will return undefined data (usually the last
received byte but this may change in later versions).

Note that reading SBUF does NOT clear the RxIrq flag. The flag must be cleared explicitly.

November 13, 2012 github.com/jaruiz/light52 10

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Registers SBPH and SBPL

If generic UART_HARDWIRED is set to false, then the UART implements these two write-only
registers.
These registers should be loaded with the baud period measured in clock cycles -- no prescaling
involved:

BIT_PERIOD = UART_CLOCK_RATE / UART_BAUD_RATE

The bit period register is the 13-bit wide combination of SBPH and SBPL, with the 3 higher bits of
SBPH being ignored.

Note that these registers are write only: reading from their addresses will return an
indeterminate value (actually, the value of the SCON register). This saves logic and is hardly an
inconvenience for the programmer, which will seldom have to read these registers.

These registers are loaded at reset with their default value, defined by generics
UART_BAUD_RATE and UART_CLOCK_RATE, according to the same formula above.

When the generic UART_HARDWIRED is set to true, these registers are hardwired to their default
value and writing to them has no effect.

Note that the UART is totally independent of the timer and indeed of any other module, unlike
the original MCS51.

November 13, 2012 github.com/jaruiz/light52 11

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

7.2.- Timer 0

Basic timer, not directly compatible to any of the original MCS51 timers. This timer is totally
independent of the UART.

This is essentially a reloadable 16-bit up-counter that optionally triggers an interrupt every time
the count reaches a certain value.

Timer Registers

The timer includes 3 registers:
1. A configurable prescaler register of up to 31 bits.
2. A 16-bit compare register accessible through T0CL and T0CH.
3. A 16-bit counter register accessible through T0L and T0H.

Reading T0L or T0H will give the value of the timer register. If the registers are read while the
count is enabled, the software has to deal with a possibly inconsistent (T0L,T0H) pair and should
apply the usual tricks -- majority vote, etc.

The prescaler is reset to 0 when T0CEN=0.
When T0CEN=1 it counts up to (TIMER0_PRESCALER - 1), then rolls over to 0 and the timer
register is incremented.
TIMER0_PRESCALER is a VHDL generic configurable at synthesis time.

The compare register is write-only, in order to save logic. Reading T0CH or T0CL will give the
value of T0CON instead.

Timer Operation

The counter register is reset to 0 when T0CEN=0. When flag T0CEN is set to 1, the counter
starts counting up at a rate of one count every TIMER0_PRESCALER clock cycles.
When counter register = reload register, the following will happen:

• If flag T0ARL is 0 the core will clear flag T0CEN and and raise flag Irq, triggering an
interrupt. The counter will overflow to 0000h and stop.

• If flag T0ARL is 1 then flag T0CEN will remain high and flag Irq will be raised, triggering
an interrupt. The counter will overflow to 0000h and continue counting.

November 13, 2012 github.com/jaruiz/light52 12

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Register TSTAT

This register reflects the status of the timer:

7 6 5 4 3 2 1 0
TSTAT 0 0 T0CEN T0ARL 0 0 0 T0IRQ
reset 0 0 0 0 0 0 0 0

h h r/w r/w h h h w1c

Bits marked 'h' are hardwired and can't be modified.
Bits marked 'r' are read only; they are set and reset by the core.
Bits marked 'r/w' can be read and written to by the CPU and can be reset by the
core.
Bits marked 'w1c' (write 1 to clear) are set by the core when an interrupt has been
triggered and must be cleared by the software by writing a 1.

T0CEN Count ENable.
Must be set to 1 by the CPU to start the counter.
When T0CEN=0 the prescaler and the counter register are reset to 0.
Writing a 1 to T0CEN will start the count up. The counter will increment
until it matches the compare register value (if T0ARL=1) or until it
overflows (if T0ARL=0), at which moment the counter register will roll
back to zero.

T0ARL Auto ReLoad. Set to 1 to enable compare/autoreload mode.
T0IRQ Timer interrupt pending service.

Raised when the timer interrupt is triggered, cleared by writing 1 to it.

November 13, 2012 github.com/jaruiz/light52 13

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Registers T0L,T0H

7 6 5 4 3 2 1 0
T0L Counter register value, bits 7..0
reset 0 0 0 0 0 0 0 0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0
T0H Counter register value, bits 15..8
reset 0 0 0 0 0 0 0 0

r/w r/w r/w r/w r/w r/w r/w r/w

Bits marked 'r/w' can be read and written to by the CPU and can be reset by the
core.

T0H:T0L This is the current value of the counter register. Will be reset to zero when
T0CEN=0.

Registers TCL,TCH

7 6 5 4 3 2 1 0
T0CL Compare register value, bits 7..0
reset 1 1 1 1 1 1 1 1

w w w w w w w w

7 6 5 4 3 2 1 0
T0CH Compare register value, bits 15..8
reset 1 1 1 1 1 1 1 1

w w w w w w w w

Bits marked 'w' can be written to by the CPU but reading them will yield an
undefined value.

T0CH:T0CL This is the current value of the reload register.

November 13, 2012 github.com/jaruiz/light52 14

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

7.3.- Input/Output Ports

The MCU includes 4 8-bit I/O ports. In order to save logic, the ports are hardwired to be either
input or output, and are not configurable even at synthesis time -- it is simpler and cheaper to
just add or modify whatever port setup is needed in each particular application than trying to
provide for all possibilities in advance.

The port SFR addresses are the same as the original P0..P3 port addresses. However, since the
ports are strictly input or strictly output, the behavior of the ports is different in a very important
way:

The 'Read-Modify-Write' behavior of the MCS51 is not implemented:

• All instructions reading an input port read the pin regardless of addressing mode.

• All instructions reading an output port read the register regardless of addressing mode.

In short, writing to an input port will not have any effect. Reading an output port will access the
port output registers and NOT the pins, as stated above.

All input ports are registered unconditionally every clock cycle, there's no need to provide
registers external to the MCU entity.

November 13, 2012 github.com/jaruiz/light52 15

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

7.4.- External Interrupt Inputs

The MCU has 8 external interrupt inputs which, in the current version of the core, are meant
mostly for debugging.

The inputs are registered and level sensitive. As long as input external_irq[i] is high, flag
EXTINT[i] will be high and the interrupt request line IRQ0 of the CPU will be asserted.

Subsequent versions of the core will use edge triggering and add a mask register.

Register EXTINT

This register contains the external interrupt pending flags:

7 6 5 4 3 2 1 0
EXTINT EIRQ7 EIRQ6 EIRQ5 EIRQ4 EIRQ3 EIRQ2 EIRQ1 EIRQ0
reset 0 0 0 0 0 0 0 0

w1c w1c w1c w1c w1c w1c w1c w1c

Bits marked 'w1c' (write 1 to clear) are set by the core when an interrupt has been
triggered and must be cleared by the software by writing a 1.

EIRQ<i> External interrupt <i> pending service.
Raised when the core input external_irq[i] is high, cleared by writing 1 to
it as long as the input has been cleared too.

November 13, 2012 github.com/jaruiz/light52 16

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

8.- Opcode Table

Table 6: Instruction Set Summary

November 13, 2012 github.com/jaruiz/light52 17

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

Table 7: Instruction Set Summary (Continued)

November 13, 2012 github.com/jaruiz/light52 18

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

In the opcode tables above, the number of bytes of the instruction is in the right top corner, in
blue.
The number in red in the left top corner is the cycle count (min/max for conditional jumps).

The opcode table has been automatically generated from the cycle count log file for the opcode
tester program. The cycle count log file (file /sim/cycle_count_log.csv) records the cycle count
for all instructions executed by any test bench; but the opcode tester does not execute all
opcodes. Those opcodes for which there is no data in the log file are colored in grey, and their
cycle count numbers are blank.

Optional instructions (DA and XCHD) are highlighted in red. When not implemented, these
opcodes behave as NOP and their cycle count is 2.

Note that all the untested opcodes are part of a wider opcode family for which at least some
members have been tested (e.g. ACALL, AJMP instructions).

NOTE: The table generation script is at /tools/build_opcode_table/svg_op_table.py. It will
produce SVG files which have to be manually converted to PNG and imported into the ODT
datasheet file. It is included in the project repository for completeness, though it is not expected
to be of any use.

November 13, 2012 github.com/jaruiz/light52 19

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

9.- Performance

9.1.- Synthesis Results

These are the synthesis results for the Dhrystone demo.

Table 8: Synthesis Results for 'Dhrystone' Demo

Target Device Synthesis Fmax Resources
Type CPU Timer UART Total for Dhrystone demo

Cyclone-II -C7 Balanced 63 MHz 948 LEs, 29 M4Ks, 1 MUL9 88 LEs 143 LEs 1291 LEs, 29 M4Ks, 1 MUL9
Spartan-3 -5 Speed 52 MHz (*1) 1405 LUTs, 10 BRAMs, 1 MUL18
Spartan-3 -5 Area 44 MHz (*1) 1273 LUTs, 10 BRAMs, 1 MUL18
(*1) The Spartan results include only the MCU and none of the DE-1 on-board glue logic (7-segment decoders, etc.)

The Dhrystone demo includes 12KB of ROM and 2 KB of XRAM, besides the IRAM. On the DE-1
board, it also includes some auxiliary glue logic that is included in the above total count for the
Cyclone-II target only. That glue logic accounts for 66LEs.

Results for Cyclone-II are the the actual synthesis results obtained for the Dhrystone demo on
Terasic's DE-1 board (using top file c2sb_demo.vhdl).

Results for the Spartan-3 core are more speculative because the core has not yet been tested in
Xilinx hardware. They include the MCU entity only and not the top entity glue logic.

In both cases, the synthesized core implements the BCD opcodes (DA and XCHD). When not
implemented, CPU area decreases by about 31 LEs (or 50 to 80 LUTs in the Spartan chip). Clock
rate does not change.

The above results have been obtained with Quartus-2 11.1 sp2 and Xilinx ISE 9.2i. The synthesis
has been performed unconstrained and the results must be considered illustrative only.

November 13, 2012 github.com/jaruiz/light52 20

https://github.com/jaruiz/light52

Light52 MCS51 IP Core v1.0

9.2.- Dhrystone 2.1 Benchmark

The MCU has executed a version of the Dhrystone 2.1 benchmark, adapted for MCUs by ECROS
Technology and slightly modified to suit the light52 core. It has been compiled with SDCC with
default options.

The benchmark has been executed on a DE-1 development board with a Cyclone-II FPGA clocked
at 50 MHz using the top module entity /vhdl/demos/c2sb/c2sb_demo.vhdl. The benchmark
executes 25000 iterations over the Dhrystone loop and produces the following results:

Dhrystone 2.1 Benchmark Results
1646 Dhrystones per second @ 50 MHz
0.9368 Dhrystone MIPS (*1)
0.0187 Dhrystone MIPS per MHz
(*1) 1 Dhrystone MIPS = 1757 Dhrystones per second

In order to give some context for this benchmark, the following table compares the results for a
few representative cores:

CPU DMIPS/MHz Advantage vs. light52 Fmax

Light52 0.0187 62 MHz
Intel MCS51 0.0094 x0.5 12 MHz
CAST R8051XC-2 AF 0.0883 x4.7 35 MHz
(*1) Fmax on a Cyclone-II FPGA, the same for both cores.

As can be seen below, this core is about twice as fast as a 12-clocker at the same clock rate and
therefore can be characterized as a 6-clocker, even if the clock count per instruction is not
linearly scalable from the original.

The single-clocker CAST's R8051XC-2 AF has been selected for comparison because its feature
set is not far ahead of light52's -- yet it's bigger and not that much faster once the difference in
Fmax is accounted for.

November 13, 2012 github.com/jaruiz/light52 21

https://github.com/jaruiz/light52
http://www.cast-inc.com/ip-cores/8051s/r8051xc2/index.html
http://sdcc.sourceforge.net/
http://www.ecrostech.com/Other/Resources/Dhrystone.htm
http://www.ecrostech.com/Other/Resources/Dhrystone.htm

	1.- Pinout
	2.- Functional Description
	3.- Special Function Registers
	4.- Interrupt Vectors
	5.- Object Code Initialization
	6.- Configuration Generics
	Object Code and Memory Generics

	7.- Peripheral Modules
	SFR Interface of the CPU Module
	Bit-Addressable SFRs
	7.1.- UART
	Register SCON
	Register SBUF
	Registers SBPH and SBPL

	7.2.- Timer 0
	Timer Registers
	Timer Operation
	Register TSTAT
	Registers T0L,T0H
	Registers TCL,TCH

	7.3.- Input/Output Ports
	7.4.- External Interrupt Inputs
	Register EXTINT

	8.- Opcode Table
	9.- Performance
	9.1.- Synthesis Results
	9.2.- Dhrystone 2.1 Benchmark

