AMI and HDB1 Line Codes - VHDL Implementation.

Ribamar Santarosa, ribamar@gmail.com
Outubro/Novembro 2006.

Abstract

Line codings are methods for coding digital data for making them less susceptible to signal losses during transmission. This project implements the AMI - Alternate Mark Inverse - and HDB1 - High Density Bipolar of order 1 codings. This file documents their implementation.

1 Specification.

AMI. This coding takes a binary sequency into a ternary sequency having the signals $0,+1,-1$ by the following way:

- Inputs of 1 are coded as +1 or -1 alternately.
- Inputs of 0 are coded always as 0 .
- Entradas iguais a zero são codificadas como zero;

Example:

```
Input
    1
Output
+1 0
```

HDB1. This coding takes a binary sequency into a ternary sequency having the signals $0,+1,-1$ by the following way:

- Inputs of 1 are coded as either +1 or -1 .
- Paired inputs of 0 are coded as either $+1+1$ or $-1-1$.
- Entradas iguais a zero, isoladas, isto é, seguidas de um e que não foram codificadas em conjunto com outro zero (formando $+1+1$ ou $-1-1$), são codificadas como zero;
- Isolated inputs of 0 , ie, inputs of 0 not followed by 1 which weren't paired to another 0 (thus forming $+1+1$ or $-1-1$) are coded as 0 .
- Outputs have always alternate signals. If the last output was -1 and the input is 00 , the next output is coded as $+1+1$, if the last output was $-1-1$ and the input is 1 , the next output is +1 .

Example:

```
Input
    1 0
Output
+1 0 -1 0 +1 -1 +1 +1 0 -1 0 +1 -1 +1 +1 -1 0 +1 -1 -1 +1 +1 -1 +1
```


2 AMI Encoder.

Figure 1: State Map.

Truth Table:

q	e	S_{0}	S_{1}	q^{+}
0	0	0	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	0

3 AMI Decoder.

Figure 2: State Map.

Karnaugh Map isn't necessary:

$$
\begin{aligned}
& S_{0}=e \cdot q^{\prime} \\
& S_{1}=e \cdot q \\
& q^{+}=e \oplus q
\end{aligned}
$$

Truth Table:

e_{0}	e_{1}	S
0	0	0
0	1	1
1	0	1
1	1	X

Karnaugh Map isn't necessary:
$S=e_{0}+e_{1}$

4 HDB1 Encoder.

Figure 3: State Map.

Truth Table:

E	q_{0}	q_{1}	q_{2}	q_{0}^{+}	q_{1}^{+}	q_{2}^{+}	S_{0}	S_{1}
0	0	0	0	0	0	1	1	0
1	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	0	1
1	0	0	1	1	1	0	0	0
0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	0	0	1
0	0	1	1	1	0	0	1	0
1	0	1	1	0	0	0	0	0
0	1	0	0	0	0	1	1	0
1	1	0	0	1	1	0	1	0
X	1	0	1	X	X	X	X	X
0	1	1	0	1	1	1	0	1
1	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	0	1

$$
\begin{aligned}
& S_{1}: \\
& S_{1}=q_{1} \cdot q_{2}^{\prime}+E^{\prime} \cdot q_{1}^{\prime} \cdot q_{2}
\end{aligned}
$$

5 HDB1 Decoder.

Figure 4: State Map.

Truth Table: | e_{1} | e_{0} | q_{1} | q_{0} | q_{0}^{+} | q_{1}^{+} | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | X | X | X |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | X | X | X |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | X | X | X |
| 1 | 1 | 0 | 0 | X | X | X |
| 1 | 1 | 0 | 1 | X | X | X |
| 1 | 1 | 1 | 0 | X | X | X |
| 1 | 1 | 1 | 1 | X | X | X |

$$
q 0:
$$

$$
q_{0}^{+}=q_{0}^{\prime} \cdot e_{0}
$$

$$
q 1:
$$

$$
q_{1}^{+}=q_{1}^{\prime} \cdot e_{1}
$$

