[image: image2.wmf] OpenCores
The Logic Analyzer
02-12-04

log_anal

[image: image2.wmf]Internal Logic State Analyzer
[image: image3.png]o
\ OpenCores.Org

Author: Ernest Jamro

jamro@agh.edu.pl
Rev. 1.0

December 4, 2002
Revision History

Rev.
Date
Author
Description

1.0
04 Dec 02
Ernest Jamro
First Draft

Contents

31
Introduction

Abstract
3
Main Features
3
2
IO Ports
5
3
Registers
7
List of Registers
7
Internal Dual Port Memory
7
Status Register
7
Stop_Counter Register
9
Tirg_Value Register
10
Trig_Care Register
10
4
Operation
12
Data Acquisition
12
Data transfer
13
Recorded Signals Watching
14
Log_anal testing
15
5
Implementation
16
Xilinx
16

1
Introduction

Abstract

The internal Logic state Analyser (LA) is a simplified version of a standard logic state analyzer, however it is build-in the prototyped circuit and therefore allows for probing internal signals. The LA at first writes probed signals into its internal memory, and then allows for off-line transfer through WISHBONE bus to a PC where the probed data can be watched. As during design prototyping watched signals are very often changed, the LA is mainly intended for FPGAs and works similarly to Xilinx ChipScope.
Main Features

Internal memory for on-line data probing and off-line probed data transfer.

Generic probed signals number: 8, 16 or 32 bits.

Generic acquired data depth (internal memory size) (16 to 64k).

Software programmable single trigger value (and don’t care).

Software programmable trigger place.

Separate trigger bus with generic width 1 to 32 bits.

Acquired data and trigger clock enable.

Generic single or double clock operation (separate or not clock for data acquisition and system interface).

WISHBONE compatible.
An internal Logic state Analyser (LA) is a device that works similarly to an analog oscilloscope but only digital (zero or one) signals are recorded only at certain moments (rising system clock edges). The LA samples signals at different time (one sample per clock cycle) and therefore allows for checking if the device works properly and how the real signal states behave. Recorded data (different signals states at different time intervals) should be then read off-line from the LA through 8-bit WISHBONE bus to your personal computer (PC). Then a special module written in vhdl (la_view.vhd) reads the recorded data and displays them in a VHDL simulator. This allows for not only a very convenient probing internal signals but also for some additional functions related with VHDL simulation. Firstly, real (internal) signals recorded by the LA can be compared with your simulation and the difference can be easily detected. Secondly, the LA data can be used as a stimulus for simulation. The latest may be a very convenient simulation approach when typing in long stimulus vectors is a very time-consuming procedure.

The LA is mainly intended for testing FPGA designs as probed signals can be easily changed by connecting different signals to the LA and then reconfiguring a FPGA. The LA has a similar functionality as the ChipScope sold by Xilinx. A trigger value can be changed by a proper write to the LA through WISHBONE control interface. Similarly, a trigger place (whether in the beginning, somewhere in the middle or in the end of the sampled data) can be also freely set without reprogramming the FPGA.

The LA has separate data and trigger buses. This introduces little additional logic but allows the LA to be trigger by input signals which need not be observed. Besides the LA may have two separate clock signals: the first for acquiring data and the second for interfacing the LA by the WISHBONE bus. The LA data acquisition clock frequency may be much higher then the system frequency and this allows for data sampling several times during a system (wishbone) clock cycle. The LA contains a clock enable inputs for data and trigger. Therefore in the case when input data are acquired at a low frequency, the clock enable signals rather than the two separate clocking should be used. Besides these clock enable signals might be used when only selected data sequence is to be acquired.
2
IO Ports

Core Parameters:
Parameter
Value
Default
Description

data_width
8, 16, 32
16
Width of the observed data (the number of different one-bit signals to be watched)

mem_adr_width
4(16
9
Sampled data depth (internal memory address width)

adr_width
5(18
11
WISHBONE interface address width:

adr_width= 1 + mem_adr_width + log2(data_width/8)

trig_width
1(32
8
Trigger bus width

two_clocks
0, 1
0
0 – single clock operation – the LA signal (clk) is the same as wb_clk_I (this option has a slightly reduced area)

1 – the LA has two separate clocks

Parameters: data_width, mem_adr_width must be updated in the log_anal and la_view entities. Besides the data transfer size is also defined by these parameters. See Operation section for details.

Control WISHBONE Slave interface signals
Port
Width
Direction
Description

wb_clk_i
1
Input
Clock input. For two_clocks=0 also trigger and analyzed data are latched on the rising edge of this signal

wb_dat_i
8
Input
Input data bus

wb_dat_o
8
Output
Output data bus

wb_adr_i
adr_

width
Input
Address bus

wb_we_i
1
Input
Write Enable

wb_stb_i
1
Input
Strobe

wb_ack_o
1
Output
Acknowledge

Other Control Signals
Port
Width
Direction
Description

arst
1
Input
Active high asynchronous reset signal (needed mainly for simulation purpose)

The Logic Analyzer Interface
Port
Width
Direction
Description

clk
1
Input
Separate clock for the LA interface. Should be the same as wb_clk_I when generic two_clocks= 0

data
data_

width
Input
observed signals bus

ce_data
1
Input
Clock Enable for data bus (data are sampled only when ce_data=’1’ and when clk rises

trig
trig_

width
Input
Trigger input bus

ce_trig
1
Input
Clock Enable for trigger bus – Trigger is valid only when ce_trig=’1’ and clk rises

3
Registers

List of Registers

Name
Address
Width
Access
Description

internal memory
0((M-1)
M-bytes
Rd
Sampled data internal memory

status
M
8-bits
Rd/Wr
Status Register which sets/indicates the state of the LA and the trigger place

stop_

counter
M+4
mem_adr_width

- bits
Rd
Shows the place where the sampled data will be written to the internal memory (this register is used by the la_view module).

trig_

value
M+8
trig_width – bits
Rd/Wr
Trigger Value (the value written to this register is then compared with the input trig)

trig_care
M+0x0C
trig_width- bits
Rd/Wr
Trigger Care (the value written to this register states that the corresponding trig_value bit is consider or ignored

M+0x10 (
2(M-1
M-0x10 -bytes
None
Must not be written and undefined when read.

where: M = 2adr_width-1 (the size of the internal memory)

Internal Dual Port Memory

Address: 0((M-1) Size: M

The data probed by the LA are written to the internal memory and then these data should be read out off-line to the PC to file la_data.bin. The size of the internal memory M [Bytes] is defined by the mem_adr_width and data_width generic parameters. M= 2mem_adr_width (data_width/8 = 2adr_width-1.
Status Register

Address: M. Reset value: 0x00.

The status register defines the current operation mode of the LA and consists from 3 sections: Run bit – the trigger has been detected and now data are acquired, Finish bit– the data acquisition is finished (or not), Trig_Place – the trigger place in comparison to the acquired data.

Bit #
Access
Description

7
Run
 Rd

Wr
1 – the LA is in data acquisition mode and the trigger has been detected.

0 – the trigger has not been detected or the data acquisition is finished (see Finish bit). Note: The data are written to the internal memory whenever the Finish=0, this allows for recording data before the trigger.

1 – forces the LA to behave as if the trigger was occurred. Note: If the trigger place is not set for the beginning (Trig_Place=000000), the data before the trigger are undefined. This does not hold when the finish bit has been ‘0’ for a long enough time. Consequently, it is recommended to write only 10000000 to the Status Register.

0 – forces the LA to wait for the trigger (normal operation).

6

Finish
Rd

Wr
1 – the LA has finished the data acquisition (the internal memory is no more written).

0 – the LA is in the acquisition mode (data are written to the internal memory).

1 – forces the LA to stop data acquisition. Note: This might caused that the data in the internal memory are undefined (at the beginning in the la_view module).

0 – sets the LA into the acquire mode (normal operation)

5(0

Trig

Place
Rd

Wr
The trigger place – where the trigger is placed in the watched data. 000000 – at the beginning, 111111 – at the end, 100000 – in the half, etc.

Finish=0, Run= 0 – the same value as previously written to this register.

Finish=0, Run= 1 – indicates how much data are still to be acquired (acquisition stops when the Trig_Place up-counter overflows).

Finish= 1 – the Trig_Place up-counter has overflowed and should be zero (or almost zero).

000000 – the trigger is placed at the beginning of the acquired data (the data acquisition process starts a few moments after the trigger, therefore the trigger moment is not recorded)

000001 – the trigger is placed almost at the beginning (the data acquisition is started a few moments before the trigger, and therefore the trigger moment is recorded)

xxxxxx – the trigger is placed in the middle of the acquired data, the greater the number the closer to the end

111111 – the trigger is placed at the end of the sampled data (the trigger moment can be observed)

Note1: The standard size of the Trig_Place section is 6-bits. Nevertheless for mem_adr_width<6 the size of the Trig_Place is defined by the mem_adr_width parameter, and the LSBs are fill with zeros.

Note2: The actual size of the Trig_Place counter is mem_adr_width-bits, and the Status Registers shows only 6 MSBs of the counter. Consequently every tick of the Trig_Place section is equivalent to 2(adr_width-6) data samples. See: Stop_Counter Register.

Note3: The reset value of the Status Register is 0x00 and the reset value of the Trig_Value and Trig_Care Registers is 0x0...00. Consequently the LA starts to acquire data just after the reset (signal: arst) is deactivated.

Note4: In order to properly configure the LA for data acquisition at first the Trig_Value and Trig_Care registers and then the Status Register should be properly written. Otherwise the LA may be trigged by the old version of the trigger.

Note5: When a trigger is not placed at the beginning, the trigger condition is ignored until a proper amount of data is sampled before the trigger. (See: trig_counter_down internal log_anal signal). This ensures that only valid data are observed by the LA.

Examples:

writebyte address data_to_be _written – writebyte instruction format used in this document.

writebyte M 0x01 – standard acquisition – trigger at the beginning (the trigger moment is sampled).

writebyte M 0x10 – standard acquisition – the trigger in ¼ if the acquired data.

writebyte M 0x20 – standard acquisition – trigger in the half of the acquired data.

writebyte M 0x3F – standard acquisition – trigger at the end.

writebyte M 0x80 – force data acquisition just after the write instruction is executed.

readbyte address – readbyte instruction format used in this document

readbyte M, result: 0x40 – the LA has finished data acquisition and is ready for data reading.

readbyte M, result: 0x00 – acquisition mode, the trigger has not been detected, the trigger will be at the beginning.

readbyte M, result: 0x3F – acquisition mode, the trigger has not been detected, the trigger will be at the end.

readbyte M, result: 0xA0 – acquisition mode, the trigger has been detected and the half of the data has been acquired.

Stop_Counter Register

Address M+4, Reset value: 0x0000

The width of the Stop_Counter Register is defined by the mem_adr_width parameter. This register is read only register (writes are ignored). It’s function depends slightly on the Finish bit in the Status Register.

Finish= 0. The Stop_Counter Register shows the position where the acquired data are written to the internal memory (actually, the address of the next write).

Finish= 1. The Stop_Counter Register indicated the address where the last data was written to the internal memory (actually: Stop_Counter-1 does).

The Stop_Counter value should be read in order to obtain where is the beginning of the data sequence recorded inside the internal memory and should be therefore included in the la_data.bin file, see Operation/Data transfer Section. The Stop_Counter might be also used to indicate how quickly the data acquisition occurs.

Tirg_Value Register

Address M+8, Reset value: 0x0...00

The width of this register depends on the trig_width parameter. The read value is the same as the last written value. Each bit of this register specifies the trigger activation value on the corresponding trig input (see also: Trig_Care Register).

Trig_Care Register

Address M+0x0C, Reset value: 0x0000

The width of this register depends on the trig_width parameter. The read value is the same as the last written value. Each bit of this register specifies if the corresponding bit of the Trig_Value Register and trig input is taken into account (1) or ignored (0) while evaluating the trigger condition. Consequently the following condition must be satisfied to activate the trigger:

trigger= (NOT (trig(0) XOR trig_value(0)) OR NOT trig_care(0)) AND

AND (NOT (trig(1) XOR trig_value(1)) OR NOT trig_care(1)) AND

................ AND

(NOT (trig(trig_width-1) XOR trig_value(trig_width-1)) OR

NOT trig_care(trig_width-1))

Example:

For trig_width= 3 and trigger condition: X01
writebyte (M+8) 0b0101 // Trig_Value Register Write
writebyte (M+0x0C) 0b0011 // Trig_Care Register Write
the following result is obtained for the following input trig data.

[image: image1.wmf]clk

trig(0)

trig(1)

trig(2)

trigger

4
Operation

The normal operation of the LA consists from three different procedures:

· Data acquisition when data (watched signals) are sampled into the internal memory.

· Data transfer, when previously acquired data are transferred to your PC through the WISHBONE bus.

· Signal watching, when the previously transferred data are displayed on your PC by a VHDL simulator and the la_view.vhd file.

Data Acquisition

Log_anal entity instantiation

In order to see what happens inside the prototyped circuit you should instantiated the log_anal entity into your design and connect the data input to the signals which states are to be watched. Then the trig input should be connected to the signals that will trigger the LA. In most cases the data and trig signals are the same. Then the LA should also be connected to the WISHBONE bus through which the LA trigger and operation setting are written and then the acquired data are transferred to a personal computer. Instantiating the LA into a circuit might influence the normal operation of your circuit as the LA uses standard CLB and routing resources of a FPGA. Nevertheless it might be the only way to learn what happens inside your real circuit. Besides every input (data and trig) is connected directly to the flip-flop in order to reduce propagation time and to allow Place & Route tool to optimize rather your circuit than the LA routing.

After the log_anal has been instantiated into your design, the standard design procedure should be invoked: synthesis, place & route, simulation and design downloading to the FPGA. Every time a different signal or trigger is used, the above procedure should be repeated. This might be time consuming especially when a lot of different signals are to be watch to spot an error. In this case, it is encourage to use inputs multiplexers (not included in the source code) which configured by the WISHBONE bus might switch a proper signals to the LA inputs.

The log_anal entity consists from the following sub-entities:

la_trig –main function is trigger logic (it is included inside the log_anal.vhd).

la_mem – is a technology dependent description of the dual port (dual clock for two_clocks=1) synchronous SRAM.

Example for Xilinx Virtex family:

la_mem – internal memory, this entity should be replaced by the technology dependent dual port synchronous memory. Default la_mem entity divides large memory to smaller BlockRAM which size depends on the technology and therefore is defined by a constant values: constant BRAM_max_data_width, BRAM_size which should be adjust to proper values whenever the default la_mem entity is used for the synthesis.

la_bram – this file should be used only when default la_mem entity is used. This entity contains a synthesable (only by Xilinx XST) single clock (parameter two_clocks= 0) VHDL description. For two independent clocks (two_clocks=1) a BlockRAM components (RAMB4_S?_S?) are directly instantiated.

Clocks and Clock Enables (CEs)

The signals connected to the data and trig inputs are sampled on the rising edge of the clk input. It is strongly recommended to uses single clock operation (parameter: two_clocks= 0) whenever the data sampling clock (signal clk) is the same as the WISHBONE clock (signal wb_clk_i), as it will reduce the circuit area and the WISHBONE access time.

In the case when input data and trig should be sampled several times per clock cycle or WISHBONE clock differs from the clock for the watched signals, two separate clocks (two_clocks=1) should be used. It should be noted that data sampling clock frequency should not be very small (especially must not be gated – f= 0 Hz) as the control register write time is at least sum of clocks periods: Tclk + Twb_clk_i. For reading access time is constant and equal 2(Twb_clk_i. Consequently for fclk << fwb_clk_i it is recommended to use the data and trigger clock enable (CE) signals.

In addition to the above CE consideration, the CE signals (ce_data and ce_trig) can be also used when only specific data sequence should be watched, e.g. when watching WISHBONE activity only when wb_cyc=1 or only cases when data transfer occurs wb_ack=1. This allows for reducing memory size.

Data transfer

The previously sampled data written to the internal memory should be transferred to a personal computer and written to the la_data.bin file. This file should contain not only sampled data (internal memory contents) but also the Control Registers’ settings. Consequently the following instruction should be executed by the wishbone master device:

readblock file_name address_start address_stop – the readblock instruction format.
where: file_name= la_data.bin – default file name.

address_start= 0 – address from which data reading starts

address_stop= M+0x0F –address of the last transferred data.

M- the size of the internal memory M= 2adr_width-1.

adr_width – input parameter specified in the the log_anal by generic value.

It should be noted that LA based address is often different form 0 and then the LA based address should be address for every address considered in this section.

Recorded Signals Watching

After the la_data.bin file has been created on your PC you can watch the recorded signals sequence employing a VHDL simulator and la_view.vhd. At first you should update the constants: data_width and mem_adr_width inside the la_view.vhd to be the same as in the log_anal.vhd file. Then if you want to watch the trigger value (i.e. to see when the trigger condition was met) and the trig input is the same as the data input (actually the LSBs of data are the same as the trig) you may update the constant trig_width and set the constant trigger_same_as_data= true.

Afterwards you should start the VHDL simulator. During simulation the la_view reads the la_data.bin file and assigns the acquired signals at data input (log_anal) to signal name d. Very often watched signals connected to the data bus have different names: e.g. rd, wr, ack, adr(3:0), and it would be rather difficult to tract which index of the d signal corresponds to the signal of interest. Therefore it is strongly encouraged to define your own signals, and then assign a corresponding d signal to it. Therefore the la_view.vhdl should be edited in the following way for the previously given example of used signals:

Example:

The signal assignment for the log_anal:

data(6 downto 0)<= adr & ack & wr & rd;
The signal assignment inside the la_view:

 signal rd, wr, ack: std_logic;

 signal adr: std_logic_vector(3 downto 0);

begin --(architecture)

 rd<= d(0);

 wr<= d(1);

 ack<= d(2);

 adr<= d(6 downto 3);

The simulation is automatically stopped when all recorded samples are shown. The following report is presented:

O.K. All acquired data in the LA has already been shown.

Advance design simulation examples

The acquired data might be also used for real signals sequence simulation, i.e. the data recorded by the LA are then used to stimulate your design. For example: a device is connected to a PC by the parallel port. It is rather difficult (or at least time consuming) to specify real signal sequence issued by the parallel port. However the LA can be easily used to record the real signals sequence and then the data can be used as the stimulus for simulation. In this case you should place your top-level entity inside the la_view and feed the inputs with the proper d signal.

Another simulation approach is to compare the real signals obtained by the LA with a simulation results. In this case the la_view should be combined with the simulated circuit. Then the simulation result should be compared at every rising clock with the signals obtained by the LA. The following VHDL code might be included inside your code:

process(clk)

 variable error: std_logic:= ‘0’;

 begin

 if clk’event and clk=’1’ then

 for i in 0 to data_width-1 loop

 error:= error OR (d_from_LA(i) XOR d_simulated(i));

 end loop;

 end if;

end process;

Log_anal testing

Before instantiating the log_anal into your design you may have to simulate it first using e.g. test.vhd. Inside the test.vhd, the log_anal inputs: data and trig are fed by the up counter. The log_anal Control Registers are then set by proper WISHBONE writes. Then the WISHBONE test the state of the Finish bit in the Status Register. After the Finish bit is detected to be 1, the WISHBONE reads the memory and the control registers and writes the read data to the la_data.bin file. The la_data.bin can be then read by the la_view module.

5
Implementation

Xilinx

Optimal Generic Selection
Generic mem_adr_width and data_width should be selected with respect to the FPGA built-in memory size.

Precaution: Constant Values: BRAM_max_data_width, BRAM_size specified in the la_mem entity define a single BRAM maximum data width and size and should be specified according to FPGA family.

Virtex (BRAM 4kb)

BRAM_max_data_width= 16, BRAM_size= 4kb (4096)

BRAM
data_width
mem_adr_width
adr_width

1
8

16
9

8
10

10

2
8

16

32
10

9

8
11

11

11

4
8

16

32
11

10

9
12

12

12

Virtex II (BRAM 16 kb)

BRAM_max_data_width= 32, BRAM_size= 16kb (16 384) (parity bits not included)

BRAM
data_width
mem_adr_width
adr_width

1
8

16

32
11

10

9
12

12

12

2
8

16

32
12

11

10
13

13

13

4
8

16

32
13

12

11
14

14

14

Implementation results for Virtex Family (XCV300PQ240-6)

For the following log_anal parameters:

data_width:= 16, mem_adr_width:= 9,
adr_width:= 11 trig_width:= 8, two_clocks:= 0

Implementation result:
Number of Slices: 78 out of 3,072 2%

 Number of Slices containing

 unrelated logic: 0 out of 78 0%

 Number of Slice Flip Flops: 40 out of 6,144 1%

 Total Number 4 input LUTs: 116 out of 6,144 1%

 Number used as LUTs: 105

 Number used as a route-thru: 11

 IOB Flip Flops: 34

 Number of Block RAMs: 2 out of 16 12%

 Number of GCLKs: 1 out of 4 25%

 Total equivalent gate count for design: 34,245

Minimum period is 13.492ns.

� EMBED PBrush ���

www.opencores.org
Rev 0.8 Preliminary
ii

[image: image4.png]o
\ OpenCores.Org

[image: image5.wmf]_1099480817.doc

clk

trig(0)

trig(1)

trig(2)

trigger

_1054035473

