

LPFFIR IP Core Specification

Author: Vladimir Armstrong vladimirarmstrong@opencores.org

Rev. 1.0 January 27, 2019

This page has been intentionally left blank.

Revision History

Rev.	Date	Author	Description
1.0	01/27/19	Vladimir Armstrong	First Draft

Contents

INTRODUCTION	1
SPECIFICATIONS	2
Features	2
ARCHITECTURE	
APPLICATION	5
IO PORTS	8
APPENDIX A	9
IMPULSE RESPONSE	
POLE ZERO PLOT Magnitude and Phase Response	
STRUCTURE	12
APPENDIX B	
APPENDIX C	
Full adder Boolean algebra expressions	15
FULL ADDER SIMPLIFIED BOOLEAN ALGEBRA EXPRESSIONS	16
INDEX	

Introduction

Lowpass filter with finite impulse response (LPFFIR) IP core is characterized by one passband and one stopband, each specified by passband ω_p edge frequency and stopband ω_s edge frequency. The LPFFIR ideal filter $H_i(e^{j\omega})$ gain is 6 in the passband and ideal attenuation in the stopband is zero, the filter design specifications include tolerance limits by which the ideal gains in the passband can be attenuated by δ_p value and ideal stopband can be gained by δ_s value. The LPFFIR tolerance scheme with edge frequencies and tolerance limits is shown in Figure 1.

Figure 1 LPFFIR tolerance scheme.

Specifications

The LPFFIR Figure 1 specifications are shown in Table 1

Table 1 LPFFIR	specifications.
----------------	-----------------

	Passband	Stopband
Ideal filter	6 gain	0 attenuation
Edge frequencies	$\omega_p = 0.14$	$\omega_s = 0.26$
Tolerance	$\delta_p = 1.56$	$\delta_s = 1.605$

Features

- LPFFIR IP core RTL is fully synthesizable into logic gates targeting ASIC devices i.e. FPGA devices CLB slices or DSP units are not required for synthesis.
- High precision 16-bit fixed-point arithmetic is used for DSP RTL implementation.

Architecture

The Figure 2 architecture is a realization of Figure 8 DSP structure which is made up of addition (+) and delay (Z^{-1}) elements. The addition (+) element function is implemented by Full Adder (FA) module and Ripple Carry Adder (RCA) module with hierarchy of Figure 3. The delay (Z^{-1}) element is implemented by Flip Flops (FF) in a series.

Figure 2 LPFFIR module block diagram.

Figure 3 Module hierarchy block diagram.

The RCA module adds two 16-bit and one 1-bit binary number inputs A, B, and $C_{in}(CI)$ respectively and outputs one 16-bit and one 1-bit binary numbers S and $C_{out}(CO)$ respectively. The Figure 4 shows how multiple 1-bit add function FA modules are used to create 16-bit add function of RCA module.

Figure 4 RCA module block diagram.

The FA module adds three 1-bit binary number inputs A, B, and $C_{in}(CI)$ and outputs two 1-bit binary numbers S and $C_{out}(CO)$ as gate diagram shown in Figure 5 which is an implementation of [Full adder simplified Boolean algebra expressions].

Figure 5 FA module gate diagram.

Application

Application example of LPFFIR IP core is Discrete-Time Processing of Continuous-Time Signals[1] with block diagram of Figure 6 and frequency-domain illustration of Figure 7, if the input is bandlimited and the sampling frequency is high enough to avoid aliasing, then the overall system behaves as an LTI continuous-time system with the output is related to the input through an equation of the form

$$Y_r(j\Omega) = H_{eff}(j\Omega)X_c(j\Omega)$$

where effective continuous-time frequency responds

$$H_{eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

Using $\omega = \Omega T$ relation to convert from effective continuous-time filter specification to the discrete-time filter specification results an equation of the form

$$H(e^{j\omega}) = H_{eff}\left(j\frac{\omega}{T}\right), \qquad |\omega| < \pi.$$

LPFFIR Specifications

Figure 6 Discrete-time filtering of continuous-time signals system application.

The $|H_{eff}(j\Omega)|$ continuous-time overall system of Figure 6 with following requirements

- 1. Sample period shall be $T = 10^{-4}s$
- 2. The passband gain shall be 6.
- 3. The attenuated tolerance at the passband shall be 1.56 in the frequency band $0 \le \Omega \le 2\pi (1400)$.
- 4. The gain tolerance at the stopband shall be 1.605 in the frequency band $2\pi(2600) \leq \Omega$.

The mapping between the continuous-time and discrete-time frequencies only affects the passband and stopband edge frequencies and not the tolerance limits on frequency response magnitude [2].

The $|H(e^{j\omega})|$ discrete-time block of Figure 6 with following requirements

- 1. The passband gain shall be shall be 6.
- 2. The attenuated tolerance at the passband shall be 1.56 in the frequency band $0 \le \omega \le 0.14\pi$.
- 3. The gain tolerance at the stopband shall be 1.605 in the frequency band $0.26\pi \le \omega$.

1/27/2019

Figure 7 Frequency-domain illustration of discrete-time filtering of continuous-time signals.

IO Ports

Port	Width	Direction	Description
clk_i	1	Input	Clock Input
x_i	16	Input	Low-pass filter Input
y_o	16	Output	Low-pass filter Output

Table 2: List of IO ports.

Appendix A Structure

The LPFFIR uses a direct form structure for a FIR linear-phase system. The DSP theory [3] is used for derivation and structure is shown in Figure 8.

Impulse Response

 $h[n] = \begin{cases} 1, 0 \le n \le 5\\ 0, otherwise \end{cases}$

Pole Zero Plot

Magnitude and Phase Response

$$\begin{aligned} H(z = e^{i\omega}) &= 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5} \\ &= 1 + e^{-i\omega} + e^{-2i\omega} + e^{-3i\omega} + e^{-4i\omega} + e^{-5i\omega} \\ &= e^{-i\omega\frac{5}{2}}(e^{i\omega\frac{5}{2}} + e^{i\omega\frac{3}{2}} + e^{i\omega\frac{1}{2}} + e^{-i\omega\frac{1}{2}} + e^{-i\omega\frac{3}{2}} + e^{-i\omega\frac{5}{2}}) \\ &= e^{-i\omega\frac{5}{2}}(2\cos\frac{5}{2}\omega + 2\cos\frac{3}{2}\omega + 2\cos\frac{1}{2}\omega) \\ \therefore |H(z = e^{i\omega})| &= 2 \left| \cos\frac{5}{2}\omega + \cos\frac{3}{2}\omega + \cos\frac{1}{2}\omega \right| \text{ and } \neq H(z = e^{i\omega}) = -\frac{5}{2}\omega \end{aligned}$$

Structure

$$y[n] = h[n] * x[n]$$

$$= \sum_{k=0}^{M} h[k]x[n-k]$$

$$= \sum_{k=0}^{\frac{M-1}{2}-1} h[k]x[n-k] + \sum_{k=\frac{M-1}{2}+1}^{M} h[k]x[n-k]$$

$$= \sum_{k=0}^{\frac{M-1}{2}-1} h[k]x[n-k] + \sum_{k=0}^{\frac{M-1}{2}+1} h[M-k]x[n-M+k]$$

$$= \sum_{k=0}^{\frac{M-1}{2}} h[k](x[n-k] + x[n-M+k])$$
Let: $h[n] = \begin{cases} 1, 0 \le n \le 5\\ 0, otherwise \end{cases} \Rightarrow M = 5 \text{ Note: } M \text{ is an odd integer.}$

$$= \sum_{k=0}^{2} h[k](x[n-k] + x[n-5+k])$$

$$= h[0](x[n] + x[n-5]) + h[1](x[n-1] + x[n-4]) + h[2](x[n-2] + x[n-3])$$

Figure 8 Direct form structure for a FIR linear-phase system.

Appendix B

Expected Behavior

The LPFFIR expected behavior is generated from MATLAB simulation. The simulation source code and result plot are shown in Figure 9 and Figure 10 respectively.

```
1. % FIR difference equation of lowpass filter
2. b = [1, 1, 1, 1, 1, 1]; a = [1];
3. % Response
4. n = [0:7];
5. h = impz(b,a,8);
6. [H,w] = freqz(b,a,100);
7. magH = abs(H); phaH = angle(H);
8. % Plot
9. subplot(4,1,1); stem(n,h);
10.title('Impulse Response'); xlabel('n'); ylabel('h(n)')
11. subplot(4,1,2);zplane(b,a);grid
12.title('Pole-Zero Plot')
13. subplot(4,1,3);plot(w/pi,magH);grid
14.xlabel('Frequency in \pi units'); ylabel('Magnitude');
15.title('Magnitude Response')
16. subplot(4,1,4);plot(w/pi,phaH/pi);grid
17.xlabel('Frequency in \pi units'); ylabel('Phase in \pi units');
18.title('Phase Response')
```

Figure 9 MATLAB simulation source code.

Figure 10 MATLAB simulation result plot.

Full adder Boolean algebra expressions

- $CO = B \cdot CI + A \cdot CI + A \cdot B + A \cdot B \cdot CI$
- $S = \overline{A} \cdot \overline{B} \cdot CI + \overline{A} \cdot B \cdot \overline{CI} + A \cdot \overline{B} \cdot \overline{CI} + A \cdot B \cdot CI$

The full adder Boolean expressions are derived from truth Table 3.

Input			Output	
Α	В	CI	СО	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Table 3 Full adder truth table.

Full adder simplified Boolean algebra expressions

- $CO = B \cdot CI + A \cdot CI + A \cdot B$
- $S = A \oplus B \oplus CI$

The K-map of Table 4 and Table 5 are used for simplifying Boolean algebra expressions of full adder.

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	$A \cdot B$	$A \cdot \overline{B}$
CI	0	0		0
С	0	1	1	1

Table 4 Full adder K-map of CO.

\mathbf{I} and \mathbf{J} \mathbf{I} and \mathbf{I} added \mathbf{I} \mathbf{I} in \mathbf{I}

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	$A \cdot B$	$A \cdot \overline{B}$
CI	0	1	0	1
С	1	0	1	0

Index

- Oppenheim, A. V., & Ronald, W. S. (2009). Discrete-Time Processing of Continuous-Time Signals. In *Discrete-Time Signal Processing 3rd Edition* (pp. 197-172). Upper Saddle River, NJ: Pearson
- 2. Oppenheim, A. V., & Ronald, W. S. (2009). Filter Specifications. In *Discrete-Time Signal Processing 3rd Edition* (pp. 494-496). Upper Saddle River, NJ: Pearson
- Oppenheim, A. V., & Ronald, W. S. (2009). Structures for Linear-Phase FIR Systems. In *Discrete-Time Signal Processing 3rd Edition* (pp. 403-405). Upper Saddle River, NJ: Pearson.