
1

Versatile UVM Scoreboarding
Jacob Andersen, Peter Jensen, Kevin Steffensen

SyoSil ApS, Copenhagen, Denmark

{jacob, peter, kevin}@syosil.com

Abstract — All UVM engineers employ scoreboarding for checking DUT/reference model behavior, but only few

spend their time wisely by employing an existing scoreboard architecture. Main reason is that existing frameworks

have inadequately served user needs, and have failed to improve user effectiveness in the debug situation. This paper

presents a better UVM scoreboard framework, focusing on scalability, architectural separation and connectivity to

foreign environments. Our scoreboard architecture has successfully been used in UVM testbenches at various

architectural levels, across models (RTL, SC) and on physical devices (FPGA/ASICs). Based on our work, the

SV/UVM user ecosystem will be able to improve how scoreboards are designed, configured and reused across

projects, applications and models/architectural levels.

Keywords — SystemVerilog; UVM; Scoreboard Architecture; RTL; SystemC; TLM; Debug; OOP Design Patterns

I. MOTIVATION; EXISTING WORK

Addressing the increasing challenges met when performing functional verification, UVM [1] proposes a

robust and productive approach for how to build and reuse verification components, environments and

sequences/tests. When it comes to describing how to scoreboard and check the behavior of your design against

one or more reference models, UVM offers less help. UVM does not present a scoreboard architecture, but leaves

the implementer to extend the empty uvm_scoreboard base class into a custom scoreboard that connects to

analysis ports. Experience shows that custom scoreboard implementations across different application domains

contain lots of common denominators of deficiency. Users struggle to implement checker mechanisms for the

designs under test being exposed to random stimuli, while sacrificing aspects like efficiency, easy debug and a

clean implementation.

Existing user donated work [2] suggests some UVM scoreboard architectures, offering UVM base classes and

implementation guidelines together with some examples of use. These implementations commonly require the

user to write an “expect” function that is able to check the design under test (DUT) responses once these

transactions arrive at the scoreboard. The use of such a non-blocking function imposes numerous modeling

restrictions. Most notably, only one model can be checked, namely the DUT. Secondly, it is difficult to model

many of the parallel aspects of common DUT types, leading to messy implementations where the comparison

mechanism becomes interwoven with the queue modeling. The “predictor” function may be suitable for rather

simple applications (e.g. packet switching), but does not fit more generic use cases. Lastly, self-contained

SystemC/TLM virtual prototypes are difficult to incorporate as “expect” functions in such scoreboard

architectures.

We find existing proposals inadequately address our requirements for a state-of-the-art scalable scoreboard

architecture. Therefore we have created a scoreboard implementation that has been used across multiple UVM

verification projects, and we would like to share our experiences and the guidelines we have set up. For the UVM

community to benefit from our work, our scoreboard library has been released and is available for download (see

section IX).

II. SCALABILITY & ARCHITECTURAL SEPARATION

Our scoreboard is able to simultaneously interface and compare any number of models: Design models (RTL,

gate level), timed/untimed reference models (SystemVerilog, SystemC, Python), as well as physical devices like

FPGA prototypes/ASICs. As a logical consequence, we insist on a clear architectural separation between the

models and the scoreboard implementation, the latter containing queues and comparison mechanisms, and we

specifically choose not to employ the “expect” function concept.

To simplify text and schematics, the sections below explain the architectural separation between a DUT and a

reference model (REF), tailored to check the DUT running random stimuli. In subsequent sections, we will

2

present how the scoreboard (SCB) interfaces to other models and physical devices, and compares the operation of

any number of models.

A. Division of Tasks; REF vs SCB

A REF typically implements a transaction level model of the RTL DUT, written in SystemVerilog, C/C++,

SystemC or similar languages, and may be inherited from system modeling studies. The abstraction level of the

model would typically be “PV - Programmers View” but any of the well known abstraction levels (“AL -

Algorithmic Level”, “PV - Programmers View”, “PVT - Programmers View with Timing” and “CA – Cycle

Accurate”) can be used. A transaction level model does not model exact RTL pipeline and timing characteristics,

and for some stimuli scenarios the order of transactions on the interfaces might differ between the models.

For each DUT pin level interface, the REF will have a transaction level interface. These interfaces might

transfer information in and out of the device (e.g. a read/write SoC bus protocol), or only transport information in

a single direction (e.g. a packet based protocol). Depending on the exact goal of the complete verification

environment, the reference model might model the full DUT functionality, or only parts of it. This depends on the

ambitions for running random simulations and what practically is possible to model in the transaction level

reference model. For instance, a reference model of a packet switch might model the packet flow, but refrain from

modeling the control flow (credits), as this would require the model to be fully or partially cycle accurate.

The SCB does not model the DUT. It merely queues the transactions going in and out of the DUT and the

REF, and is able to compare the activity of the models, using a specific algorithm for comparing the data streams.

This algorithm might range between a precise in-order and a relaxed out-of-order compare, depending on how

well the reference model is DUT accurate. Methods implementing such comparison algorithms are a standard part

of the SCB base class layers. Custom algorithms may be capable of analyzing individual transactions, and put

forward more specific requirements for transaction ordering. Such custom algorithms are easy to implement and

deploy in the SCB framework.

B. Implementation Details

Figures 1 and 2 figure present the structure and interconnect of the REF and the SCB. We here have multiple

REFs to show how the solution scales. The DUT is the primary model. This is determined by the DUT being

attached to the verification environment that creates the design stimuli with UVM sequences. The verification

components (VCs) drive the DUT stimuli, and from the VC analysis ports, transactions (UVM sequence items)

are picked up by one or more REFs (M1 … Mn) as well as the SCB. The REFs are trailing secondary models, as

these are unable to proceed with execution before the primary model stimuli have been created, applied, and

broadcast by the VC monitor. The REFs connect to the VCs using analysis FIFOs, allowing the REF to postpone

handling the transaction until potential dependencies have been resolved on other ports.

When considering a SoC bus interface with the VC as initiator, the transactions received by the REFs contain

both a req part (request, DUT stimuli) and a rsp part (DUT response), as we do not expect the UVM environment

to offer an analysis port sending only the req part. The REF needs the req part, and will replace the rsp part with a

computed response, based on the req and the REF internal state. For instance, the req part can be a bus read

request (address and byte enables), whereas the rsp part then will be the data read from the DUT. It is mandatory

for the REF to create its own transaction (e.g. by using the sequence item copy method), as altering the

transaction received from the analysis port will also alter the transaction received by the SCB from the DUT.

For each model (M1 … Mn) attached to the scoreboard, any number of SCB queues can be handled. Each

queue contains meta-transactions, wrapping UVM sequence items along with metadata. This allows a single

queue to contain different transaction types not necessarily comparable with each other. The metadata is used to

ensure that only queue elements of the appropriate type are compared.

The queues can be organized in several ways. The SCB in the figure displays the normal configuration; one

queue per model, with different transaction types in the queues. The generic compare methods only compare

transactions of the appropriate type (A, B) between the queues. Organizing one single queue per model is simple

to configure, and provides great help when debugging failing scenarios, as a timeline with the full transaction

flow can be visualized. The alternative queue configuration shown in the figure is one queue for each port for

3

each model. For some application types it might be desirable to configure the queues in this fashion, if the

relationship between the ports is irrelevant for debugging the SCB queues.

The generalized REF/SCB configuration in Figure 1 can be simplified to Figure 2 for the special case where

the DUT ports only employ a uni-directional information flow, e.g. a packet based traffic pattern. Neither

DUT/Mx response on the A ports nor testbench stimuli on the B ports occurs. Hence the structure resembles more

traditional scoreboard usage, where a DUT packet stream simply is compared to the REF packet stream. In the

figure we show how the stimuli (A port) still can be added to the SCB queues. This will not add value to the

performed checks, but will greatly aid the debug situation, as the queues will present both input and output

DUT/REF traffic.

To summarize, the presented scoreboard architecture is capable of handling both uni- and bi-directional port

traffic. Furthermore, the SCB is fully separated from one or more trailing reference models, allowing the use of

REFs with port topologies matching that of the DUT, and potentially modeled in different languages/domains

than SystemVerilog. Also, the separation promotes reuse, e.g. by reusing module level SCBs at the SoC level.

Figure 2. DUT, trailing models and scoreboard architecture.

Uni-directional information flow on DUT ports. Configuration suitable for packet based flow.

VC A

sequences

req

DUT

A

B

VC B

req (VC stimuli)
SCB

M1

Ai

Bo

B1 B2 B3

DUT Queue

B
’s

 c
o

m
p

a
re

d

sequence_item

wrapped with metadata

Mn

Ai

Bo
req

req (DUT)

B1 B2 B3

M1 Queue

B1 B2 B3

Mn Queue

Alternatively add

A’s to aid debug and

comparison rules: A1 A2 B1 A3

DUT Queue

A1 B1 A2 B2

M1 Queue

A1 A2 A3 B1

Mn Queue

Figure 1. DUT, trailing models and scoreboard architecture.

Bi-directional information flow on DUT ports. Configuration suitable for SoC bus interfaces.

VC A

sequences

req rsp

DUT

A

B

VC B

sequences

req (VC stimuli) + rsp (DUT response)

req (VC) + rsp (M1)

req (VC) + rsp (Mn)

SCB

M1

Bi

Ai

Bo

Ao

Mn

Bi

Ai

Bo

Ao

A1 B1 A2 A3

DUT Queue

A
’s

 a
n

d
 B

’s
 c

o
m

p
a

re
d

,
re

sp
.

in
cl

u
d

in
g

re
q

/s
ti

m
u

li
p

a
rt

A1 A2 A3 B1

M1 Queue

A1 B1 A3 A2

Mn Queue

sequence_item

wrapped with metadata

A1

DUT Queues

A2 A3

B1

A1

M1 Queues

A2 A3

B1

A1

Mn Queues

A3 A2

B1

copy +

replace rsp:
Alternative queue

configuration

(breaks ordering):

req rsp

req (DUT) + rsp (VC)

req (M1) + rsp (VC)

req (Mn) + rsp (VC)

4

III. NON-UVM CONNECTIVITY

Besides interfacing to UVM using analysis ports, establishing links to non-UVM/non-SystemVerilog code is

essential to keep the scoreboard versatile and reusable, enabling the use of external checkers and debug aiding

scripts. For this purpose, the scoreboard framework offers a number of external interfaces:

Interface Language Execution Purpose/Benefits

VP SystemC Run-time Reference model (virtual prototype)

Queue SystemC/C++ Run-time Use for high performance queue comparison, low memory footprint

Use for interface to existing C/C++ protocol checkers

App Sockets Python Run-time Use for creating checkers, easily creating complex data structures and debug aiding

scripts.

Custom Run-time Use for interfacing to any language callable from C++

Logger XML / TXT Post-sim Streaming socket to log file, XML and/or TXT

Usable for post-simulation analysis purposes

Non-UVM SV Run-Time Interface to non-UVM SystemVerilog interfaces (not depicted in below figure).

Table 1: Non-UVM Interfaces

The portable UVM Connect library which is compatible with Synopsys VCS enables seamless TLM1/TLM2

communication between SystemVerilog/UVM and SystemC [3]. We employ the library for implementing most

run-time interfaces listed above. For connecting analysis ports between SV/SC, we employ uvmc_tlm1 sockets

with generic payloads, using the “sv2sc2sv” pattern where SV and SC both act as producer/consumer. To use this

pattern, pack/unpack methods must be available on both sides of the language boundary. Today we use the UVM

field macro generated pack/unpack methods in SV, and the UVMC macros for the SC side. If performance issues

arise in a specific implementation, a shift to using the dedicated UVM pack/unpack macros is implemented.

A. Streaming Transactions out of SCB

To allow external resources to receive a transaction stream, we offer interfaces both in SC/C++ and Python.

These interfaces are mainly intended to be used at run-time, such that external scripts are being evaluated while

the SV simulation is running, avoiding creating large log files for post-simulation processing.

For the Python App Socket, the user has to manually implement the pack/unpack methods on the Python side.

Once done, the user can write Python scripts with analysis ports, where a function is called every time a sequence

item is received by the SCB. Hence the user can attach extern Python scripts with analysis capabilities not present

in SystemVerilog – either if too difficult to model – or if existing Python analysis scripts are available.

Furthermore Python is an easy bridge towards other tools, where run-time streaming of SCB activity is needed.

B. Streaming Transactions into SCB

The scoreboard can be used with transaction streams from external resources, e.g. by obtaining logs from

devices running in the lab (silicon, FPGA, emulators). Depending on the log format, we use either the XML

Figure 3. Interfacing to SystemC REF using UVM Connect.

Interfacing to SystemC/C++ SCB Queues, Python and Custom App Sockets, XML Stream Socket.

VC A

SCB

M1

Ai Ao

A1 B1 A2 A3

DUT Queue

SV/UVM

SC

SV/UVM

SC

A1 B1 A2 A3

SC/C++ Queue

UVM Connect used :

Python

App Socket

Custom

App Socket

Python

scripts

Custom

extensions

Logger
TXT / XML

Log File

R
u

n
-t

im
e

P
o

st
-

si
m

u
la

ti
o

n

5

Interface or the Python App Socket to retrieve the log transactions as UVM sequence items. In this configuration,

the SCB will implement an analysis port, for sending the transactions to REF(s) and then compare the device

simulation log with the REF (figure below). In this configuration, the external model acts as the primary model,

the M1 REF model is a trailing secondary model. Obviously, the UVM environment is passive and does not run

any sequences to create stimuli. The preferred configuration is to stream the external device log through the SCB

external interfaces while the device is running, to avoid post-simulation analysis of large log files.

We have considered connecting the SCB to external physical targets using the SCE-MI standard [4], mainly

being relevant if the drivers/monitors in the UVM testbench are synthesizable. In this situation, a fast-running

connection to the UVM scoreboard is rather easy to set up, and interfacing using XML/Python would be less

required. Exploring this solution is unfortunately out of the scope of this paper.

IV. IMPLEMENTATION & CONFIGURABILITY

The SCB implements a generic scoreboard architecture, which is organized in any number of queues. In turn,

each queue is able to contain items from different producers, indicated by tagging with different meta-data. This

forms a two-dimensional structure with MxN entries (refer to Figures 1 and 2).

For configuring the SCB, a configuration class offers with a dedicated API, making it easy to configure the

number of queues and producers. For populating the SCB with traffic from the DUT and REFs, two different

APIs can be used to insert items into the queues:

• Transaction based API: Insertion by using the automatically generated UVM analysis exports. Used

for the normal UVM use cases.

• Function based API: Insertion by calling the add_item method. Used if transactions require

transformation before insertion, e.g. if not extended from uvm_sequence_item, or if hooking up as

callback. See section V for example.

Both mechanisms automatically wrap a given uvm_sequence_item with metadata and insert it into the given

queue. Thus, there can be any relationship between the number of ingoing transaction streams and the number of

queues and item producers in the scoreboard. It is up to the implementer to choose a meaningful use for the queue

and item producer concepts, while keeping in mind that all pre-packaged compare methods delivered with the

SCB architecture aims to comparing all elements of corresponding item producer type across all queues.

The SCB evaluates the contents of the queues whenever a new item is inserted, using the configured method

to remove matching entries that satisfies the criteria of the compare method, as well as reporting whenever

elements in the queues violate the compare rules. The performance of the compare is directly tied to the

performance of the queue implementation. Thus, only an abstract queue API description is defined along with

several implementations. See more in the description of the cl_syoscb_queue class below.

Figure 4. Scoreboarding XML transaction stream from external device, compare against REF.

SCB

SV/UVM

SC

UVM Connect used :

Physical /

external

device

A1 B1 A2 A3

DUT Queue

C
o

m
p

a
ri

so
n

o
f

A
,B

s

A1 A2 A3 B1

M1 QueueM1

Ai Ao

Python

App Socket

Python

scripts

Logger
TXT / XML

Log File

Run-time

Post-

simulation

6

Models produce transaction flows in different orders. The scoreboard allows specification of the evaluation

criteria, triggering when a comparison between a set of queues is evaluated. This is done by promoting a specific

queue to become a primary queue, leaving the secondary queues to be trailing. A time consuming RTL model

will typically be set as the primary model, whereas a zero-time transactional reference model will be set as a

secondary queue. Furthermore, evaluation will also be triggered at end-of-simulation to ensure that all queue

contents are as expected.

The generic scoreboard architecture is implemented by extending standard UVM base classes. This allows us

to use the UVM Factory to specialize a scoreboard implementation, e.g. by changing the comparison algorithm

for a specific test. In the below figure, the UML diagram of the scoreboard UVM classes is shown. Only selected

classes will be described in the sections below.

• cl_syoscb: The scoreboard itself is an extension of cl_syoscb, in turn an extension of the basic empty

uvm_scoreboard.

• cl_syoscb_queue: The class only provides an API for implementing a queue (virtual class) and it does

not provide the actual implementation. This abstraction allows changing the implementation of how the

queues are searched. One implementation of cl_syoscb_queue is offered in the cl_syoscb_queue_std

class, where the queues are not implemented directly as SystemVerilog queues of cl_syoscb_item

objects. Rather, we employ SystemVerilog associative arrays (hashes) for modeling the queues. The

hash key is the checksum computed from the string representation of the item. The use of associative

arrays speeds up searching for specific transactions in the queues, and allows accelerated comparison of

transaction pairs using the checksums. Ordering information is kept with the metadata as the comparison

might need this information. In this way, the scoreboard implementation offers a view of the queues

similar to a SystemVerilog queue, such that the user avoids working with associative arrays and

checksum keys. Rather, the user can use the provided iterator/locator API to search, traverse and

compare the queues, with good SCB performance.

• cl_syoscb_item: The SCB items are not derived directly from uvm_sequence_item since this would

enforce that all transaction classes in a given testbench would have to be inherited from cl_syoscb_item.

This would make it difficult to use the SCB in an already existing testbench. To overcome this problem

and provide easy adoption and integration in e.g. existing testbenches, the OOP Decorator pattern is used

for linking the meta-transaction (cl_syoscb_item) to the underlying uvm_sequence_item. Before

sequence items from a VC monitor analysis port are inserted into the queues, the sequence items are

Figure 5. UML diagram: Scoreboard Classes.

cl_syoscb

cl_syoscb_compare

cl_syoscb_queue

cl_syoscb_itemcl_syoscb_queue_std ANY uvm_sequence_item

uvm_sequence_item

cl_syoscb_compare_base

cl_syoscb_compare_ooo cl_syoscb_compare_io cl_syoscb_compare_io_producer

cl_syoscb_locator

cl_syoscb_queue_iterator_base

cl_syoscb_cfguvm_object

cl_syoscb_queue_iterator_std

uvm_component

cl_syoscb_subscriber

uvm_subscriber uvm_scoreboard

Factory

Factory+Strategy

7

wrapped in a meta-transaction cl_syoscb_item object together with metadata specific for each

transaction, e.g. the checksum key and the name of the producer.

• cl_syoscb_compare: The compare method is encapsulated by the cl_syoscb_compare class, utilizing the

Strategy OOP design pattern. This class instantiates via a factory lookup an instance of the

cl_syoscb_compare_base class. The cl_syoscb_base class is an abstract class with only virtual methods.

It provides and enforces an API for compare methods with makes it fairly easy to implement custom

compare methods. The SCB comes with several “ready to use” compare methods as listed in Table 3.

The default comparison strategy is in-order by producer (cl_syoscb_compare_io_producer).

Compare Method Description of Compare Algorithm

Out of Order

(cl_syoscb_compare_ooo)

Performs a 1:1 element out of order compare across all queues. Used to check that each secondary

queue contains same contents as the primary queue, but without any specific ordering restrictions.

When a matching set is found, elements are removed from the respective queues.

Error reporting: If a queue grows above a set threshold, or a queue timeout happens.

In Order

(cl_syoscb_compare_io)

Performs a 1:1 element in order compare across all queues. Used to check that each secondary

queue contains same contents as the primary queue, and that the ordering is exactly the same, also

regarding the producer types.

When a matching set is found, elements are removed from the respective queues. This will always

be the first element of both primary and secondary queues.

Error reporting: If the first element in a secondary queue is different from the first element in the

primary queue, disregarding the producer type. Also if a queue threshold/timeout happens.

In Order by Producer

(cl_syoscb_compare_io_producer)

Performs a 1:1 element in order compare across all queues. Used to check that each secondary

queue contains the same contents in the same order as the primary queue but only within the same

producer. Thus, this is less strict than the normal in order compare.

When a matching set is found, elements are removed from the respective queues. This will always

be the first element of the primary queue.

Error reporting: If the first element in a secondary queue of a specific producer type is different

from the first element in the primary queue of the same producer type. Also if a queue

threshold/timeout happens.

Table 2: List of prepackaged compare methods

• cl_syoscb_cfg: The SCB utilizes the UVM configuration database such that it can be reconfigured on

the test case level. This allows changing e.g. the number of queues and compare algorithms. For

instance, a user extension of cl_syoscb_cfg can be used for this purpose:

If no configuration class is provided a default, one will be created. The example above shows how two

queues named RTL and M1 are configured (with two producers: A and B). Table 3 below shows the full

list of configuration options. The options can be set or read by using a standard get/set API. The

compare method is separately configured by using the UVM factory.

class cl_scb_myconfig extends cl_syoscb_cfg;

 function new(string name = "cl_scb_myconfig");

 this.set_queues({“RTL”, “M1”});

 this.set_primary_queue(“RTL”);

 this.set_producer(“A”, {“RTL”, “M1”});

 this.set_producer(“B”, {“RTL”, “M1”});

 endfunction

endclass

8

Attribute Type Description

queues string -> cl_syoscb_queue Stores the relationship from queue name to actual queue

producers string -> string[] Store the relationship from producer name to the list of queues where

the producer is present

primary_queue string Configures the primary queue name. Compare methods use the

primary queue as trigger for when to execute their algorithm.

full_scb_dump bit Turns full scoreboard dump on or off. This is also controllable from

the command line by adding “+uvm_scb_fsd=1” to the command line.

max_queue_size string -> int unsigned Controls the maximum size of a given individual queue.

max_full_queue_size string -> int unsigned Specifies the threshold of when a given queue is dumped to file.

full_scb_type string[] Specifies the type(s) of the full SCB dump. TXT/XML is supported.

item_timeout_queue string->int unsigned Set a per queue timeout on items.

item_timeout_producer string->int unsigned Set a per producer timeout on items.

Table 3: List of scoreboard configuration attributes

Once the SCB is properly configured a standard uvm_sequence_item easily can be inserted into the SCB

without manually managing the meta data. In the example below, the verification environment uses the

transaction based API to retrieve the subscriber from the SCB and connect it with the analysis port of the

verification component:

Compare method configuration is done easily by a factory override, e.g. on the test level:

If the compare methods provided by the scoreboard do not fit the required compare scheme, then a custom

compare can be implemented by extending the cl_syoscb_compare_base class. For easing the implementation,

each queue has a locator object attached which provides a collection of search algorithms for traversing the

queues in an elegant and easy manner. Additionally, standard iterator objects are also available for iterating

through either search results or selected parts of a queue.

V. FLEXIBILITY

Access to model state information may be required to compare transaction flows from different models. The

scoreboard generalizes this, using designated abstract channels, in turn enabling easy exchange of models. This is

done by only adapting glue code, in order to attach the designated channel to a new model.

Furthermore, the SCB can also be used in non-UVM environments, e.g. VMM, by utilizing the function based

API. For instance, a VMM transactor can be implemented which creates a uvm_sequence_item and inserts it into

the SCB. For this purpose the SCB provides the uvm_sequence_item_vmm which wraps a vmm_data class:

cl_syoscb_compare_base::set_type_override_by_type(

 cl_syoscb_compare_base::get_type(),

 cl_syoscb_compare_ooo::get_type(),

 "*");

cl_scb_uvm scb;

cl_syoscb_subscriber subscriber;

…

subscriber = scb.get_subscriber(“RTL”, “A”);
myvc.ap.connect(subscriber.analysis_export);

9

VI. DEBUG

Most scoreboards just echo the difference between the expected and the actual transaction flow. Our

scoreboard architecture offers mechanisms for understanding the full transaction flow and model context at the

point of failure. The scoreboard offers two forms of debugging aid:

Logging: During normal simulations, the scoreboard keeps down the queue sizes by evaluating the

instantiated compare method. When an error happens, the remaining queue content is written to the simulation

logs, displaying the “diff” of the queues at the point of failure. With this information, it is difficult to diagnose the

cause of the error post-simulation, as the output does not contain the full simulation history. By enabling the “full

scoreboard dump” feature (Table 2) all elements added to the scoreboard queues during the simulation will be

dumped to a set of files. The dump mechanism dumps to text format or XML format depending on the

configuration of the scoreboard. Also, XLST transformations can convert the transaction dumped XML into other

file formats, e.g. GRAPHML XML to produce timed transaction graphs.

Analysis: Using the APIs described in section III, external verification scripts can get run-time access to the

transaction streams, aiding the debug process by analyzing the streams and producing higher-order views of the

traffic. A good example would be to visualize the enumeration process on a PCIe bus system. Analysis scripts can

be implemented to read the dumped XML file or access the transactions at runtime, exploiting rich data structures

in external languages. This by far is a better solution than implementing scripts that employ Unix greps or regular

expressions.

VII. SUCCESS STORIES

Our UVM scoreboard architecture has been used across numerous UVM and VMM projects. Typically we

see such projects obtaining an approximate 15% code reduction compared to creating the scoreboard from scratch

using the empty uvm_scoreboard class. Scoreboard setup, configuration and validation can be done in less than a

day, even for complex designs, offering easy ramp-up for engineers new to UVM and the task of scoreboarding.

Furthermore, experienced engineers easily pick up and extend test benches created using the scoreboard library,

as the scoreboard look and feel is same across applications and engineers. Out of the box, engineers benefit from

an inherent high performance scoreboard with very good debug capabilities, prepared for hooking up to external

interfaces.

VIII. IMPROVEMENTS

Since first published, the underlying implementation of the UVM scoreboard has undergone some changes in

order to improve the usability and tool compatibility with the three big simulator vendors. In general three major

changes have been done:

• Changes in the class hierarchy. The structure of the class hierarchy has not been changed but some

changes to the class names and the inheritance hierarchy has been done. All classes has been renamed

from cl_scb_uvm_* to cl_syoscb_* to shorten the file/class names a bit. In the first release, almost all

classes were derived from uvm_component. However, this was not optimal, since then they were a part

of the UVM phasing framework which is not needed for classes which are purely internal to the UVM

class xactor extends vmm_xactor;

 vmm_channel chan;

 cl_syoscb scb;

 vmm_data data;

 uvm_sequence_item_vmm item;

…

 chan.get(data);

 item = new();

 item.data = data;

 scb.add_item(“RTL”, “A”, item); // queue, producer, sequence item

10

scoreboard. Most classes are now derived from uvm_object (to keep them within the UVM framework

but outside of the phasing). Only cl_syoscb_compare and cl_syoscb_queue are derived from

uvm_component since they need to be a part of the phasing, in turn being able to raise objections and/or

do error reporting. One could argue that UVM lacks a “uvm_datastructure” class which is derived from

uvm_object and could be used for implementing generic data structures while keeping them within the

UVM framework.

• Different methods for enforcing APIs. The previous release used abstract classes (specified with the

keyword “virtual class” in SystemVerilog) with pure virtual classes in the cl_syoscb_queue and

cl_syoscb_queue_iterator_base classes. According to the SystemVerilog LRM [5] section 8.21 then it is

legal to extend a non-abstract class into an abstract class as long as: “An object of an abstract class shall

not be constructed directly. Its constructor may only be called indirectly”. Thus, enforcing APIs via

virtual classes with pure virtual functions should work. However, this is not the case due to UVMs

factory implementation.

The problem appears when using the UVM macros in a class derived from uvm_object. The macro

generated code for the <class>::create_instance(…) method will call the constructor directly, deep

within the UVM factory code. This is legal as long as the class is not an abstract class as explained

above. In the previous implementation of the UVM scoreboard the cl_syoscb_queue class was exactly

an abstract class with a constructor which was called directly due to the UVM factory macros. Thus, this

code was incorrect according to the SystemVerilog LRM. Some of the simulator vendors tools caught

this at compile time while others did not. Hence, we have now changed the way we enforce APIs to

avoid using abstract classes and solely use virtual methods which issue a uvm_fatal if not overridden.

The optimal solution would be to make the UVM factory capable of handling abstract classes, by adding

an option to the UVM macros explicitly stating that this is an abstract class and should be handled

differently. Another way of enforcing an API could be to use the newly added SystemVerilog interface

classes. This solution was not chosen since we wanted a stable implementation with stable simulator

support. Currently, we are expecting too many simulator problems with this new feature.

• Minor changes to obtain simulator compatibility. Besides the problem explained above with abstract

classes only minor things have been changed. In general, a referenced member variable after a method

call (obj.method().member) is illegal in SystemVerilog but allowed by some simulators. Thus, minor

changes to avoid these situations have been implemented. The UVM scoreboard has been tested with the

following version of the VCS® simulator: j-2014.12-1

IX. GENERAL AVAILABIILITY

Our UVM Scoreboard architecture has been released for general availability, and can be downloaded from

following web resources:

• Accellera UVM Forum

o http://forums.accellera.org/files/file/119-versatile-uvm-scoreboard/

• SyoSil homepage

o http://syosil.com/index.php?pageid=33

The release features the UVM Scoreboard base classes, examples, release notes and documentation.

The scoreboard has been released under the Apache 2.0 license, and can be used freely. Any suggestions for how

to improve the base classes and examples are very welcome, including potential bug reports. Please direct such

feedback per email to the authors at

 scoreboard@syosil.com

11

X. FUTURE EXTENSIONS

SyoSil is committed to continue the development of the UVM Scoreboard. We currently plan to include the

following extensions before summer 2015:

• Additional implementations of compare methods, including examples of how to employ special

rules taking the contents of the UVM sequence items into consideration.

• Additional queue implementations, optimized with better locators

• More configuration “knobs”

• A general mechanism for communicating side effects from the reference model to the

scoreboard

• Richer set of examples, covering non-UVM connectivity

• Even better debug aiding mechanisms

• Work with the simulator vendors to correct the bugs found in connection with abstract classes

and direct invocation of the class constructor

XI. CONCLUSION

In this work we propose an industry-proven, scalable UVM scoreboard architecture, able to interface to any

number of design models across languages, methodologies, abstractions and physical form. Any relationship

between data streams can be checked using pre-packaged and custom compare methods, and we make it easy to

interface external checker and debug aiding applications. Based on our work, the SV/UVM user ecosystem will

be able to improve how scoreboards are designed, configured and reused across projects, applications and

models/architectural levels.

XII. REFERENCES

[1] Accellera Standards, UVM Standard, http://www.accellera.org/downloads/standards/uvm

[2] Accellera Forum, UVM Resources, http://forums.accellera.org/files/category/3-uvm/

[3] Mentor Graphics, UVM Connect Library, https://verificationacademy.com/topics/verification-methodology/uvm-connect

[4] Accellera Standards, SCE-MI (Standard Co-Emulation Modeling Interface), http://www.accellera.org/downloads/standards/sce-mi

[5] “IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification Language.” IEEE Std 1800-2012,

2012.

