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Abstract — All UVM engineers employ scoreboarding for checking DUT/reference model behavior, but only few 

spend their time wisely by employing an existing scoreboard architecture. Main reason is that existing frameworks 

have inadequately served user needs, and have failed to improve user effectiveness in the debug situation. This paper 

presents a better UVM scoreboard framework, focusing on scalability, architectural separation and connectivity to 

foreign environments. Our scoreboard architecture has successfully been used in UVM testbenches at various 

architectural levels, across models (RTL, SC) and on physical devices (FPGA/ASICs). Based on our work, the 

SV/UVM user ecosystem will be able to improve how scoreboards are designed, configured and reused across 

projects, applications and models/architectural levels. 
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I. MOTIVATION; EXISTING WORK 

Addressing the increasing challenges met when performing functional verification, UVM [1] proposes a 

robust and productive approach for how to build and reuse verification components, environments and 

sequences/tests. When it comes to describing how to scoreboard and check the behavior of your design against 

one or more reference models, UVM offers less help. UVM does not present a scoreboard architecture, but leaves 

the implementer to extend the empty uvm_scoreboard base class into a custom scoreboard that connects to 

analysis ports. Experience shows that custom scoreboard implementations across different application domains 

contain lots of common denominators of deficiency. Users struggle to implement checker mechanisms for the 

designs under test being exposed to random stimuli, while sacrificing aspects like efficiency, easy debug and a 

clean implementation.  

Existing user donated work [2] suggests some UVM scoreboard architectures, offering UVM base classes and 

implementation guidelines together with some examples of use. These implementations commonly require the 

user to write an “expect” function that is able to check the design under test (DUT) responses once these 

transactions arrive at the scoreboard. The use of such a non-blocking function imposes numerous modeling 

restrictions. Most notably, only one model can be checked, namely the DUT. Secondly, it is difficult to model 

many of the parallel aspects of common DUT types, leading to messy implementations where the comparison 

mechanism becomes interwoven with the queue modeling. The “predictor” function may be suitable for rather 

simple applications (e.g. packet switching), but does not fit more generic use cases. Lastly, self-contained 

SystemC/TLM virtual prototypes are difficult to incorporate as “expect” functions in such scoreboard 

architectures. 

We find existing proposals inadequately address our requirements for a state-of-the-art scalable scoreboard 

architecture. Therefore we have created a scoreboard implementation that has been used across multiple UVM 

verification projects, and we would like to share our experiences and the guidelines we have set up. For the UVM 

community to benefit from our work, our scoreboard library has been released and is available for download (see 

section IX). 

II. SCALABILITY & ARCHITECTURAL SEPARATION 

Our scoreboard is able to simultaneously interface and compare any number of models: Design models (RTL, 

gate level), timed/untimed reference models (SystemVerilog, SystemC, Python), as well as physical devices like 

FPGA prototypes/ASICs. As a logical consequence, we insist on a clear architectural separation between the 

models and the scoreboard implementation, the latter containing queues and comparison mechanisms, and we 

specifically choose not to employ the “expect” function concept. 

To simplify text and schematics, the sections below explain the architectural separation between a DUT and a 

reference model (REF), tailored to check the DUT running random stimuli. In subsequent sections, we will 
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present how the scoreboard (SCB) interfaces to other models and physical devices, and compares the operation of 

any number of models. 

A. Division of Tasks; REF vs SCB  

A REF typically implements a transaction level model of the RTL DUT, written in SystemVerilog, C/C++, 

SystemC or similar languages, and may be inherited from system modeling studies. The abstraction level of the 

model would typically be “PV - Programmers View” but any of the well known abstraction levels (“AL - 

Algorithmic Level”, “PV - Programmers View”, “PVT - Programmers View with Timing” and “CA – Cycle 

Accurate”) can be used. A transaction level model does not model exact RTL pipeline and timing characteristics, 

and for some stimuli scenarios the order of transactions on the interfaces might differ between the models.  

For each DUT pin level interface, the REF will have a transaction level interface. These interfaces might 

transfer information in and out of the device (e.g. a read/write SoC bus protocol), or only transport information in 

a single direction (e.g. a packet based protocol). Depending on the exact goal of the complete verification 

environment, the reference model might model the full DUT functionality, or only parts of it. This depends on the 

ambitions for running random simulations and what practically is possible to model in the transaction level 

reference model. For instance, a reference model of a packet switch might model the packet flow, but refrain from 

modeling the control flow (credits), as this would require the model to be fully or partially cycle accurate. 

The SCB does not model the DUT. It merely queues the transactions going in and out of the DUT and the 

REF, and is able to compare the activity of the models, using a specific algorithm for comparing the data streams. 

This algorithm might range between a precise in-order and a relaxed out-of-order compare, depending on how 

well the reference model is DUT accurate. Methods implementing such comparison algorithms are a standard part 

of the SCB base class layers. Custom algorithms may be capable of analyzing individual transactions, and put 

forward more specific requirements for transaction ordering. Such custom algorithms are easy to implement and 

deploy in the SCB framework. 

B. Implementation Details  

Figures 1 and 2 figure present the structure and interconnect of the REF and the SCB. We here have multiple 

REFs to show how the solution scales. The DUT is the primary model. This is determined by the DUT being 

attached to the verification environment that creates the design stimuli with UVM sequences. The verification 

components (VCs) drive the DUT stimuli, and from the VC analysis ports, transactions (UVM sequence items) 

are picked up by one or more REFs (M1 … Mn) as well as the SCB. The REFs are trailing secondary models, as 

these are unable to proceed with execution before the primary model stimuli have been created, applied, and 

broadcast by the VC monitor. The REFs connect to the VCs using analysis FIFOs, allowing the REF to postpone 

handling the transaction until potential dependencies have been resolved on other ports.  

When considering a SoC bus interface with the VC as initiator, the transactions received by the REFs contain 

both a req part (request, DUT stimuli) and a rsp part (DUT response), as we do not expect the UVM environment 

to offer an analysis port sending only the req part. The REF needs the req part, and will replace the rsp part with a 

computed response, based on the req and the REF internal state. For instance, the req part can be a bus read 

request (address and byte enables), whereas the rsp part then will be the data read from the DUT. It is mandatory 

for the REF to create its own transaction (e.g. by using the sequence item copy method), as altering the 

transaction received from the analysis port will also alter the transaction received by the SCB from the DUT. 

For each model (M1 … Mn) attached to the scoreboard, any number of SCB queues can be handled. Each 

queue contains meta-transactions, wrapping UVM sequence items along with metadata. This allows a single 

queue to contain different transaction types not necessarily comparable with each other. The metadata is used to 

ensure that only queue elements of the appropriate type are compared. 

The queues can be organized in several ways. The SCB in the figure displays the normal configuration; one 

queue per model, with different transaction types in the queues. The generic compare methods only compare 

transactions of the appropriate type (A, B) between the queues. Organizing one single queue per model is simple 

to configure, and provides great help when debugging failing scenarios, as a timeline with the full transaction 

flow can be visualized. The alternative queue configuration shown in the figure is one queue for each port for 
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each model. For some application types it might be desirable to configure the queues in this fashion, if the 

relationship between the ports is irrelevant for debugging the SCB queues. 

 

The generalized REF/SCB configuration in Figure 1 can be simplified to Figure 2 for the special case where 

the DUT ports only employ a uni-directional information flow, e.g. a packet based traffic pattern.  Neither 

DUT/Mx response on the A ports nor testbench stimuli on the B ports occurs. Hence the structure resembles more 

traditional scoreboard usage, where a DUT packet stream simply is compared to the REF packet stream. In the 

figure we show how the stimuli (A port) still can be added to the SCB queues. This will not add value to the 

performed checks, but will greatly aid the debug situation, as the queues will present both input and output 

DUT/REF traffic. 

 

To summarize, the presented scoreboard architecture is capable of handling both uni- and bi-directional port 

traffic. Furthermore, the SCB is fully separated from one or more trailing reference models, allowing the use of 

REFs with port topologies matching that of the DUT, and potentially modeled in different languages/domains 

than SystemVerilog. Also, the separation promotes reuse, e.g. by reusing module level SCBs at the SoC level. 

 
 

Figure 2. DUT, trailing models and scoreboard architecture.  

Uni-directional information flow on DUT ports. Configuration suitable for packet based flow. 
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Figure 1. DUT, trailing models and scoreboard architecture.  

Bi-directional information flow on DUT ports. Configuration suitable for SoC bus interfaces. 
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III. NON-UVM CONNECTIVITY 

Besides interfacing to UVM using analysis ports, establishing links to non-UVM/non-SystemVerilog code is 

essential to keep the scoreboard versatile and reusable, enabling the use of external checkers and debug aiding 

scripts. For this purpose, the scoreboard framework offers a number of external interfaces: 

 

Interface Language Execution  Purpose/Benefits 

VP SystemC Run-time Reference model (virtual prototype) 

Queue SystemC/C++ Run-time Use for high performance queue comparison, low memory footprint 

Use for interface to existing C/C++ protocol checkers 

App Sockets Python Run-time Use for creating checkers, easily creating complex data structures and debug aiding 

scripts. 

Custom Run-time Use for interfacing to any language callable from C++ 

Logger XML / TXT Post-sim Streaming socket to log file, XML and/or TXT 

Usable for post-simulation analysis purposes 

Non-UVM SV Run-Time Interface to non-UVM SystemVerilog interfaces (not depicted in below figure). 

Table 1: Non-UVM Interfaces 

 

 

The portable UVM Connect library which is compatible with Synopsys VCS enables seamless TLM1/TLM2 

communication between SystemVerilog/UVM and SystemC [3]. We employ the library for implementing most 

run-time interfaces listed above. For connecting analysis ports between SV/SC, we employ uvmc_tlm1 sockets 

with generic payloads, using the “sv2sc2sv” pattern where SV and SC both act as producer/consumer. To use this 

pattern, pack/unpack methods must be available on both sides of the language boundary. Today we use the UVM 

field macro generated pack/unpack methods in SV, and the UVMC macros for the SC side. If performance issues 

arise in a specific implementation, a shift to using the dedicated UVM pack/unpack macros is implemented. 

A. Streaming Transactions out of SCB 

To allow external resources to receive a transaction stream, we offer interfaces both in SC/C++ and Python. 

These interfaces are mainly intended to be used at run-time, such that external scripts are being evaluated while 

the SV simulation is running, avoiding creating large log files for post-simulation processing.  

For the Python App Socket, the user has to manually implement the pack/unpack methods on the Python side. 

Once done, the user can write Python scripts with analysis ports, where a function is called every time a sequence 

item is received by the SCB. Hence the user can attach extern Python scripts with analysis capabilities not present 

in SystemVerilog – either if too difficult to model – or if existing Python analysis scripts are available. 

Furthermore Python is an easy bridge towards other tools, where run-time streaming of SCB activity is needed. 

B. Streaming Transactions into SCB 

The scoreboard can be used with transaction streams from external resources, e.g. by obtaining logs from 

devices running in the lab (silicon, FPGA, emulators). Depending on the log format, we use either the XML 

 
 

Figure 3. Interfacing to SystemC REF using UVM Connect. 
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Interface or the Python App Socket to retrieve the log transactions as UVM sequence items. In this configuration, 

the SCB will implement an analysis port, for sending the transactions to REF(s) and then compare the device 

simulation log with the REF (figure below). In this configuration, the external model acts as the primary model, 

the M1 REF model is a trailing secondary model. Obviously, the UVM environment is passive and does not run 

any sequences to create stimuli. The preferred configuration is to stream the external device log through the SCB 

external interfaces while the device is running, to avoid post-simulation analysis of large log files.  

 

We have considered connecting the SCB to external physical targets using the SCE-MI standard [4], mainly 

being relevant if the drivers/monitors in the UVM testbench are synthesizable. In this situation, a fast-running 

connection to the UVM scoreboard is rather easy to set up, and interfacing using XML/Python would be less 

required. Exploring this solution is unfortunately out of the scope of this paper. 

IV. IMPLEMENTATION & CONFIGURABILITY 

The SCB implements a generic scoreboard architecture, which is organized in any number of queues. In turn, 

each queue is able to contain items from different producers, indicated by tagging with different meta-data. This 

forms a two-dimensional structure with MxN entries (refer to Figures 1 and 2).  

For configuring the SCB, a configuration class offers with a dedicated API, making it easy to configure the 

number of queues and producers. For populating the SCB with traffic from the DUT and REFs, two different 

APIs can be used to insert items into the queues: 

• Transaction based API: Insertion by using the automatically generated UVM analysis exports. Used 

for the normal UVM use cases. 

• Function based API: Insertion by calling the add_item method. Used if transactions require 

transformation before insertion, e.g. if not extended from uvm_sequence_item, or if hooking up as 

callback. See section V for example. 

Both mechanisms automatically wrap a given uvm_sequence_item with metadata and insert it into the given 

queue. Thus, there can be any relationship between the number of ingoing transaction streams and the number of 

queues and item producers in the scoreboard. It is up to the implementer to choose a meaningful use for the queue 

and item producer concepts, while keeping in mind that all pre-packaged compare methods delivered with the 

SCB architecture aims to comparing all elements of corresponding item producer type across all queues. 

The SCB evaluates the contents of the queues whenever a new item is inserted, using the configured method 

to remove matching entries that satisfies the criteria of the compare method, as well as reporting whenever 

elements in the queues violate the compare rules. The performance of the compare is directly tied to the 

performance of the queue implementation. Thus, only an abstract queue API description is defined along with 

several implementations. See more in the description of the cl_syoscb_queue class below. 

 
 

Figure 4. Scoreboarding XML transaction stream from external device, compare against REF. 
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Models produce transaction flows in different orders. The scoreboard allows specification of the evaluation 

criteria, triggering when a comparison between a set of queues is evaluated. This is done by promoting a specific 

queue to become a primary queue, leaving the secondary queues to be trailing. A time consuming RTL model 

will typically be set as the primary model, whereas a zero-time transactional reference model will be set as a 

secondary queue. Furthermore, evaluation will also be triggered at end-of-simulation to ensure that all queue 

contents are as expected. 

The generic scoreboard architecture is implemented by extending standard UVM base classes. This allows us 

to use the UVM Factory to specialize a scoreboard implementation, e.g. by changing the comparison algorithm 

for a specific test. In the below figure, the UML diagram of the scoreboard UVM classes is shown. Only selected 

classes will be described in the sections below. 

 

• cl_syoscb: The scoreboard itself is an extension of cl_syoscb, in turn an extension of the basic empty 

uvm_scoreboard.  

• cl_syoscb_queue: The class only provides an API for implementing a queue (virtual class) and it does 

not provide the actual implementation. This abstraction allows changing the implementation of how the 

queues are searched. One implementation of cl_syoscb_queue is offered in the cl_syoscb_queue_std 

class, where the queues are not implemented directly as SystemVerilog queues of cl_syoscb_item 

objects. Rather, we employ SystemVerilog associative arrays (hashes) for modeling the queues. The 

hash key is the checksum computed from the string representation of the item. The use of associative 

arrays speeds up searching for specific transactions in the queues, and allows accelerated comparison of 

transaction pairs using the checksums. Ordering information is kept with the metadata as the comparison 

might need this information. In this way, the scoreboard implementation offers a view of the queues 

similar to a SystemVerilog queue, such that the user avoids working with associative arrays and 

checksum keys. Rather, the user can use the provided iterator/locator API to search, traverse and 

compare the queues, with good SCB performance. 

• cl_syoscb_item: The SCB items are not derived directly from uvm_sequence_item since this would 

enforce that all transaction classes in a given testbench would have to be inherited from cl_syoscb_item. 

This would make it difficult to use the SCB in an already existing testbench. To overcome this problem 

and provide easy adoption and integration in e.g. existing testbenches, the OOP Decorator pattern is used 

for linking the meta-transaction (cl_syoscb_item) to the underlying uvm_sequence_item. Before 

sequence items from a VC monitor analysis port are inserted into the queues, the sequence items are 

 
 

Figure 5. UML diagram: Scoreboard Classes. 
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wrapped in a meta-transaction cl_syoscb_item object together with metadata specific for each 

transaction, e.g. the checksum key and the name of the producer. 

• cl_syoscb_compare: The compare method is encapsulated by the cl_syoscb_compare class, utilizing the 

Strategy OOP design pattern. This class instantiates via a factory lookup an instance of the 

cl_syoscb_compare_base class. The cl_syoscb_base class is an abstract class with only virtual methods. 

It provides and enforces an API for compare methods with makes it fairly easy to implement custom 

compare methods. The SCB comes with several “ready to use” compare methods as listed in Table 3. 

The default comparison strategy is in-order by producer (cl_syoscb_compare_io_producer).  

 

Compare Method Description of Compare Algorithm 

Out of Order 

(cl_syoscb_compare_ooo) 

Performs a 1:1 element out of order compare across all queues. Used to check that each secondary 

queue contains same contents as the primary queue, but without any specific ordering restrictions.  

When a matching set is found, elements are removed from the respective queues. 

Error reporting: If a queue grows above a set threshold, or a queue timeout happens. 

In Order 

(cl_syoscb_compare_io) 

Performs a 1:1 element in order compare across all queues. Used to check that each secondary 

queue contains same contents as the primary queue, and that the ordering is exactly the same, also 

regarding the producer types.  

When a matching set is found, elements are removed from the respective queues. This will always 

be the first element of both primary and secondary queues. 

Error reporting: If the first element in a secondary queue is different from the first element in the 

primary queue, disregarding the producer type. Also if a queue threshold/timeout happens. 

In Order by Producer 

(cl_syoscb_compare_io_producer) 

Performs a 1:1 element in order compare across all queues. Used to check that each secondary 

queue contains the same contents in the same order as the primary queue but only within the same 

producer. Thus, this is less strict than the normal in order compare. 

When a matching set is found, elements are removed from the respective queues. This will always 

be the first element of the primary queue. 

Error reporting: If the first element in a secondary queue of a specific producer type is different 

from the first element in the primary queue of the same producer type. Also if a queue 

threshold/timeout happens. 

Table 2: List of prepackaged compare methods 

 

• cl_syoscb_cfg: The SCB utilizes the UVM configuration database such that it can be reconfigured on 

the test case level. This allows changing e.g. the number of queues and compare algorithms. For 

instance, a user extension of cl_syoscb_cfg can be used for this purpose: 

 

If no configuration class is provided a default, one will be created. The example above shows how two 

queues named RTL and M1 are configured (with two producers: A and B). Table 3 below shows the full 

list of configuration options. The options can be set or read by using a standard get/set API. The 

compare method is separately configured by using the UVM factory. 

class cl_scb_myconfig extends cl_syoscb_cfg; 

  function new(string name = "cl_scb_myconfig"); 

    this.set_queues({“RTL”, “M1”}); 

    this.set_primary_queue(“RTL”); 

    this.set_producer(“A”, {“RTL”, “M1”}); 

    this.set_producer(“B”, {“RTL”, “M1”}); 

  endfunction 

endclass 
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Attribute Type Description 

queues string -> cl_syoscb_queue Stores the relationship from queue name to actual queue 

producers string -> string[]  Store the relationship from producer name to the list of queues where 

the producer is present  

primary_queue string Configures the primary queue name. Compare methods use the 

primary queue as trigger for when to execute their algorithm. 

full_scb_dump bit Turns full scoreboard dump on or off. This is also controllable from 

the command line by adding “+uvm_scb_fsd=1” to the command line. 

max_queue_size string -> int unsigned Controls the maximum size of a given individual queue. 

max_full_queue_size string -> int unsigned Specifies the threshold of when a given queue is dumped to file. 

full_scb_type string[] Specifies the type(s) of the full SCB dump. TXT/XML is supported. 

item_timeout_queue string->int unsigned  Set a per queue timeout on items. 

item_timeout_producer string->int unsigned  Set a per producer timeout on items. 

Table 3: List of scoreboard configuration attributes 

 

Once the SCB is properly configured a standard uvm_sequence_item easily can be inserted into the SCB 

without manually managing the meta data. In the example below, the verification environment uses the 

transaction based API to retrieve the subscriber from the SCB and connect it with the analysis port of the 

verification component: 

 

Compare method configuration is done easily by a factory override, e.g. on the test level: 

 

If the compare methods provided by the scoreboard do not fit the required compare scheme, then a custom 

compare can be implemented by extending the cl_syoscb_compare_base class. For easing the implementation, 

each queue has a locator object attached which provides a collection of search algorithms for traversing the 

queues in an elegant and easy manner. Additionally, standard iterator objects are also available for iterating 

through either search results or selected parts of a queue. 

V. FLEXIBILITY 

Access to model state information may be required to compare transaction flows from different models. The 

scoreboard generalizes this, using designated abstract channels, in turn enabling easy exchange of models. This is 

done by only adapting glue code, in order to attach the designated channel to a new model. 

Furthermore, the SCB can also be used in non-UVM environments, e.g. VMM, by utilizing the function based 

API. For instance, a VMM transactor can be implemented which creates a uvm_sequence_item and inserts it into 

the SCB. For this purpose the SCB provides the uvm_sequence_item_vmm which wraps a vmm_data class: 

cl_syoscb_compare_base::set_type_override_by_type( 

                                 cl_syoscb_compare_base::get_type(), 

                                 cl_syoscb_compare_ooo::get_type(), 

                                 "*"); 

cl_scb_uvm scb; 

cl_syoscb_subscriber subscriber; 

… 

subscriber = scb.get_subscriber(“RTL”, “A”); 
myvc.ap.connect(subscriber.analysis_export); 
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VI. DEBUG 

Most scoreboards just echo the difference between the expected and the actual transaction flow. Our 

scoreboard architecture offers mechanisms for understanding the full transaction flow and model context at the 

point of failure. The scoreboard offers two forms of debugging aid: 

Logging: During normal simulations, the scoreboard keeps down the queue sizes by evaluating the 

instantiated compare method. When an error happens, the remaining queue content is written to the simulation 

logs, displaying the “diff” of the queues at the point of failure. With this information, it is difficult to diagnose the 

cause of the error post-simulation, as the output does not contain the full simulation history. By enabling the “full 

scoreboard dump” feature (Table 2) all elements added to the scoreboard queues during the simulation will be 

dumped to a set of files. The dump mechanism dumps to text format or XML format depending on the 

configuration of the scoreboard. Also, XLST transformations can convert the transaction dumped XML into other 

file formats, e.g. GRAPHML XML to produce timed transaction graphs.  

Analysis: Using the APIs described in section III, external verification scripts can get run-time access to the 

transaction streams, aiding the debug process by analyzing the streams and producing higher-order views of the 

traffic. A good example would be to visualize the enumeration process on a PCIe bus system. Analysis scripts can 

be implemented to read the dumped XML file or access the transactions at runtime, exploiting rich data structures 

in external languages. This by far is a better solution than implementing scripts that employ Unix greps or regular 

expressions. 

VII. SUCCESS STORIES 

Our UVM scoreboard architecture has been used across numerous UVM and VMM projects. Typically we 

see such projects obtaining an approximate 15% code reduction compared to creating the scoreboard from scratch 

using the empty uvm_scoreboard class. Scoreboard setup, configuration and validation can be done in less than a 

day, even for complex designs, offering easy ramp-up for engineers new to UVM and the task of scoreboarding. 

Furthermore, experienced engineers easily pick up and extend test benches created using the scoreboard library, 

as the scoreboard look and feel is same across applications and engineers. Out of the box, engineers benefit from 

an inherent high performance scoreboard with very good debug capabilities, prepared for hooking up to external 

interfaces. 

VIII. IMPROVEMENTS 

Since first published, the underlying implementation of the UVM scoreboard has undergone some changes in 

order to improve the usability and tool compatibility with the three big simulator vendors. In general three major 

changes have been done: 

• Changes in the class hierarchy. The structure of the class hierarchy has not been changed but some 

changes to the class names and the inheritance hierarchy has been done. All classes has been renamed 

from cl_scb_uvm_* to cl_syoscb_* to shorten the file/class names a bit. In the first release, almost all 

classes were derived from uvm_component. However, this was not optimal, since then they were a part 

of the UVM phasing framework which is not needed for classes which are purely internal to the UVM 

class xactor extends vmm_xactor; 

    vmm_channel chan; 

    cl_syoscb scb; 

    vmm_data data; 

 uvm_sequence_item_vmm item; 

… 

   chan.get(data); 

      item = new(); 

      item.data = data; 

      scb.add_item(“RTL”, “A”, item);  // queue, producer, sequence item 
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scoreboard. Most classes are now derived from uvm_object (to keep them within the UVM framework 

but outside of the phasing). Only cl_syoscb_compare and cl_syoscb_queue are derived from 

uvm_component since they need to be a part of the phasing, in turn being able to raise objections and/or 

do error reporting. One could argue that UVM lacks a “uvm_datastructure” class which is derived from 

uvm_object and could be used for implementing generic data structures while keeping them within the 

UVM framework. 

• Different methods for enforcing APIs. The previous release used abstract classes (specified with the 

keyword “virtual class” in SystemVerilog) with pure virtual classes in the cl_syoscb_queue and 

cl_syoscb_queue_iterator_base classes. According to the SystemVerilog LRM [5] section 8.21 then it is 

legal to extend a non-abstract class into an abstract class as long as: “An object of an abstract class shall 

not be constructed directly. Its constructor may only be called indirectly”. Thus, enforcing APIs via 

virtual classes with pure virtual functions should work. However, this is not the case due to UVMs 

factory implementation. 

The problem appears when using the UVM macros in a class derived from uvm_object. The macro 

generated code for the <class>::create_instance(…) method will call the constructor directly, deep 

within the UVM factory code. This is legal as long as the class is not an abstract class as explained 

above. In the previous implementation of the UVM scoreboard the cl_syoscb_queue class was exactly 

an abstract class with a constructor which was called directly due to the UVM factory macros. Thus, this 

code was incorrect according to the SystemVerilog LRM. Some of the simulator vendors tools caught 

this at compile time while others did not. Hence, we have now changed the way we enforce APIs to 

avoid using abstract classes and solely use virtual methods which issue a uvm_fatal if not overridden. 

The optimal solution would be to make the UVM factory capable of handling abstract classes, by adding 

an option to the UVM macros explicitly stating that this is an abstract class and should be handled 

differently. Another way of enforcing an API could be to use the newly added SystemVerilog interface 

classes. This solution was not chosen since we wanted a stable implementation with stable simulator 

support. Currently, we are expecting too many simulator problems with this new feature. 

• Minor changes to obtain simulator compatibility. Besides the problem explained above with abstract 

classes only minor things have been changed. In general, a referenced member variable after a method 

call (obj.method().member) is illegal in SystemVerilog but allowed by some simulators. Thus, minor 

changes to avoid these situations have been implemented. The UVM scoreboard has been tested with the 

following version of the VCS® simulator: j-2014.12-1 

IX. GENERAL AVAILABIILITY 

Our UVM Scoreboard architecture has been released for general availability, and can be downloaded from 

following web resources: 

• Accellera UVM Forum 

o http://forums.accellera.org/files/file/119-versatile-uvm-scoreboard/ 

• SyoSil homepage 

o http://syosil.com/index.php?pageid=33 

The release features the UVM Scoreboard base classes, examples, release notes and documentation. 

The scoreboard has been released under the Apache 2.0 license, and can be used freely. Any suggestions for how 

to improve the base classes and examples are very welcome, including potential bug reports. Please direct such 

feedback per email to the authors at 

  scoreboard@syosil.com  
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X. FUTURE EXTENSIONS 

SyoSil is committed to continue the development of the UVM Scoreboard. We currently plan to include the 

following extensions before summer 2015: 

• Additional implementations of compare methods, including examples of how to employ special 

rules taking the contents of the UVM sequence items into consideration. 

• Additional queue implementations, optimized with better locators 

• More configuration “knobs” 

• A general mechanism for communicating side effects from the reference model to the 

scoreboard 

• Richer set of examples, covering non-UVM connectivity 

• Even better debug aiding mechanisms 

• Work with the simulator vendors to correct the bugs found in connection with abstract classes 

and direct invocation of the class constructor 

 

XI. CONCLUSION 

In this work we propose an industry-proven, scalable UVM scoreboard architecture, able to interface to any 

number of design models across languages, methodologies, abstractions and physical form. Any relationship 

between data streams can be checked using pre-packaged and custom compare methods, and we make it easy to 

interface external checker and debug aiding applications. Based on our work, the SV/UVM user ecosystem will 

be able to improve how scoreboards are designed, configured and reused across projects, applications and 

models/architectural levels. 
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