
LZRW1 Encoder Core

Version 1.0

Copyright 2013 Lukas Schrittwieser

Licensed under the terms of the terms of the GNU General Public License version 2, or any later version.

LZRW1 Encoder V1.0 April 5th 2013

Table of Contents
1Introduction..3
2Algorithm...4
3Wishbone Interfaces...5

3.1Slave Interface..5
DataIn Register...6
CfgStat Register..6
InFifoThr Register...7
OutFifoThr Register..7
DmaDest Register...7
DmaLen Register..7
FifoLen Register...7
Command Register..7

3.2Master Interface..8
4Implementation...9

4.1File Overview...9
CompressorTop.vhd..9
inputFifo.vhd...9
LZRWCompressor.vhd...9
hash.vhd..9
histroy.vhd...10
Comparator.vhd...10
outputEncoder.vhd..10
outputFifo.vhd...10

2/11

LZRW1 Encoder V1.0 April 5th 2013

1 Introduction
This IP core allows lossless data compression based on the Lempel-Ziv-Ross-Williamson-1
algorithm [LZRW1]. Its focus is on high throughput (of uncompressed data) at the expense of an
somewhat lower compression ratio. One byte of uncompressed data can be processed at every
second clock cycle. Data compression is achieved by encoding repeating sections of data as
length/offset pairs instead of transmitting the literal itself. To allow a fast recognition of repeating
sections in the stream a hash table is used. This saves the time needed to search an entire buffer
(typically several kBytes) and therefore greatly increases coding speed.

The core is fully pipelined to allow high clock speeds. 66MHz can easily be achieved on a Spartan6
FPGA. This results in a maximum compression throughput of almost 32MBytes/sec. It uses a
Wishbone compliant slave interfaces to receive uncompressed data and configuration information.
A second Wishbone master interface is used by the included DMA unit to directly transfer the
compressed data to RAM or another Wishbone compliant slave.

3/11

LZRW1 Encoder V1.0 April 5th 2013

2 Algorithm
The core uses the LZRW1 algorithm published by Ross Williams. For a detailed description please
see the original document in [LZRW1]. The basic idea is that both, encoder and decoder, keep a part
(4kB in this implementation) of the most recent data which has been en- or decoded. Each byte of
the data-stream is either transmitted directly (a so called literal) or as part of 3 to 16 bytes long copy
item. The copy item is transmitted as offset/length pair. The offset is a pointer into the stream
history. A copy item is transmitted as two bytes (4 bits for length and 12 bits for the offset) and
therefor reduces the total amount of data i.e. compression is achieved. However one additional bit is
needed for each item to identify it as literal or copy item. To simplify decoding on byte oriented PC
systems 8 items are grouped into one frame and all identication bits are grouped into one byte. Note
that the original algorithm designed by Ross Williams groups 16 items into one frame.
Consequently a frame is somewhere between 9 bytes (1 header + 8 literals) and 17 (1 header + 16
copy items) long. As the shortest copy item is three bytes long only 14 out of the 16 possible codes
of the 4 bits long length field are used. The codes 0 and 1 are reserved as control codes. So far only
the code with length=0 and offset=0 is used as end-of-data symbol. It marks the end of an encoded
data stream.

Note that the core implements a slightly modified version of the LZRW1 algorithm to simplify the
implementation in hardware. The difference is that in the core the hash table is update for every new
byte of uncompressed data while in the original algorithm this update is skipped for bytes belonging
to a repeated section. While this yields different compressed data streams for the same
uncompressed data it can still be decompressed correctly.

This is necessary to make the hash table operation independent of the comparator which detects
matches between the new and previous data. As the decoder is place later in the pipeline this
removes a feedback path and therefore allows much faster clock speeds.

4/11

LZRW1 Encoder V1.0 April 5th 2013

3 Wishbone Interfaces
The core implements two separate Wishbone interface for data and control transfer. One of them is
a slave, the other a master. The slave interface allows access to configuration registers and to send
data to the core through the input FIFO. The master interface is used by the included DMA unit to
write compressed data to RAM or to send it to some other kind of slave device.

3.1 Slave Interface

The slave interface's IO lines are listed in the following table.

Name Direction Type

SlCycxSI in std_logic;

SlStbxSI in std_logic;

SlWexSI in std_logic;

SlSelxDI in std_logic_vector(3 downto 0);

SlAdrxDI in std_logic_vector(4 downto 2);

SlDatxDI in std_logic_vector(31 downto 0);

SlDatxDO out std_logic_vector(31 downto 0);

SlAckxSO out std_logic;

SlErrxSO out std_logic;

IntxSO out std_logic;

In the table above all but the last signal belong to the Wishbone interface. The last one (IntxSO) is
the core interrupt request line. It is high when the condition set by the interrupt configuration
register (see below) is fulfilled. Note that the interface supports 32bit access only. Any access where
SlSelxDI is not equal to “1111” will be terminated by the error signal (SlErrxSO).

The following table list all registers which can be accessed through the Wishbone slave interface.
All registers are 32 bits wide and can be read and written unless noted otherwise.

Name SlAdrxDI Num. Adr Description

DataIn “000” 0 Data input into input FIFO which will be compressed. (write
only)

CfgStat “001” 4 Configuration and status register

InFifoThr “010” 8 Input FIFO interrupt thresholds

OutFifoThr “011” 12 Output FIFO interrupt thresholds

DmaDest “100” 16 DMA destination address

DmaLen “101” 20 Max DMA transfer length in bytes

FifoLen “110” 24 Number of Bytes in Input and Output FIFOs (read only)

Command “111” 28 Command register (write only)

5/11

LZRW1 Encoder V1.0 April 5th 2013

DataIn Register

Data written to this register will be transfered to the input FIFO and in turn be compressed. The
byte written to the core at SlDatxDI(7 downto 0) is written to the FIFO first, the byte on
SlDatxDI(31 downto 24) last. This is commonly referred to as little endian encoding.

Reading the register retuns x”00000000”.

CfgStat Register

This is the cores central configuration and status register. Unused bits will be read as zero and must
be written as zero. Writing the register will clear the status flags in bits 24..29. However the FIFO
full and empty flags might be set again if the condition is still met.

Bit # Name R/W Description

0..2 unused

3 DmaBusy R '1' indicates that the DMA unit is busy (ie DmaLen is not zero)

4..7 unused

8 IncDestAdr R/W If set, DMA unit will write to successively increasing addresses.

9..15 unused

16 IEInFifoEmpty R/W Enable input FIFO empty interrupt

17 IEInFifoFull R/W Enable input FIFO full interrupt

18 IEOutFifoEmpty R/W Enable output FIFO emtpy interrupt

19 IEOutFifoFull R/W Enable output FIFO full interrupt

20 IEDmaErr R/W Enable DMA error interrupt

21 IECoreDone R/W Enable core done interrupt

22..23 unused

24 InFifoEmtpy R Input FIFO empty interrupt flag

25 InFifoFull R Input FIFO full interrupt flag

26 OutFifoEmpty R Output FIFO empty interrupt flag

27 OutFifoFull R Output FIFO full interrupt flag

28 DmaErr R DMA Error Flag (set when DMA transfer is terminated by Err
signal)

29 CoreDone R Set when all data has been compressed (after FLUSH command was
sent)

30..31 unused

6/11

LZRW1 Encoder V1.0 April 5th 2013

InFifoThr Register

This register configures the full (bits 31..16) and empty (bits 15..0) interrupt thresholds for the input
FIFO. When the number of bytes in the input FIFO is below the empty threshold or is greater or
equal the full threshold the InFifoEmpty or InFifoFull flags are set. Writing this register clears both
flags.

OutFifoThr Register

This register configures the full (bits 31..16) and empty (bits 15..0) interrupt thresholds for the
output FIFO. When the number of bytes in the output FIFO is below the empty threshold or is
greater or equal the full threshold the OutFifoEmpty or OutFifoFull flags are set. Writing this
register clears both flags.

DmaDest Register

This register sets the destination address at which the DMA unit will write the compressed data.
Note that this register can only be written when the DmaLen register zero (ie the DmaBusy bit in
the CfgStat register is zero). If the DmaLen register is not zero any write to destination register will
be ignored. However the register can be read at any time.

Note that the value of this register increases with every DMA transfer if and only if the IncDestAdr
flag in the CfgStat register is set. The register is incremented when the data transfer has been
acknowledged by a slave device connected to the Wishbone master interface.

DmaLen Register

This register counts the number of bytes which can be transfered by the DMA unit at max. It is
normally set to max buffer length when the DMA controller is configured. Whenever a byte is
transfered from the output FIFO to the Wishbone controller this register is decremented by one.
Once the register reaches zero no new Wishbone transfers will be initiated. The DMA unit can be
stopped at any time by writing this register to zero.

FifoLen Register

This read only register allows to read the number of bytes current stored in the ouput (bits 31..16)
and input (bits 15..0) FIFOs.

Command Register

Writing this register triggers special commands listed in the following table. All values not defined
in the table are reserved for further use and must not be written.

Name Value Description

RESET x”00000001” Reset the compressor core, the DMA unit and the FIFOs. Any data
stored in the core or the FIFO is discarded. If a DMA Wishbone
transfer is currently in progress it is aborted immediately. Note that
the configuration registers will not be modified by this command.
Right after writing the RESET command to the command register new
data can be written to the data input register.

7/11

LZRW1 Encoder V1.0 April 5th 2013

FLUSH x”00000002” This command sets an internal flag which blocks any further data
from be written to the input FIFO. Subsequent writes to the data input
register will be ignored. When the input FIFO in turn is empty the
core will be flushed causing all internal buffers to be emptied. Once
the last byte has been encoded the an end-of-data symbol will be
created by the core. Finally the CoreDone flag in the CfgStat register
is set to indicated that the compression process has been finished and
all data has been transfered to the output FIFO. This will generate an
interrupt request if the IECoreDone flag is set in the CfgStat register.
Once this command has been executed no new data can be
compressed until the RESET command is used to re-initiate the core.

3.2 Master Interface

The master interface is used by the DMA unit to write the stream of compressed data to configured
destination address. The signals follow the Wishbone specification but use a slightly different
naming convention. Note that if cycle is terminated by the error signal (MaErrxSI) the DMA unit
will reset the DmaLen register to zero and the DmaErr flag in the CfgStat register is set. The
DmaErr flag is cleared when the CfgStat register is written.

Name Direction Type

MaCycxSO out std_logic;

MaStbxSO out std_logic;

MaWexSO out std_logic;

MaSelxDO out std_logic_vector(3 downto 0);

MaAdrxDO out std_logic_vector(31 downto 0);

MaDatxDO out std_logic_vector(31 downto 0);

MaDatxDI in std_logic_vector(31 downto 0);

MaAckxSI in std_logic;

MaErrxSI in std_logic

8/11

LZRW1 Encoder V1.0 April 5th 2013

4 Implementation
The entire core and its test benches are implemented in VHDL. All names (for entities, signals,...)
follow the standard published in [DZ-Naming]. The block diagram can be seen in Drawing 1.

4.1 File Overview

The following sections give a brief introduction to what is done in the individual files. For details
please refer directly to the fully commented source code.

CompressorTop.vhd

This is the top level file. It implements the two Wishbone interfaces, one slave for configuration and
data input, and one master for the DMA unit. Further it implements all configuration and status
logic and the DMA unit.

inputFifo.vhd

Using a 2kB Xilinx Block RAM (BRAM) this file implements a 4Byte-In-1Byte-Out FIFO. It
receives data from the top level file and automatically transfers it to the core when it is ready to
accept new data.

LZRWCompressor.vhd

The main pipeline executing the actual data compression is implement in this file. It uses several
sub blocks to perform the specific tasks and keeps track of pipeline control. Further it implements
the look ahead buffer used by the algorithm and some glue logic necessary to connect the blocks.

hash.vhd

This file implements the hash table which serves as central index for the recognition of repeated

9/11

Drawing 1: Block Diagram

LZRW1 Encoder V1.0 April 5th 2013

strings. The incoming, three bytes wide, key is hashed using the hash function given in the original
algorithm. Two 2kB Xilinx Block RAMs are used to store the table.

histroy.vhd

The history buffer is simple 4kBytes long, byte oriented, FIFO buffer. It uses two 2kB Xilinx Block
RAMs.

Comparator.vhd

Once a candidate has been loaded from the history buffer this unit compares it to the current
lookahead buffer and determines how many bytes match. This length is presented on an output for
further processing.

outputEncoder.vhd

This file encodes the literals and copy items into frames of eight items each. Once a frame is
finished it is prepended with an header and emitted in serialized form.

outputFifo.vhd

The output FIFO buffer receives compressed data byte by byte from outputEncoder and stores it a
Xilinx Block RAM. It is retrieve from the FIFO by the DMA controller.

10/11

LZRW1 Encoder V1.0 April 5th 2013

Bibliography
LZRW1: Ross N. Williams, An Extremely Fast ZIV-LempelData Compression Algorithm, 1991
DZ-Naming: , VHDL Naming Conventions, , http://dz.ee.ethz.ch/en/information/hdl-help/vhdl-
naming-conventions.html

11/11

	1 Introduction
	2 Algorithm
	3 Wishbone Interfaces
	3.1 Slave Interface
	DataIn Register
	CfgStat Register
	InFifoThr Register
	OutFifoThr Register
	DmaDest Register
	DmaLen Register
	FifoLen Register
	Command Register

	3.2 Master Interface

	4 Implementation
	4.1 File Overview
	CompressorTop.vhd
	inputFifo.vhd
	LZRWCompressor.vhd
	hash.vhd
	histroy.vhd
	Comparator.vhd
	outputEncoder.vhd
	outputFifo.vhd

