
M32632 V3 Architecture

Udo Möller25.11.2018 1

Architecture of
M32632 V3

M32632 V3 Architecture

Udo Möller25.11.2018 2

Content

Introduction

Top Level

Global Control

Data Path

Caches

Timing

Ressources

Final Remark

3

4

5

9

13

18

22

23

M32632 V3 Architecture

Udo Möller25.11.2018 3

Introduction
The M32632 is an implementation of the Series 32000 architecture of National
Semiconductor. It is 100% software compatible to the NS32532 CPU and NS32381
FPU. The implementation is written in Verilog.

The M32632 is a very powerful 32-bit microprocessor. It features a rich instruction
set with datatypes ranging fom bits to strings, a memory management unit which
supports demand-paging virtual memory and a floating point unit for single and
double precision operands supporting basic arithmetic operations.

This manual gives an overview of the internal structure and the principal operation
of the M32632.

The target application for this processor was a software MP3 decoder. The
NS32532 CPU together with the NS32381 FPU running at 25 MHz was 10 times
too slow to decode MP3 in real-time. The M32632 V2 achieved 50 MHz in a cheap
Cyclone IV -6 FPGA. This clock speed was sufficient to decode MP3 in real-time.

The third version of the M32632 improves the cache interface to an external DRAM.

The figure on the next page shows the top level of M32632.

M32632 V3 Architecture

Udo Möller25.11.2018 4

Top Level

Instruction Cache
Module: ICACHE
File: ICACHE.v

Data Cache
Module: DCACHE
File: DCACHE.v

Global Control
Module: STEUERUNG
File: STEUERUNG.v

Data Path
Module: DATENPFAD
File: DATENPFAD.v

General Purpose IF
Module: IO_SWITCH

File: TOP_MISC.v

C
op

ro
ce

ss
or

 In
te

rfa
ce

DRAM Interface

DRAM Interface

G
en

er
al

 P
ur

po
se

 IF

Statistic Signals
Module: MAKE_STAT

File: TOP_MISC.v

M32632 CPU
Module: M32632
File: M32632.v

The figure below shows the structure of the top level. The CPU
logic is divided into 4 big and 2 small modules.

M32632 V3 Architecture

Udo Möller25.11.2018 5

Global Control

Instruction Register
Module: OPDEC_REG
File: STEUER_MISC.v

Instruction decoding & Flow control
Module: DECODER
File: DECODER.v

Program Counters
Module: PROG_COUNTER

File: STEUER_MISC.v

Illegal & Undefined Ops.
Module: ILL_UNDEF

File: STEUER_MISC.v

Group 2 Opcodes
Module: GRUPPE_2

File: STEUER_MISC.v

Datapath

In
st

ru
ct

io
n

C
ac

he

Datapath

(~150 Sig.)

The figure below shows the structure of the global control.
It contains the biggest module (in terms of design effort) of the
design, the DECODER. 3 small modules add support functions.

M32632 V3 Architecture

Udo Möller25.11.2018 6

Global Control

The three most important elements of STEUERUNG are the architecture program
counter PC_ARCHI inside the module PROG_COUNTER, the register OPREG in the
module OPDEC_REG and the register phase_reg in the module DECODER.
PC_ARCHI is the program counter (PC) which holds the address of the first byte of an
instruction. In the Series 32000 architecture the PC is used for the addressing mode
PC relative. For branches the PC is used to calculate the target address. There are two
more program counters inside the module PROG_COUNTER. pc_adduse is advancing
in small steps. A step is an opcode (1..3 bytes), an index operand (1..2 bytes), an
immediate value (1..4 bytes) or a displacement (1..4 bytes). Therefore pc_adduse
points to every part of an instruction. The third program counter is PC_ICACHE. It is
used for accessing the instruction cache and advances in steps of 4 bytes until it is
updated to a new location by a jump.
The register OPREG in the module OPDEC_REG holds the data from the instruction
cache for decoding by the module DECODER. It is 7 bytes wide and can be updated
every clock cycle. The data to decode is located starting at byte 0. The lenght depends
on the kind of information to evaluate. For example instruction definitions can be 1, 2 or
3 bytes long. The instruction cache always fill the OPREG with 4 bytes until there is no
space available. On the next page the operation of OPREG is visualized.
The register phase_reg in the module DECODER is the state register of M32632. It is 8
bits wide. Sequences of states are defined for all instructions. Similar instructions have
the same sequence. For example the instructions for add (ADD) and subtract (SUB)
differ only in the data operation. State 0 is the opcode decoding state of any instruction.

M32632 V3 Architecture

Udo Möller25.11.2018 7

Operation of OPREG :

LPRD SP,1234

1. Cycle

RESET

Immediate value = 1234

MOVD R0,R1

2. Cycle

3. Cycle

4. Cycle

Length 7 Bytes
Valid Count

4 Byte from Instruction Cache

LSB MSB

1 2

0

4

4

6

6

32 0 1 2 3

2 3 0 1 2 3

0 1 2 3

0 1 2 3 4 5 6

no space for 4B from Inst. Cache !

„X“ „X“ „X“ „X“ „X“ „X“ „X“

Opcode

0 3

Opcode

next 4B from Instruction Cache

Global Control

M32632 V3 Architecture

Udo Möller25.11.2018 8

Normally the phase_reg steps from one instruction to the next instruction. The only
exception is a trap. Traps are special events in the Series 32000 architecture. They can
happen at any time. For example the instructions for division (i.e. DIVi,DIVf etc.) can be
trapped if the source 1 operand is zero. Other traps are interrupts or aborts of the
memory management unit.
Most of the instructions have a regular work flow. They read one or two operands, do
something and store one result. The instructions with an individual work flow are
evaluated in the module GRUPPE_2.

Global Control

M32632 V3 Architecture

Udo Möller25.11.2018 9

Data Path

Register Set 2
Module: REGISTER
File: REGISTERS.v

Register Set 1
Module: REGISTER
File: REGISTERS.v

Immediate Data
Memory Data

S
ou

rc
e

1

S
ou

rc
e

2

The figure below shows the data path structure. Only the data
connections are indicated. Every arrow is a 32 bit wide bus.

Data

Address

(D
es

tin
at

io
n)

R
es

ul
t

D
C

A
C

H
E

D
C

A
C

H
E

 ,
D

E
C

O
D

E
R

Integer Data Path
Module: I_PFAD
File: I_PFAD.v

Single Precision FP Unit
Module: SP_FPU
File: SP_FPU.v

Long Operations Data P.
Module: DP_FPU
File: DP_FPU.v

Address Generator
Module: ADDR_UNIT
File: ADDR_UNIT.v

FP Status Register
Module: FP_STAT_REG

File: REGISTERS.v

Configuration & Debug
Module: CONFIG

File: REGISTERS.v

M32632 V3 Architecture

Udo Möller25.11.2018 10

Data Path

The module DATENPFAD is the place where new data is generated. Different modules
are used for different data types. The module I_PFAD generates integer and bits in one
clock cycle. It is also doing string operations. The module SP_FPU generates single
precision results within two clock cycles. The module DP_FPU is responsible for double
precision results, binay coded decimals (BCD) results and all variants of division. All
operations of the DP_FPU require multiple clock cycles to finish. Therefore the data
path of the coprocessor interface is located also in this module.
For high speed operation it is necessary to get two operands in one clock cycle. It is
also best to write one result in each clock cycle. Memory blocks of FPGAs support one
read and one write simultanously. Therefore two memory blocks with the same content
are working in parallel to get two reads and one write in one clock cycle (modules
REGISTER). The result of an operation is written in each memory block.
The memory block of REGISTER is organized in 64 words of 32 bits. For 64-bit double
precision operands the memory block must be read or written twice. The figure on the
next page shows the mapping of the Series 32000 registers to the memory block.
The module ADDR_UNIT generates the addresses for operands in memory. If an
operand is not stored on an aligned address, the module generates the sequence of
addresses. The addresses are used in the data cache. The response from the data
cache can either be access ok (signal ACC_STAT[0]) or access error (signals
ACC_STAT[1] or ACC_STAT[3]).

M32632 V3 Architecture

Udo Möller25.11.2018 11

The Stackpointers
exist twice !

R0 R1 R2 R3
R4 R5 R6 R7

MCR MSR TEAR
PTB0 PTB1 IVAR0 IVAR1
UPSR DCR BPC DSR
CAR FSR
FP SP[0] SB USP[0]

CFG PSR INTBASE MOD
F0:L / F0:F & F1:F F1:L
F2:L / F2:F & F3:F F3:L
F4:L / F4:F & F5:F F5:L
F6:L / F6:F & F7:F F7:L

SP[1] USP[1]
TEMP_L TEMP_H TEMP_1 TEMP_2

x'0
x'4
x'8
x'C
x'10
x'14
x'18
x'1C
x'20
x'24
x'28
x'2C
x'30
x'34
x'38
x'3C

+0 +1 +2 +3

Empty fields can be
used as temporary
registers.

Used by opcode CINV

CPU

MMU

CPU
Exception x'17 = FSR

FPU

Register File

Data Path

M32632 V3 Architecture

Udo Möller25.11.2018 12

Access errors can only happen if virtual addresses are used. In case of an error the
ADDR_UNIT stops the access and informs the DECODER that an abort had occured.
The Series 32000 architecture implements two stack pointers (SP). One is for user
programs, the other is for programs in supervisor mode. The M32632 doubles each
stack pointer. This is done because every instruction is restartable in case of an MMU
abort. For exampe the instruction MOVD R0,TOS moves the content of register R0 to
the stack. The stack pointer is decremented before the write operation. In case of an
abort during the write operation the modified stack pointer has to be restored. This is
the purpose of the second register for the same stack pointer which always store the
old content of the SP.
The signal OPCODE inside DATENPFAD shows which operation is executed. The
signal is 8 bits wide. It is build from the instruction table of Series 32000 architecture.
For example the instruction MOVi (i = integer) is a format 4 instruction with a subcode
of 5. The result for OPCODE is 8'h45.
Other important signals are BWD[1:0] = size of integers and FL = size of FP operands.
Together with OPCODE they are transferred from the DECODER as the signal OPER.

Data Path

M32632 V3 Architecture

Udo Möller25.11.2018 13

Caches
Caches are essential to achieve high speed operation. Separate caches for instructions
and data speeds up even further.
The M32632 implements instruction and data caches with a size of 8 Kbytes each.
They are 2 way-associativ, physically indexed and have a line size of 16 bytes. Each
cache delivers 4 bytes each clock cycle.
Both caches are not identical. The main difference is that the data cache can be written
from the data path. The write policy of the data cache is „write through“. If a write
occurs the external memory is updated instantly. Another important difference is that
the instruction cache contains a second set of tag memories. The second set is used
for detection of address collisions between the instruction cache and data writes. If a
write occurs it is possible that the address written has been used for storing instructions
in the past. Therefore the write invalidates the old content and the collision indicates to
the instruction cache that the entry has to be marked invalid.
Two sets are used in parallel for fetching of instructions and detection of collisions. This
is necessary because a write operation can happen at any time.
M32632 V3 has a 128 bits wide databus from the DRAM to the caches to support
DRAMs with high bandwidth. For a better timing all cache writes are now done on the
rising edge.
On the next two pages the components of the caches are listed.

M32632 V3 Architecture

Udo Möller25.11.2018 14

Data Cache

Modules:
DCACHE_SM
DCA_CONTROL
CA_MATCH
MMU_MATCH
MMU_UP
DEBUG_AE
FILTCMP
NEU_VALID
WRPORT

File: CACHE_LOGIC.v

Data Cache LogicData Cache Memories

Type : Words * Bits
Data Set 0 : 1024 * 32
Data Set 1 : 1024 * 32
Tag Set Data 0 : 256 * 16
Tag Set Data 1 : 256 * 16
Data Valid : 32 * 24
MMU Tag Set : 256 * 36
MMU Valid : 16 * 32

Caches

Modules:
RD_ALIGNER
WR_ALIGNER

File: ALIGNER.v

M32632 V3 Architecture

Udo Möller25.11.2018 15

Caches

Instruction Cache

Modules:
DCA_CONTROL
CA_MATCH
MMU_MATCH
MMU_UP
FILTCMP

File: CACHE_LOGIC.v

Modules:
ICACHE_SM
KOLDETECT
DMUX

File: ICACHE_SM.v

Instruction Cache LogicInstruction Cache Memories

Type : Words * Bits
Data Set 0 : 1024 * 32
Data Set 1 : 1024 * 32
Tag Set Data 0 : 256 * 16
Tag Set Data 1 : 256 * 16
Data Valid : 32 * 24
MMU Tag Set : 256 * 36
MMU Valid : 16 * 32
Collision Tag Set Data 0 :

256 * 16
Collision Tag Set Data 1 :

256 * 16
Collision Data Valid :

32 * 24

M32632 V3 Architecture

Udo Möller25.11.2018 16

Both caches can only be feeded from the DRAM interface. Each cache reads a stream
of 16 bytes (the line size) from the DRAM. The speed between the M32632 and the
DRAM can be different and the caches serve as the bridge. The general purpose
interface is limited to M32632 clock speed and can therefore not be used for bridgeing.
Both caches contain the memory and the logic for address translation to support virtual
memory. The translation schema used in the M32632 is paging (another way is
segmentation). The page size is 4096 bytes. The memory used in the cache for
address translation is called „translation look-aside buffer“ (TLB). It has 256 entries. If a
miss occurs during address translation the page table stored in DRAM is accessed by
an operation called „page table walk“. This is done in hardware.
Only the data cache can do a page table walk. If the instruction cache needs a page
table walk it signals a request to the data cache (signal IC_PREQ). The reason behind
this strategy is that both caches work independent in general. But in virtual memory
mode both caches update the page table stored in DRAM. To avoid any misseting of
the page table only one access at a time is allowed.
The frequency of page table accesses is low compared to any other operation. The
statistic port has two signals, one for instruction and one for data, to count these
events.
The module CACHE_SM inside the data cache is responsible for the page table walk.
Any page table access of CACHE_SM targets the DRAM interface.
The figure on the next page shows the address and data paths of both caches.

Caches

M32632 V3 Architecture

Udo Möller25.11.2018 17

Use of addresses in cache : VA = virtual address , RA = real address

VA[11..2]

2 * 256 * 16 B

VA[11..4]

2 * 256 Entries

VA[19..12]

256 Entries

VA[31..20]
= ?

Tag = VA

RA[31..12]

RA[31..12]

= ?
= ?(16B)

(4kB)

Data
Path

Tag = RA

RA[31..12]

S
R

AM
A

dd
r./

Ta
g

S
R

AM
Ta

g

SRAM
Data

MMU_HIT

CA_HIT

CA_HIT

4 Byte

C
on

tro
l L

og
icAddress

Path

Select

Data Set 0
Data Set 1(4B)

(1MB)

Caches
A

D
D

R
_U

N
IT

M32632 V3 Architecture

Udo Möller25.11.2018 18

0

Instruction Cache

Opcode Decoder

Data Path

Clock

Phase 0 0

Fetch 1

Decode 1

Execute 1 Execute 2 Execute 3

Fetch 2 Fetch 3

Decode 2 Decode 3

Timing

The M32632 has a three stage pipeline. The first stage is instruction fetching from the
instruction cache. The second stage is instruction decoding in the module DECODER.
Finally the instruction is executed in the module DATENPFAD.
All three stages work in parallel. The figure below shows a sequence of three
instructions running through the pipeline. The throughput in this case is one instruction
per clock cycle. But this sequence is only possible if the instructions have their
operands either in internal registers or use short immediate constants.

M32632 V3 Architecture

Udo Möller25.11.2018 19

Timing

0 0

Decode

ADDB

Decode

Address Unit

Opcode Decoder

Data Path

Clock

Phase

Data Cache (DC)

calc.4(SB) Wait DC

Read

Disp. = 4

7 8'h27

Disp. = 5

calc.5(SB)

Write

Wait DC

3 clock cycles

If one operand is in memory throughput goes down to one instruction per 3 clock
cycles. But this is true only for a cache hit.
The figure below shows the internal operations if the data cache is read or written. The
first instruction (blue) is for example an „ADDB 4(SB),R0“. It reads a byte from the
address in the register „Static Base“ (SB) offset by 4 bytes and adds the byte to
register 0. The next instruction (yellow) is for example „NEGB R0,5(SB)“. It reads the
byte from register 0, negates it and stores the result at address 5(SB).

3 clock cycles

NEGB

idle idle

M32632 V3 Architecture

Udo Möller25.11.2018 20

Timing

If the operand in memory is of type read-modify-write (rmw) the instruction will need a
minumum of 5 clock cycles. The figure below shows the internal operations for this
case. For example the instruction „SUBD R1,8(SB)“ subtracts the double-word content
of register 1 from the memory at address 8(SB). The address unit simply reuses the
calculated address from the read access for the write access.

0

Decode

SUBD

calc.8(SB) Wait DC

Read

Disp. = 8

7 8'h27

reuse

Write

Wait DC

5 clock cycles

Address Unit

Opcode Decoder

Data Path

Clock

Phase

Data Cache (DC)

idle

M32632 V3 Architecture

Udo Möller25.11.2018 21

If the data cache is accessed the module DECODER is not active every clock cycle (=
idle). The reason for this not ideal behaviour is the virtual memory support. If the cache
detects an abort the state of M32632 is reset to the beginning of the instruction. The
task of reseting is simplified if the DECODER is waiting for the data cache finishing the
current access.
If an operand of type „rmw“ is accessed the cache checks during the read access
whether a write access is allowed. If this is not true the read access is already aborted.
This early abort prevents changing the content of the „processor status register“ (PSR)
by the operation.
The limiting timing path of the M32632 is the detection of an overflow during a single
precision FP operation. An overflow occurs if a result is too big to be represented in the
desired format. In this case the instruction is aborted and the result must not be written
either to register nor to memory. For the register write the signal DOWR in the module
DATENPFAD must be suppressed. The combinatorial path to achieve this is the
longest path in the design.
Since version 2 the single precision floating-point operation needs 2 clock cylces. This
allows a higher clock speed for the whole M32632.

Timing

M32632 V3 Architecture

Udo Möller25.11.2018 22

Ressources
The table below shows the usage of ressources for the modules
of M32632. The FPGA used is a Cyclone V GX from Altera.

M32632 V3 Architecture

Udo Möller25.11.2018 23

Final Remark
One of the last sentences in the „Final Remark“ of the first version of this document
said
„The version 1.0 of M32632 is to my knowledge free of errors.“
This was pretty optimistic. Every new system showed new bugs. One bug became a
feature. The NS32016 is able to multiply and divide an odd numbered register pair. This
is not specified but it was used in the Acorn 32016 Second Processor. I had to
implement this functionality also in the M32632 to be able to run the BBC software.
M32632 V2 delivered a higher clock speed. 50 MHz compared to 35 MHz was a big
improvement. The drawback is that two clock cycles are needed for single precision
floating-point operations.
M32632 V3 improves the cache interface for newer high bandwidth DRAMs. In addition
it fixes some bugs.

