Memorandum
To:
Engineering Notebook
From:
Michael A. Morris,
Subject:
M65C02 Design Description
Date:
8/26/2013
CC:

Introduction
This memorandum describes the implementation of a synthesizable implementation of the Western Design Center (WDC) W65C02 microprocessor instruction set architecture. The objective is to develop a fast synthesizable implementation of the W65C02 instruction set architecture using a microprogrammed implementation rather than a hardwired implementation. The M65C02 is intended to emulate the instruction set of the W65C02, but it is not intended as a cycle accurate emulation of the W65C02. That is, the M65C02 will not emulate the number of instruction cycles of the W65C02. The M65C02 will instead use additional resources, such as additional program counter and stack pointer adders/incrementers, and overlapped instruction fetch and execution to reduce the number of clock cycles required to execute instruction. The implementation of the M65C02 described in the memorandum will not use multi-port memory, or wider internal and external busses to improve operand fetch performance.
Background

In the late 1970s and early 1980s, several Apple Corporation Apple ][-series computers utilized the MOS Technology MOS6502 microprocessor, which was fabricated in an NMOS process. WDC and Rockwell produced CMOS variants of the original MOS6502. If employed in an Apple ][ computer, the enhancements of the WDC W65C02 or the Rockwell R65C02 microprocessors were unused by the software in order to maintain backward compatibility with its computers employing the MOS6502.
The basic architecture of the MOS6502 (and W65C02) microprocessor is similar to the register poor architecture of the Motorola MC6800. (Note: many of MC6800 design team left Motorola to join MOS Technology to implement the MOS6502, and one, William D. Mensch, Jr., left MOS Technology after its purchase by Commodore Semiconductor Group to found WDC to design and implement the W65C02.). The 6502’s 8-bit architecture is built around just five 8-bit programmer-visible registers: an 8-bit accumulator (A), two 8-bit index registers (X, and Y), an 8-bit stack pointer (S), and an 8-bit Processor Status Word (P) (with only six registered status and control flags). The processor also provides a 16-bit Program Counter (PC) which allows direct addressing of a maximum of 65,536 of 8-bit memory or memory-mapped I/O locations. (The small number of registers is generally given as the reason for the 6502 microprocessor’s lower interrupt response latency compared to the interrupt response latency of register-rich contemporary microprocessors such as the Intel 8080/8085.)
The base architecture supported a large number of addressing modes with the base set consisting of 14 (or 15) addressing modes. The WDC W65C02 differs from the MOS6502 in that two (2) new addressing modes and eight (8) new instructions were added. These additions make the instruction set more regular and address the MOS6502’s deficiencies with respect to bit manipulation. Rockwell provided four additional bit-oriented instructions (beyond those added by WDC) in its enhanced version of the W65C02, the R65C02. Several other vendors also provided enhanced versions of the W65C02 as well, but given the limits in the number of unused opcodes, these enhanced processors were not fully compatible with the W65C02.
Compared to its competitors, the MOS6502/65C02 processors provided a small and simple processor core (approximately 3500 active transistors were used in the NMOS MOS6502’s implementation) which allowed the use of lower clock rates to deliver the same performance. Compared to a 4 MHz Intel 8080/8085 or a Zilog Z80A, a 1 MHz 6502 delivered the same or better performance. This feature gave the 6502 a noteworthy cost and power advantage over many of its competitors. In addition, the introductory chip price of the MOS6502 was about a tenth of that of its primary competitors: Intel 8080/8085, Zilog Z80A, and the Motorola MC6800. These advantages led to this architecture’s initial dominance in personal computers in the late 70s and early 80s. (Amazingly, long after the 6502 faded from the personal computer (PC) market, the WDC W65C02 continues to be a major player in the embedded market. It is licensed by WDC to several OEMs, and the architecture continues to be included in many kinds of embedded systems such that several billion W65C02s, or variants thereof, have been shipped to date. Reportedly, several hundred million 6502 derivatives are shipped each year.)
M65C02 Soft-Core Microprocessor

Instruction Set

The 68 instructions of the M65C02 soft-core are shown in Table 1. The enhanced instructions are in bold, W65C02 instructions in red, and R65C02 instructions blue. Included in the table is a column which indicates which PSW flags are affected by each instruction. (Note: bit 5 of the PSW is permanently set to logic 1. Bit 4 of the PSW is known as the Break flag (B). It is set when the PSW is pushed onto the stack during a BRK instruction trap, and by the Push PSW (PHP) instruction. Thus, if the PSW is pushed on the stack because the processor accepts a Non-Maskable Interrupt (NMI) or a maskable Interrupt ReQuest (IRQ) trap, then bit 4 of the PSW pushed on the stack will not be set, and can be used to distinguish the source of the IRQ trap: BRK or IRQ.)
Table 1: M65C02 Instruction Set.

	Mnemonic
	Description
	Operation Performed
	PSW Flags

	NOP
	No Operation
	PC <= PC + 1
	--10----

	ADC
	Add Memory to Accumulator with Carry
	A <= A + M + C
	NV10--ZC

	SBC
	Subtract Memory from Accumulator with Carry
	A <= A + ~M + C
	NV10--ZC

	ORA
	OR Accumulator with Memory
	A <= A | M
	N-10--Z-

	AND
	AND Accumulator with Memory
	A <= A & M
	N-10--Z-

	EOR
	Exclusive OR Accumulator
	A <= A ^ M
	N-10--Z-

	CMP
	Compare Accumulator with Memory
	A – M
	N-10--ZC

	STA
	Store Accumulator in Memory
	M <= A
	--10----

	LDA
	Load Accumulator from Memory
	A <= M
	N-10--Z-

	INC
	Increment (Memory/Accumulator)
	M/A <= {M | A} + 1
	N-10--Z-

	DEC
	Decrement (Memory/Accumulator)
	M/A <= {M | A} – 1
	N-10--Z-

	ASL
	Arithmetic Shift Left (Memory/Accumulator)
	{M | A} <= {{M[6:0] | A[6:0]}, 0}

C <= {M[7] | A[7]}
	N-10--ZC

	LSR
	Logical Shift Right (Memory/Accumulator)
	{M | A} <= {0, {M[7:1] | A[7:1]})

C <= {M[0] | A[0]}
	N-10--ZC

	ROL
	Rotate Left (Memory/Accumulator)
	{M | A} <= {{M[6:0] | A[6:0]}, C}

C <= {M[7] | A[7]}
	N-10--ZC

	ROR
	Rotate Right (Memory/Accumulator)
	{M | A} <= {C, {M[7:1] | A[7:1]})

C <= {M[0] | A[0]}
	N-10--ZC

	CPX
	Compare X with Memory
	X – M
	N-10--ZC

	CPY
	Compare Y with Memory
	Y – M
	N-10--ZC

	INX
	Increment X
	X <= X + 1
	N-10--Z-

	INY
	Increment Y
	Y <= Y + 1
	N-10--Z-

	DEX
	Decrement X
	X <= X – 1
	N-10--Z-

	DEY
	Decrement Y
	Y <= Y – 1
	N-10--Z-

	STX
	Store X to Memory
	M <= X
	--10----

	LDX
	Load X from Memory
	X <= M
	N-10--Z-

	STY
	Store Y to Memory
	M <= Y
	--10----

	LDY
	Load Y from Memory
	Y <= M
	N-10--Z-

	STZ
	Store Zero to Memory (Clear Memory)
	M <= 0
	--10----

	BIT
	Test Memory Bits with Accumulator Mask
	Z <= ~|(M & A); {N,V} <= M[7:6]

Z <= ~|(imm & A);
	NV10--Z-

--10--Z-

	TRB
	Test/Reset Memory Bits with Accumulator Mask
	M <= M & ~A

Z <= ~|(M & A)
	--10--Z-

	TSB
	Test/Set Memory Bits with Accumulator Mask
	M <= M | A

Z <= ~|(M & A)
	--10--Z-

	TAX
	Transfer Accumulator to X
	X <= A
	N-10--Z-

	TAY
	Transfer Accumulator to Y
	Y <= A
	N-10--Z-

	TXA
	Transfer X to Accumulator
	A <= X
	N-10--Z-

	TYA
	Transfer Y to Accumulator
	A <= Y
	N-10--Z-

	TXS
	Transfer X to Stack Pointer
	S <= X
	--10----

	TSX
	Transfer Stack Pointer to X
	X <= S
	N-10--Z-

	PHP
	Push PSW
	*(S--)<= P
	--11----

	PLP
	Pull (Pop) PSW
	P <= *(++S)
	NV10DIZC

	PHA
	Push Accumulator
	*(S--) <= A
	--10----

	PLA
	Pull Accumulator
	A <= *(++S)
	N-10--Z-

	PHX
	Push X to Stack
	*(S--)<= X
	--10----

	PLX
	Pull X from Stack
	X <= *(++S)
	N-10--Z-

	PHY
	Push Y to Stack
	*(S--) <= Y
	--10----

	PLY
	Pull Y from Stack
	Y <= *(++S)
	N-10--Z-

	CLC
	Clear Carry
	C <= 0
	--10---0

	SEC
	Set Carry
	C <= 1
	--10---1

	CLI
	Clear Interrupt Mask (Disable maskable interrupts)
	I <= 0
	--10-0--

	SEI
	Set Interrupt Mask (Enable maskable interrupts)
	I <= 1
	--10-1--

	CLD
	Clear Decimal Mode (ADC/SBC in binary mode)
	D <= 0
	--100---

	SED
	Set Decimal Mode (ADC/SBC in BCD mode)
	D <= 1
	--101---

	CLV
	Clear Overflow flag
	V <= 0
	-010----

	BRK
	Break (Software Interrupt)
	*(S--) <= PCH

*(S--) <= PCL

*(S--) <= P (P[4] <= 1) (B flag)

PC <= (0xFFFC)

(P[3] = 0, P[2] <= 1] (D, I flags)
	--11----
--1001--

	RTI
	Return from Interrupt
	P <= *(++S) (pop PSW)
PCL <= *(++S) 
PCH <= *(++S)

PC <= PC + 1
	NV10DIZC



	JSR
	Jump to Subroutine
	*(S--) <= PCH
*(S--) <= PCL

PC <= EA
	--10----

	RTS
	Return from Subroutine
	PCL <= *(++S)
PCH <= *(++S)

PC <= PC + 1
	--10----

	JMP
	Jump
	PC <= EA
	--10----

	BRA
	Branch Always (unconditional branch)
	PC <= PC + rel + 1
	--10----

	BPL
	Branch if Plus 
	PC <= (N ? PC + 1 : PC + rel + 1)
	--10----

	BMI
	Branch if Minus
	PC <= (N ? PC + rel + 1 : PC + 1)
	--10----

	BVC
	Branch if Overflow Clear
	PC <= (V ? PC + 1 : PC + rel + 1)
	--10----

	BVS
	Branch if Overflow Set
	PC <= (V ? PC + rel + 1 : PC + 1)
	--10----

	BCC
	Branch if Carry Clear
	PC <= (C ? PC + 1 : PC + rel + 1)
	--10----

	BCS
	Branch if Carry Set
	PC <= (C ? PC + rel + 1 : PC + 1)
	--10----

	BNE
	Branch if Not Equal to Zero
	PC <= (Z ? PC + 1 : PC + rel + 1)
	--10----

	BEQ
	Branch if Equal to Zero
	PC <= (Z ? PC + rel + 1 : PC + 1)
	--10----

	RMBx
	Reset Memory (page 0) Bit x {x: 0..7}
	M <= M & ~Mask[x]
	--10----

	SMBx
	Set Memory (page 0) Bit x {x: 0..7}
	M <= M | Mask[x]
	--10----

	BBRx
	Branch if memory Bit x Reset {x: 0..7}
	PC <= ((~M & Mask[x]) ? PC + 1 : PC + rel + 1)
	--10----

	BBSx
	Branch if memory Bit x Set {x: 0..7}
	PC <= ((M & Mask[x]) ? PC + 1 : PC + rel + 1)
	--10----


Inspection of Table 1 shows a minimalist approach with an accumulator-based processor and a sparse instruction set. Prior to the addition of the STZ instruction by the W65C02, there was no way to clear memory without explicitly loading the accumulator (or an index register) with a 0, and then writing that register to memory or transferring it to the other registers. In addition, before the W65C02 added the BRA branch instruction, unconditional branches were implemented by explicitly setting one of the four testable PSW condition code flags, and then executing a conditional branch instruction.
Another W65C02 enhancement allows the X and Y indexed registers to be directly pushed to or pulled from the stack. Prior to these W65C02 enhancements, saving and restoring the X and Y registers required transferring the registers to the accumulator before pushing the accumulator to the stack and vice-versa. The W65C02 also enhanced the BIT instruction with an immediate operand. Finally, the W65C02 added two bit manipulation instructions, TRB (Test and Reset Memory Bit) and TSB (Test and Set Memory Bit) to test and set/reset bits in memory based on a mask value in the accumulator.
The Rockwell R65C02 enhancements added an additional four bit manipulation instructions and a new multiple operand addressing mode to the enhancements provided by the W65C02. Two instructions, RMBx/SMBx, were added to set/reset a zero page bit, and two instructions, BBRx/BBSx, were added to test a zero page bit and branch if the bit was set/reset. Each of these instructions explicitly coded the bit number into the instruction itself. Thus, although only four instructions were added by Rockwell, 32 op codes were used for these instructions.
Other enhancements to the W65C02 were made by Commodore Semiconductor Group (CSG). (CSG purchased MOS Technology, and marketed a number of 6502 based products: the Commodore 64, Commodore 128, and the PET line of computers.) Although never released, the CSG65CE02 included several new instructions and addressing modes. In particular, stack pointer relative addressing was added, and several new instructions were added for direct handling of 16-bit quantities. More importantly, relocation of page 0 to any page in the address space was added by the CSG65CE02. All in all, the 65CE02 enhancements look to be well considered, even if they had to be shoe-horned into the existing opcodes maps. However, since the processor was never formally released commercially, there are some questions regarding reliability of the available documentation regarding the operation of some of the CSG instructions.
WDC founder, William D. Mensch, Jr., extended the instruction set and processor into the 16-bit domain while maintaining backward compatibility with the W65C02. These WDC enhancements extended the 8-bit instruction set in a manner similar to the 65CE02, and provided an emulation mode so that the resulting device could be operated in an 8-bit environment compatibility with the W65C02. The WDC W65C802 is a pin-compatible upgrade for the W65C02 that provides seamless emulation of the W65C02, and can be easily switched between its 16-bit and 8-bit operating modes to provide additional computational capabilities. The WDC W65C816, although not a pin-compatible 16-bit enhancement, is capable of fully emulating the W65C02 and dynamically switching between 16-bit and 8-bit modes. In the full 16-bit mode, the W65C816 provides access to as much as 16MB of memory (24-bit addresses) using 256 64kB pages.
Internal Registers

The M65C02 processor is an accumulator-based machine with few registers. All of the registers generally perform some dedicated functions. There are five (5) 8-bit user addressable registers. The register model for the M65C02 processor is given in Table 2.

Table 2. M65C02 Programmer Visible Registers.

	Name
	Function
	Comments

	A
	Accumulator
	Used for ALU operations except Read-Modify-Write Memory operations

	X
	Pre-Index Register
	Provides pre-indexing of the effective address of memory operands

	Y
	Post-Index Register
	Provides post-indexing of the effective address of memory operands

	S
	Stack Pointer
	Points to the next free location of a LIFO memory stack in page 1

	P
	Processor Status Word
	Holds the ALU result status bits and various processor state control bits

	PC
	Program Counter
	Provides the address of the instruction and operands


The processor status word, P (see Table 2), holds the status bit results of ALU operations and several control bits affecting the state of the processor. The bits in the processor status word are defined in Table 3.
Table 3. M65C02 Processor Status Word.

	Bit
	ID
	Name
	Comments

	0
	C
	Carry
	Holds the carry result for arithmetic and shift operations. SEC/CLC instructions explicitly Set/Clear C. Tested by the BCC/BCS branch instructions.

	1
	Z
	Zero
	Indicates that the ALU result value is 0. Since all register transfers (except X to S transfers) operate through the ALU, Z also reflects the state of a destination register. Tested by the BEQ/BNE branch instructions.

	2
	I
	Interrupt Mask
	When set, external IRQ interrupts are masked. Automatically set when IRQ/NMI exception is taken. SEI/CLI instructions explicitly Set/Clear I.

	3
	D
	Decimal Mode
	When set, the adder (except for INC/DEC/CMP) functions in BCD mode. SED/CLD instructions explicitly Set/Clear D.

	4
	B
	Break
	Only set by the BRK/PHP instructions when the PSW is pushed onto stack. 

	5
	1
	Reserved
	Reserved. Always reads as logic 1.

	6
	V
	Overflow
	Set by ADC/SBC on arithmetic overflow, and bit 6 of the result of a BIT operation. May also be set by the processor’s external SO input pin. CLV instruction clears V. Tested using the BVS/BVC branch instructions.

	7
	N
	Negative
	Set when MSB of ALU operation is set. Since all register transfers (except X to S transfers) operate through the ALU, N also reflects the state of the MSB of a destination register. Tested by the BMI/BPL branch instructions.


The M65C02 processor also includes several other registers which are not directly accessible to the programmer:

1).
IR – 8-bit register which holds the current instruction opcode;

2).
OP1 – 8-bit register which holds the first operand of the instruction;

3).
OP2 – 8-bit register which holds the second operand of the instruction.

Exception Vectors
The M65C02 processor, or any of the other variants, has three exceptions vectors in high memory. When Non-Maskable Interrupts (NMI), Reset (RST), or unmasked maskable interrupts (IRQ) requests are present, the processor will take an exception/trap at the completion of the current instruction.

For the RST exception, the processor simply loads the program counter with the address stored in the reset vector, and begins executing instructions at that point. IRQ and NMI exceptions cause the processor to push the processor state onto the stack, and then load the program counter from the appropriate vector and begin execution at that point. In addition, after the Program Status Word (PSW) has been pushed to the stack, the interrupt mask bit (I) is set and the Decimal ALU mode bit (D) is cleared. These actions disable (mask) maskable interrupt exception handlers, and ensure that the ALU operates in a known state, i.e. binary arithmetic mode, during all exceptions.
The BRK instruction utilizes the maskable interrupt exception’s vector for its handler’s address. The processor sets the Break bit (B) bit in the PSW to indicate that a BRK instruction is the source of the exception. In this way, a single IRQ exception handler can process software interrupts (BRK) or external maskable hardware interrupts (IRQ). When a BRK instruction is executed, the I bit is set and the D bit is cleared before the first instruction of the IRQ exception handler is fetched.
The exception vectors are stored in the following addresses:

1).
RST:
{0xFFFD, 0xFFFC}

2).
IRQ/BRK:
{0xFFFF, 0xFFFE}

3).
NMI:
{0xFFFB, 0xFFFA}
These three 16-bit vector locations are standard across all implementations of the 6502 microprocessor. (The WDC W65C802, W65C816, and M65C02 processors allow the BRK vector to be separated from the IRQ vector. For the M65C02 soft-core, the vector for the BRK trap can be configured as separated from the IRQ trap with a synthesis parameter.)
Addressing Modes

The M65C02 has sixteen (16) addressing modes since it includes the 4 Rockwell instructions. The M65C02 considers (1) the implicit operand, and (2) the accumulator addressing modes as a single addressing mode, otherwise there are seventeen (17) addressing modes. Table 4 summarizes the addressing modes of the M65C02 soft-core.
With respect to notation used in Table 4, the effective address is given using a mixture of C and Verilog notation. The notation *(·) is used to indicate that the contents of the location whose address is the argument. (That is, the classic C dereference of a pointer.)
Another notational usage is the use of the PC in the effective address equations. In the table, $ refers to the address of the instruction. Thus, $+1 points to the first operand of a multi-byte instruction, or to the next instruction in the case of single byte instructions.

The notation {8{·}} indicates an 8-bit vector. The argument, either 1’b0 or rel[7], indicates a logic 0 bit, or the most significant bit of the PC relative offset, respectively. In first case, the 8-bit index register is being extended to 16 bits by setting the most significant byte to logic 0, and in the second, the PC relative offset is sign extended to 16 bits.

Finally, the modulus operator is represented as using the % symbol. This operator is explicitly included in the effective address equations to represent the fact that the arithmetic carries between the least significant byte and the most significant byte are dropped, i.e. the operation is mod 256.
Table 4. M65C02 Addressing Modes.

	ID
	Name
	Syntax
	Effective Address

	0
	Implicit
	
	Operands are implicit in the instruction

	1
	Accumulator
	A
	Operand is the Accumulator

	2
	Immediate
	#imm
	EA <= $ + 1

	3
	PC Relative
	rel
	EA <= {$ + 2 + {CC ? {{8{OP1[7]}}, OP1}} : 0}}

	4
	Zero Page
	dp
	EA <= {{8{1’b0}}, OP1}

	5
	Zero Page Indirect
	(zp)
	EA <= *({{8{1’b0}}, OP1})

	6
	Zero Page Pre-Indexed
	zp,X
	EA <= {{8{1’b0}}, (OP1 + X) % 256}

	7
	Zero Page Pre-Indexed Indirect
	(zp,X)
	EA <= *({{8{1’b0}}, (OP1 + X) % 256})

	8
	Zero Page Post-Indexed
	zp,Y
	EA <= {{8{1’b0}}, (OP1 + Y) % 256}

	9
	Zero Page Post-Indexed Indirect
	(zp),Y
	EA <= *({{8{1’b0}}, OP1}) + {{8{1’b0}}, Y}

	A
	Absolute
	abs
	EA <= {OP2, OP1}

	B
	Absolute Indirect
	(abs)
	EA <= *({OP2, OP1})

	C
	Absolute Pre-Indexed
	abs,X
	EA <= {OP2, OP1}+{{8{1’b0}}, X}

	D
	Absolute Pre-Indexed Indirect
	(abs,X)
	EA <= *({OP2, OP1} +{{8{1’b0}}, X})

	E
	Absolute Post-Indexed
	abs,Y
	EA <= {OP2, OP1} +{{8{1’b0}}, Y}

	F
	Zero Page Relative
	zp, rel
	EA <= {$ + 2 + {CC ? {{8{OP1[7]}}, OP1}} : 0}}


Quirks of the W65C02

The W65C02 corrected most of the deficiencies of the MOS6502 instruction set, but it had to retain some significant quirks in order to remain compatible. The W65C02’s quirks influence how memory and software is implemented. The following subsections discuss the quirks of the W65C02.

Stacked Return Address after Jump to Subroutine (JSR)
Unlike most processors, the W65C02 does not push onto the stack the address of the following instruction. Instead, the processor pushes the address of the most significant address of the subroutine address, i.e. the address of the second instruction operand. Thus, during a ReTurn from Subroutine (RTS) instruction, the processor pops both bytes of the return address from the stack, LSB first, and then uses one cycle to increment the value read from the stack by one before fetching the instruction from the adjusted address.
The M65C02 soft-core does not require this dummy cycle to adjust the return address. Instead, the adjustment is applied as the address is being generated and output to memory.

Stacked Return Address after Interrupt (NMI/IRQ)
Unlike the issue with the stacked return address of subroutines, the 6502/65C02 pushes the address of the instruction following the instruction being interrupted. Thus, the ReTurn from Interrupt (RTI) does not required that the return address fetched from the stack be incremented by one before fetching the next instruction.

The M65C02 soft-core pushes the last address of the last byte of an instruction in either case. Instead, the M65C02 applies the same adjustment to the return address pulled from the stack during an RTI instruction as it does for an RTS instruction. The M65C02 does not require a dummy cycle following an RTI instruction to adjust the program counter.

Stacked Return Address after Break (BRK)
After the BRK instruction is encountered, the 6502/65C02 pushes a return address followed by the PSW. The address pushed onto the stack is not the address of the BRK instruction. Instead it is the address of the byte following the BRK instruction. This means that following a BRK, the 6502/65C02 continues execution at the address of the BRK instruction plus 2. If the byte following the BRK instruction is not treated as an immediate operand to the BRK instruction trap handler, then the IRQ/BRK handler needs to subtract 1 from the return address before executing the RTI instruction, otherwise the instruction following the BRK instruction will be skipped.
The M65C02 soft-core implements the BRK instruction in the same manner as the 6502/65C02. Thus, execution will resume stacked return address plus 1. Thus, the M65C02 soft-core treats subroutines and traps in a consistent manner.

Arithmetic Overflow Flag Not Set by CMP/CPX/CPY
The comparison instructions of the 6502/65C02 are unsigned comparisons between the designated register and an immediate or memory operand. Thus, signed comparisons using the N, V, and C flags are not possible with the 6502/65C02 or the M65C02.

Arithmetic oVerflow Flag (V) Set by BIT
The BIt Test (BIT) instruction sets/clears the V bit of the PSW if bit 6 of a memory operand is set/clear. If the BIT instruction is used with an immediate operand, then the V flag is not modified. (The V flag may also be set by external hardware using a falling edge signal applied to the nSO input pin of the 6502 processor. This feature could be used to construct very tight polling loops.)
The M65C02 soft-core implements the BIT instruction in the same manner as the 6502/65C02.

Zero Page Address Wrap-around

If a (indexed or non-indexed) zero page addressing mode is used, then the resulting effective address is restricted to lie in zero page memory. In other words, the effective address of a direct operand or the address of an indirect operand is in page zero, whether using a non-indexed or pre-indexed indirect addressing mode. This means all page zero address computations are performed modulo 256. For example, if the page zero base address is 0xF0, and the X index register contains a value of 0x20, then an instruction using the 0xF0,X (zero page indexed by X) addressing mode will read/modify/write page 0 location 0x0010 instead of page 1 location 0x0110. (Note: this address wrap around also occurs for page 1 stack operations.)
The M65C02 soft-core implements zero page indirect addressing modes with the same modulo 256 address computations as the 6502/65C02.
B Flag (P[4]) Set only in Stacked PSW

The B flag is only set in the value of the P register (PSW) pushed onto the stack as part of the BRK instruction or the PHP instruction. In the 6502, the interrupt/trap service routine is shared between the maskable external interrupt IRQ and the BRK instruction. To determine whether the common service routine is handling an interrupt or a BRK instruction, the service routine must check bit 4 (B flag) of the P register stored on the stack. The B flag of the P register in the processor is indeterminate, and therefore can’t be used for this purpose.

The M65C02 soft-core implements the B flag in the same manner as the 6502/65C02.
Memory Cycle During Modify Cycle of RMW Instructions

The 6502/65C02 processors perform a dummy memory access during the internal operand modification cycle of Read/Modify/Write instructions. The MOS6502 performed a dummy read with an invalid address during the modify cycle. The W65C02/R65C02 converted the dummy read operation of the MOS6502 into a dummy write cycle, but the W65C02/R65C02 also ensured that the address of the dummy write during the modify cycle is the same address as that used for the read and write cycles.

This quirk of the MOS6502 could cause erratic behavior in memory-mapped I/O devices. Instead of being “quite” and performing no external bus cycles during the modify cycle of a RMW instruction, the W65C02/R65C02 perform a dummy write of the same memory location as used for the read cycle. Since the write address is defined, the W65C02/R65C02 should not cause an issue with memory-mapped I/O devices unless the RMW instruction is acting on an I/O register of a memory-mapped device. Thus, RMW instructions should be avoided when memory-mapped I/O is present in a system with a MOS6502, but may be used in a system based on the W65C02/R65C02 if the potential side-effects of these W65C02/R65C02 instructions are carefully considered.
The M65C02 soft-core does not require a dummy cycle during RMW instructions like the 6502/65C02 processors. Instead, the M65C02 soft-core performs a read of the memory operand, and immediately follows it with a write. Thus, the M65C02 allows the RMW instructions to be easily used with memory-mapped peripherals.
Fixes to MOS6502 Implemented by W65C02/R65C02
The W65C02/RC65C02 fixed all known bugs of the MOS6502. The following subsections discuss the fixes implemented by the W65C02/R65C02 with respect to the MOS6502.

D Flag (P[3]) Cleared on Reset, IRQ, NMI, and BRK
Unlike the original MOS6502, the W65C02/R65C02 ensures that the D flag in the PSW is cleared after reset. The W65C02/R65C02 also ensures that the D flag is also cleared when an interrupt/trap service routine is started. This means that the NMI, IRQ, and BRK service routines all start operation in the binary mode.
The M65C02 soft-core implements this fix.

Operation of Arithmetic Flags in Decimal Mode

In the Decimal arithmetic mode, the arithmetic flag logic of the MOS6502 did not operate correctly. That is, during decimal mode arithmetic operations on the MOS6502, only the zero, Z (P[1]), flag operated correctly, and the negative, N (P[7]), flag, the arithmetic overflow, V (P[6]), flag, and the carry, C (P[0]), flag operated incorrectly. The W65C02/RC65C02 corrected the issues with these three flags during decimal mode operations.

The M65C02 soft-core implements the flags in the decimal mode so that the flags a valid in the decimal mode when an ADC/SBC instruction completes.

(1) N flag is set to the state of the most significant bit of the accumulator;

(2) V flag is set if there is a carry/borrow out of the accumulator;

(3) C flag is set if a carry out (ADC) or borrow out (SBC) occurs;
(4) Z flag is set if the result is zero.

Jump Absolute Indirect Instructions
The MOS6502’s implementation of these instructions did not operate correctly when the address operands straddled a page boundary. The W65C02/R65C02 corrected this issue so that the Jump Absolute Indirect, JMP (abs), and the Jump Pre-Indexed Absolute Indirect, JMP (abs,X), instructions correctly cross page boundaries, but the W65C02/R65C02 require an additional clock cycle to propagate a carry out of the least significant byte of the effective address to the most significant byte of the effective address. (Note: the Jump Pre-Indexed Absolute Indirect instruction was added by the W65C02/R65C02.)
The M65C02 soft-core implements this fix, but does not require the additional clock cycle when page boundaries are crossed in either of these addressing modes.

Unimplemented Instructions

Execution of an unimplemented instruction opcode on the MOS6502 resulted in unspecified behavior which included unspecified modifications of the registers. The W65C02/RC65C02 rectifies this behavior by ensuring that unimplemented instructions do not modify any of the processor’s registers, i.e. behave as NOPs. However, a variable number of clock cycles are required for these unimplemented instructions to complete.

The M65C02 soft-core implements this fix, but currently implements all unused opcodes as single cycle instructions. It is possible to change the behavior of the M65C02 soft-core to match the behavior of the W65C02/R65C02 processors with respect to unimplemented instructions with changing the logic or re-synthesizing the core.
Implementation of the M65C02

The implementation of the M65C02 has been performed in three stages:

(1)
Implementation of the core logic;
(2)
Integration of the processor core with a memory interface/controller and interrupt controller; and

(3) 
Verification/validation with black-box testing of the core using self-checking with assembler routines to check the full opcode matrix.

The implementation of the processor core will be described first. That discussion will be followed by a description of the processor core integrated with a memory interface/controller to form a working soft-microprocessor, i.e. the M65C02. As part of these descriptions, the verification plan and verification test bench of each of these two implementations will be discussed. Finally, the verification/validation performed using block-box testing using self-checking assembler routines will be described.
Implementation of the M65C02 Core Logic

The objective of the M65C02 core logic is to provide the basis for the implementation with FPGAs of M65C02-based soft-core microprocessors of various configurations. To achieve this goal, the core logic is organized into three main modules:

(1) M65C02 Arithmetic and Logic Unit (ALU)
(2) M65C02 Address Generator

(3)
M65C02 Micro-Program Controller (MPC)
(4)
M65C02 Core

The M65C02 ALU module implements the core logic for the programmer visible registers (A, X, Y, P), the arithmetic, shift, bit, and logic functions, and the stack pointer logic. The binary and decimal arithmetic functions are implemented separately in two sub-modules: the M65C02 Binary (BIN) Adder, and the M65C02 Decimal Mode (BCD) Adder.

The M65C02 MPC module implements the Micro-Program Controller (MPC) function. The M65C02 is implemented using a microprogrammed control unit. In the case of the M65C02, a microprogrammed control unit provides a structured approach to the development of the control unit which is very well matched to the capabilities of the target hardware: RAM-based FPGAs. A balanced approach is used to determine the level of encoding used for the control fields in the microprogram word. That is, encoded control fields are used when performance of the resulting M65C02 core is greater than 100 MHz, and un-encoded fields are used otherwise. Encoded control fields naturally require decoders to control the logic of the core, and these decoders will generally require additional logic levels in a RAM-based FPGA. Therefore, periodic FPGA synthesis and implementation cycles were used to ensure that the M65C02 core with its encoded microprogram fields would still meet that performance objective of 100 MHz operation.
The M65C02 Core module instantiates the ALU and MPC modules, and implements the control unit microprogram ROM, the instruction Decoder ROM, the Instruction Register (IR), the operand registers (OP1 and OP2), the Program Counter (PC), the Memory Address Register (MAR), and various other decoders, multiplexers, incrementers and adders using behavioral Register-Transfer-Level (RTL) descriptions using the Verilog Hardware Description Language (HDL).

The core assumes that it is connected to two external components: a memory interface controller, and an interrupt controller. Thus, for instruction fetches and data memory reads, the core provides a memory address under the assumption that the output data from the memory is available in the same cycle, i.e. an asynchronous, zero wait state memory. Similarly, the core assumes that data memory writes are completed in the same cycle. The core does provide for a ready (Rdy), or transfer acknowledge, input signal to allow the external memory interface to insert wait states when required. The following sub-sections will provide additional details of the implementation of the M65C02 core.

The interrupt controller is expected to sample the external reset (RST) and interrupt request signals (IRQ/NMI) and to assert an interrupt request to the core. The interrupt controller is also expected to provide the vector to the core.

The implementation of the interrupt controller and the vectors it provides to the core logic is application dependent. Although, the M65C02 demonstrates behavior similar to standard 6502/65C02 processors, it is possible for the interrupt controller, because it is external to the processor core, to generate/provide any vector to the core logic. It will simply implement the behavior of a JMP (Vector) instruction using whatever vector has been provided to it.
Implementation of the M65C02 ALU Module

As stated above, the M65C02 ALU module implements the programmer visible registers (with the exception of the PC), the functional units, and the stack pointer. The interface specification of the M65C02 ALU module is provided below.
module M65C02_ALU #(

    parameter pStkPtr_Rst = 0
// Stack Pointer Value after Reset

)(

    input   Rst,


// System Reset - synchronous reset 

    input   Clk,


// System Clock

    input   Rdy,


// Ready

    input   En,


// Enable - ALU functions

    input   [2:0] Reg_WE,
// Register Write Enable 

    input   ISR,


// Asserted on entry to ISR 

    //  ALU Inteface
    input   [3:0] Op,

// ALU Operation Select

    input   [1:0] QSel,

// ALU Q Bus Multiplexer Select

    input   RSel,


// ALU R Bus Multiplexer Select

    input   Sub,


// ALU Adder Operation Select

    input   CSel,


// ALU Carry In Multiplexer Select

    input   [2:0] WSel,

// ALU Register WE Select

    input   [2:0] OSel,

// ALU Output Multiplexer Select

    input   [4:0] CCSel,
// ALU Condition Code Operation Select

    input   [7:0] M,

// ALU Memory Operand Input

    output  reg [7:0] Out,
// ALU Output(asynchronous)

    output  Valid,

// ALU Output Valid

    output  reg CC_Out,

// Condition Code Test Output

    //  Stack Pointer Interface
    input   [1:0] StkOp,
// Stack Pointer Operation Select

    output  [7:0] StkPtr,
// Stack Pointer Output: {S, S+1}

    //  Internal Registers Interface
    output  reg [8:0] ALU,
// Internal ALU Result Bus

    output  reg [7:0] A,
// Accumulator

    output  reg [7:0] X,
// X Index Register

    output  reg [7:0] Y,
// Y Index Register

    output  reg [7:0] S

// Stack Pointer

    output  [7:0] P

// Processor Status Word

);

System Interface

In the implementation of the M65C02, all modules operate from a single clock, Clk, and all modules have a reset input, Rst. The remainder of the system interface ports of the M65C02_ALU modules are discussed in the following sub-sections.

Rdy

The Rdy input is provided from the core logic to prevent the updating of processors registers (A, X, Y), the stack pointer (S), or the processor status word (P) until an internal or external wait state is complete. Thus, the ready input, Rdy, provides a way for the M65C02 core logic to stretch ALU cycles synchronously.
En

The En input enables the ALU to execute the required function as defined by the instruction decoder. En is asserted by the core logic whenever the Reg_WE field is not equal to 0. When asserted, En initiates the ALU operation defined by the Op input. For all ALU functions, other than decimal mode (BCD) additions and subtractions, asserting En also results in the ALU Valid output being asserted on the same cycle. In other words, all ALU operations are single cycle combinatorial functions except for decimal mode addition and subtraction. For decimal mode additions and subtractions, En initiates the two cycle decimal arithmetic module, and the ALU Valid output is asserted with a one clock delay, i.e. on the second clock cycle.
Reg_WE

The Reg_WE input is provided directly by one of the M65C02 microprogram’s control fields. It functions as a write enable field for the ALU’s various registers. During development of the M65C02 it was found that a single control input, En, was not sufficient to control the writing to the ALU’s registers or external memory, and simultaneously updating of the P register flags. This was particularly an issue for Read/Modify/Write (RMW) instructions. The following table, Table 5, provides the encoding of the Reg_WE input:
Table 5: Register Write Enable Mapping.

	Reg_WE[2:0]
	Register

	000
	-

	001
	A

	010
	X

	011
	Y

	100
	WSel

	101
	S

	110
	P

	111
	M


ISR

The ISR input is asserted by the microprogram after the return address and processor status word have been pushed onto the stack, and before the execution of the first instruction in the interrupt/trap service routine. Asserting ISR causes the decimal mode flag, D, to be cleared and the interrupt mask flag, I, to be set. In this manner, the M65C02 ensures that the interrupt/trap service routine will start with the binary arithmetic mode selected and external interrupts disabled.
ALU Interface
The signals described in this section provide the control inputs, ALU data input and output, and condition code test outputs. The control inputs discussed in this section are provided by the instruction decoder. In the implementation of the M65C02, the instruction decoder ROM provides the fixed control and status elements for each implemented or unimplemented instruction. The following fields from the instruction decoder ROM control the operation of the M65C02 ALU: Op, QSel, RSel, Sub, CSel, WSel, OSel, and CCSel. The M, Out, and Valid signals provide the ports for data input and output from the M65C02 ALU, and CC_Out provides the condition code test output.
Op

The Op input selects one of 16 functions/operations that are implemented by the M65C02 ALU. The following table, Table 6, defines the ALU functions selected by the Op input. In Table 6, the mnemonics M, Q, and R refer to memory, Q multiplexer output, and the R multiplexer output, respectively. The mnemonics N, V, Z, and C refer to the ALU flags in the processor status word, P, which generally indicate a 2’s complement negative value (N), 2’s complement arithmetic overflow (V), logic zero (Z), and arithmetic carry (C), respectively. The V flag is modified by the addition, subtraction, and bit test operations. Modification of the V and N flags by the BIT operation is dependent on whether an immediate operand is used or not. If the BIT operation’s memory operand is an immediate constant, the N and V flags are not set to the values of the two most significant bits of the operand, respectively. If the operand of BIT is not an immediate constant, then the N and V flags are set to the values of the two most significant bits of the memory operand, respectively. (Not indicated in Table 6 is the fact that the V flag may also be modified by an external signal on the nSO, Set Overflow (falling edge sensitive), pin of the W65C02 processor. Thus, using the V flag for arithmetic overflow can be problematic on all 6502 variants, including the M65C02.) Also note that in most instances, the zero (Z) flag is set by evaluating the output of the ALU. However, in the case of the BIT, TRB, and TSB operations, the Z flag is set from the logical AND of the memory operand (M) and the accumulator (A). Also note the definition for the ADC, SBC, INC, DEC, and CMP operations. Both addition and subtraction are defined in terms of addition only. Subtraction is performed by addition of the complement of the memory operand. Thus if the carry is not set, an automatic 2’s complement borrow will result. This is the reason that this microprocessor requires the carry to be cleared before addition, and set before subtraction. It also means that carries/borrows are automatically incorporated into multi-precision operations without resorting to two different instructions as is the case for most other processors.
Table 6: M65C02 ALU Operation Codes.

	Op[3:0]
	Mnemonic
	Operation
	Condition Codes

	0000
	XFR
	ALU <= {0 | A | X | Y | S | P | M}
	None

	0001
	OR
	ALU <= A | M
	N = ALU[7]

Z = ~|ALU

	0010
	AND
	ALU <= A & M
	N = ALU[7]

Z = ~|ALU

	0011
	EOR
	ALU <= A ^ M
	N = ALU[7]

Z = ~|ALU

	0100
	ADC
	ALU <= A + M + C
	N = ALU[7]

V = OVF
Z = ~|ALU

C = Cout

	0101
	SBC
	ALU <= A + ~M + C
	N = ALU[7]

V = OVF
Z = ~|ALU

C = Cout

	0110
	INC
	Q = {A | X | Y | M}
ALU <= Q + 1 + 0
	N = ALU[7]

Z = ~|ALU

	0111
	DEC
	Q = {A | X | Y | M}
ALU <= {A | M} + ~1 + 1
	N = ALU[7]

Z = ~|ALU

	1000
	ASL
	W = {A | M}

ALU <= {W[6:0], 0}
	N = ALU[7]
Z = ~|ALU

C = W[7]

	1001
	LSR
	W = {A | M}

ALU <= {0, W[7:1]}
	N = ALU[7]

Z = ~|ALU

C = W[0]

	1010
	ROL
	W = {A | M}

ALU <= {W[6:0], C}
	N = ALU[7]

Z = ~|ALU

C = W[7]

	1011
	ROR
	W = {A | M}

ALU <= {C, W[7:1]}
	N = ALU[7]

Z = ~|ALU

C = W[0]

	1100
	BIT
	ALU <= M & A
	N = imm ? N : M[7]

V = imm ? V : M[6]

Z = ~|(M & A)

	1101
	TRB
	ALU <= M & ~A
	N = ALU[7]

Z = ~|(M & A)

	1110
	TSB
	ALU <= M | A
	N = ALU[7]

Z = ~|(M & A)

	1111
	CMP
	Q = {A | X | Y}
ALU <= Q + ~M + 1
	N = ALU[7]

Z = ~|ALU

C = Cout


QSel

The QSel input refers to the select control of the Q multiplexer of the M65C02 ALU. The Q multiplexer selects among the various processor registers. The QSel input is provided by the instruction decoder output and remains fixed until the next instruction is loaded into the IR. The following table, Table 7, defines the values of the QSel input and the register which is multiplexed.
Table 7: Q Multiplexer Select Mapping.

	QSel[1:0]
	Q Multiplexer Output

	00
	M

	01
	A

	10
	X

	11
	Y


RSel

The RSel input refers to the select control of the R multiplexer of the M65C02 ALU. The R multiplexer selects between two sources. The following table, Table 8, defines the values of the RSel input and the sources multiplexed. The normal state of RSel is logic 0, so that the output of the R multiplexer is the memory operand. For the decrement and increment instructions, INC, INX, INY, DEC, DEX, and DEY, RSel is set to a logic 1 which places a value of 1 on the second input of the binary adder.
Table 8: R Multiplexer Select Mapping.

	RSel
	R Multiplexer Output

	0
	M

	1
	1


Sub

The Sub input refers to the subtraction control of the M65C02 ALU. When asserted, the R multiplexer output is complemented. This is how subtraction is implemented in the M65C02 ALU. The following table, Table 9, defines how Sub affects the output of the R multiplexer.
Table 9: R Multiplexer Output Control.

	Sub
	R Multiplexer Output

	0
	R

	1
	~R


CSel

The CSel input refers to the carry multiplexer select of the M65C02 ALU. When asserted, the carry input to the M65C02 ALU adders, the binary mode and decimal mode adders, is the Sub input, otherwise it is the C flag from P. This architecture ensures the correct implementation of SBC and the DEC, DEX, and DEY instructions. CSel is not asserted for SBC, but it is asserted for the decrement instructions. This means that the C flag is used for the SBC subtraction operation, and forced to a logic 1 for the decrement instructions. (Note: the increment and decrement instructions are binary mode only instructions. Only the add and subtract instructions, ADC and SBC, are dual mode operations.)
Table 10: Carry Input Multiplexer Mapping.

	CSel
	Carry In

	0
	C

	1
	Sub


WSel

The WSel input acts as a write select for the ALU registers. Generally, WSel selects an ALU register to write, but it also indicates a write to memory, M. Writes to A, X, and Y also update the flags in P. RMW instructions to M also modify the flags in P as well. Thus, all arithmetic and logic operations update P. In addition, all load operations from memory or stack, and transfers between the A, X, and Y registers update P. Transfer of the stack pointer register, S, to X updates P, but not transfers from X to S. Stores from A, X, and Y do not update P, and P is also not updated by the Store Zero (STZ) instruction. 
Reg_WE and WSel operate in concert to provide the M65C02 microprogrammed control unit the ability to directly or indirectly update registers. Reg_WE explicitly updates registers when the microprogram sequence is explicitly tied to a particular register, and Reg_WE indirectly writes to a register selected by WSel whenever the microprogram sequence is not explicitly aware of the destination register. An example of the first case are instructions using implied or accumulator addressing modes such as Pull P (PLP), Pull A (PLA), and Arithmetic Shift Left Accumulator (ASL A), and an example of the second case are instructions such as the zero page direct instructions: Add with Carry zero page (ADC zp), Load Accumulator from zero page (LDA zp), Compare X with immediate value (CPX #imm), Increment zero page (INC zp), etc.
In the first case, direct register writes, the control unit “knows” which register is being written, and in the second case, indirect register writes, the control unit “knows” when all of the operands are available but not which register is being written, or even what operation is to be executed. In the second case, the Op and WSel inputs set up the ALU to perform the correct operation and update the correct ALU register when signaled/enabled by the general Reg_WE signal as shown in Table 5, i.e. (Reg_WE == 4). The encoding of the WSel input is defined in Table 11.
Table 11: Write Select Encoding.

	WSel[2:0]
	Register

	000
	-

	001
	A

	010
	X

	011
	Y

	100
	-

	101
	S

	110
	P

	111
	M


OSel
The OSel input selects which of the registers or ALU outputs are placed on the output bus, Out. The encoding of the OSel input follows that of the WSel input as defined in Table 11. However, OSel also selects a zero output to facilitate the implementation of the Store Zero (STZ) instructions. The following table, Table 12, defines the encoding of OSel.
Table 12: Output Select Encoding.

	OSel[2:0]
	Register

	000
	M

	001
	A

	010
	X

	011
	Y

	100
	0

	101
	S

	110
	P

	111
	M


CC_Sel

The CC_Sel input provides the control for the various instructions that affect the flags in the processor status word, P. CC_Sel provides direct control of P and of the CC_Out output signal. The following table defines the encoding for the CC_Sel input, and defines the action performed by the M65C02 ALU for each defined value of CC_Sel.
Table 13: M65C02 ALU Condition Code Select Codes.

	CC_Sel[4:0]
	Mnemonic
	CC_Out
	Comment

	00_0xx
	NOP
	1
	Always true, used for Branch Always (BRA)

	00_100
	
	
	

	00_101
	
	
	

	00_110
	
	
	

	00_111
	
	
	

	01_000
	CC
	~C
	True if Carry flag not set

	01_001
	CS
	C
	True if Carry flag set

	01_010
	NE
	~Z
	True if Zero flag not set

	01_011
	EQ
	Z
	True if Zero flag set

	01_100
	VC
	~V
	True if oVerflow flag not set

	01_101
	VS
	V
	True if oVerflow flag set

	01_110
	PL
	~N
	True if Negative flag not set

	01_111
	MI
	N
	True if Negative flag set

	10_000
	CLC
	1
	C <= 0; Clear Carry flag

	10_001
	SEC
	1
	C <= 1; Set Carry Flag

	10_010
	CLI
	1
	I <= 0; Enable Interrupts

	10_011
	SEI
	1
	I <= 1; Disable Interrupts

	10_100
	CLD
	1
	D <= 0; Set Binary Arithmetic Mode

	10_101
	SED
	1
	D <= 1; Set Decimal Arithmetic Mode

	10_110
	CLV
	1
	V <= 0; Clear oVerflow flag

	10_111
	BRK
	1
	B <= 1; Set Break flag

	11_000
	Z
	1
	Set selected flags in P

	11_001
	NZ
	1
	Set selected flags in P

	11_010
	NZC
	1
	Set selected flags in P

	11_011
	NVZ
	1
	Set selected flags in P

	11_100
	NVZC
	1
	Set selected flags in P

	11_101
	-
	1
	

	11_110
	-
	1
	

	11_111
	PSW
	1
	P <= M, used to load P from stack


Note that in Table 13 the CC_Sel signal is divided into four groups of eight codes each. The first group is used to set CC_Out to a logic one for the purpose of a BRA instruction. The second group outputs on CC_Out the selected flag bit which controls one of the eight conditional branch instructions. The mnemonic shown in the table corresponds to the condition code tested by these eight instructions. As an example, the mnemonic CC corresponds to the Branch if Carry Clear (BCC) instruction. The third group represents one of the eight instructions that set or clear a flag bit in P. The mnemonics shown in the table correspond to the actual M65C02 instruction. Finally, the fourth group controls the writing of the status flags in P. For example, the mnemonic NVZC indicates that all four arithmetic flags will be updated by whatever instruction will be executed during the execute cycle.
Another interpretation of the CC_Sel input is that CC_Sel[4] functions as a write enable for P, and that CC_Sel[3] is selects between two blocks of eight functions/operations on P. For the read mode, CC_Sel[3] selects between logic 1 and one of the eight branch instruction conditions. For the write mode, CC_Sel[3] selects between individual flag set/clear operations (all part of the instruction set, see Table 1), or writes to one or more flags on the basis of ALU operations.
In summary, Op controls the ALU operation, and CC_Sel controls the updating of P. 
M

M is the input data for the ALU. For all two operand instructions, M is used as the second operand and the accumulator, A, is the first operand. M is also used as the only operand for all Read-Modify-Write (RMW) instructions. ALU operands from memory, M, are registered under control of the M65C02 microprogram into the OP1 register.
Out

Out is the output of the ALU module’s output multiplexer. It represents the 8-bit data selected by the OSel input. Refer to Table 12 for the registers and/or results that the output multiplexer will connect to Out.

Valid

Valid is asserted by the ALU logic when the data on Out is valid. In the present construction, the core’s MPC only uses Valid to stretch the execute cycle of the decimal mode ADC and SBC instructions. For all other instructions, the core’s MPC does not use the Valid signal, although it is tied to one of the MPC’s test inputs.

CC_Out

The CC_Out output is used to select whether an M65C02 branch instruction will branch or not. In the M65C02, even unconditional branches use CC_Out.
Stack Pointer Interface
In the 6502/65C02, the stack pointer is incremented and decremented using the binary adder of the ALU. In the M65C02, there are two dedicated adders/subtractors for the stack pointer. These dedicated adders/subtractors are used to speed the generation of the address for all stack operations. Therefore, the stack pointer interface provides for independent control of the stack pointer so that the stack pointer adjustments occur in parallel with stack memory operations.
In general, the 6502 stack pointer points to the next open location in the stack. Thus, stack writes, i.e. push operations, simply write to the memory location pointed to by the current stack pointer. After the write is complete, the stack pointer is automatically decremented to point to the next free location in the stack. The situation is reversed for stack read operations, i.e. pull (pop) operations. That is, before a value can be pulled (popped) from the 6502 stack, the stack pointer must be incremented, then the value stored in that location is read. This action leaves the stack pointer ready for a subsequent write operation.
StkOp

The StkOp input controls the stack pointer. It provides control of an auxiliary adder/subtractor that drives the external address bus, and it controls the operations of the stack pointer register itself. The following table, Table 14, defines the operations that the stack pointer performs under control of the StkOp input.

Table 14: Stack Operation Control Input Mapping.

	StkOp[1:0]
	StkPtr
	S
	Comment

	00
	S
	S
	Hold

	01
	S
	S
	Reserved

	10
	S
	S--
	Post-decrement (Push)

	11
	++S
	S++
	Pre-increment (Pull)


Note the distinction between the StkPtr output and the stack pointer when the value of StkOp is 3. In this case, an auxiliary adder which increments the value of the stack pointer, S, is multiplexed onto the StkPtr output. The stack pointer, on the other hand, increments or decrements on the next rising edge of the system clock as defined by StkOp. The auxiliary adder in the StkPtr output is used to remove the pipeline delay that would be incurred during stack pull operations.
StkPtr

The StkPtr output provides a direct combinatorial output based on the value of StkOp and the current value of the stack pointer register, S.
Internal Processor Registers Interface
In general, the approach taken in the development of the ALU and core modules is to expose all internal signals on the module port list that may necessary for simulation and debugging. For this reason, all of the M65C02 ALU’s programmer-visible registers are exposed.
A - Accumulator
The M65C02, and all variants of the 6502, are known as accumulator based processors. In all accumulator-based processors, the accumulator, A, is used as an implicit source and/or destination operand. Any ALU functions requiring a second operand will use another register (implicitly or explicitly addressed) or data from an explicitly addressed memory location to access the second operand. The 6502 and its variants (including the M65C02) are single address machines. The destination of all two operand instructions is the accumulator. (Note: the 6502 provides single operand RMW instructions which can generally be thought of as violating the concept of an accumulator-based architecture.)
X and Y – Index Registers
X and Y are the two index registers of the M65C02. They are output directly from the ALU so that they may be used for index calculations by the address generation logic of the core. These two registers can also be accessed through Out, but the M65C02 implements next address generation with a dedicated functional unit to reduce the cycle count of all indexed addressing modes, both direct and indirect. Thus, access through Out is reserved for saving these registers to the stack or to memory.
S – Stack Pointer
The M65C02 stack pointer, S, is brought out for debugging and simulation purposes. Unlike the A, X, and Y registers, S can only be written from and read through X using the Transfer X to S (TXS) and the Transfer S to X (TSX) instructions, respectively. All other operations on the stack pointer are controlled by the StkOp input as defined in Table 14.
P – Processor Status Word

Within the M65C02 ALU, the processor status word is implemented in a 6-bit register, PSW. The relationship between the internal PSW and P, the programmer-visible processor status word, is described in Table 15.

Table 15: Internal and Programmer-Visible Processor Status Word Mapping.

	Bit
	PSW[5:0]
	Bit
	P[7:0]
	Comment

	0
	C
	0
	C
	Updated by Arithmetic and Shift units

	1
	Z
	1
	Z
	Updated by Arithmetic, Shift, Logic, Bit units, and register loads

	2
	I
	2
	I
	Updated by SEI/CLI instructions, and set by ISR

	3
	D
	3
	D
	Updated by SED/CLD instructions, and cleared by ISR

	
	
	4
	{1 | 0}
	Set by BRK and PHP (only on stack), otherwise reads as 0

	
	
	5
	1
	Unused bit in the M65C02 and W65C02; reads as a 1

	4
	V
	6
	V
	Updated by Arithmetic and Bit (non-immediate operand) units, and cleared by CLV instruction

	5
	N
	7
	N
	Updated by Arithmetic, Shift, and Bit (non-immediate operand) units


Note that reading and writing of the various status bits in PSW occurs for virtually all instructions. Only the store, branch, jump and subroutine return instructions don’t modify the PSW, as shown in Table 1.
Description of M65C02 ALU Implementation Details

A high level block diagram is provided in Figure 1. The intent of the block diagram is to show the general organization of the M65C02 ALU rather than specific details of the implementation. The block diagram of does provide a road map for the evaluation of the verilog RTL code for the M65C02 ALU module.
The key to understanding the implementation is to understand how the data flows through the module. In the top left corner of the diagram are two multiplexers: the Q bus multiplexer, and the R bus multiplexer. The Q multiplexer implements a 4:1 multiplexer controlled by the QSel input. The Q multiplexer provides the ALU functional units the primary operand: A, M, X, or Y. The 2:1 R multiplexer is controlled by the RSel and Sub inputs, and provides the ALU functional units the secondary operand: M or 1. The Sub input controls the complementing of the output of the R multiplexer.
The two operands of the ALU, Q and R, are passed to the ALU functional units along with the Op, Sub, CSel, and En inputs. The output of the functional units is multiplexed onto Out. To avoid combinatorial logic loops through these cascaded (mostly) combinatorial logic elements of the ALU, M must be supplied from a register like the other inputs to the Q and R multiplexers.
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The output multiplexer is controlled by the OSel input. When RMW, load, or store operations are required, OSel must be set such that either the output of the ALU functional units (RMW instructions), or one of the other inputs to the output multiplexer is selected: A, X, Y, 0, S, P, or M. The output multiplexer is actually implemented as two cascaded multiplexers. The first multiplexer, referred to as the Load/Store/Transfer multiplexer, multiplexes all of the registers and/or M in order to connect the necessary value to Out, and as a result, to any of the remaining ALU registers since all ALU registers share a common input bus, Out. The second multiplexer, referred to as the ALU Output multiplexer, multiplexes one of the outputs from the ALU functional units or the output of the Load/Store/Transfer multiplexer onto Out. Therefore, the general data flow is for A, X, Y, or M to be passed through the ALU functional units or the Load/Store/Transfer multiplexer and onto the output bus, Out. When the proper selections have been made with Op and OSel, then Rdy, En, Reg_WE, and  WSel inputs and the Valid output control which ALU register, if any, is to be written. To develop the necessary register write enable signals, Reg_WE and WSel are combined to form a 6-bit control field which is explicitly decoded into one-hot register write enable signals. (The intention was to fully define the 64 conditions which the combined vector {Reg_WE, WSel} represents. However, the full expansion necessary to have the synthesis pass generate a LUT-based ROM was not deemed necessary since the implementation was meeting its design goal on 100 MHz operation without it.) The output of the {Reg_WE, WSel} is the register select, which is then ANDed with Valid and Rdy for the write enable of each programmer-visible register.
Writing to the PSW is a bit more complicated than writes into A, X, Y, or S registers. PSW is updated when ISR is asserted independent of Rdy, Reg_WE, WSel, or Valid. This allows the decimal mode flag and the interrupt mask flags to be set correctly when and interrupt/trap service routine is entered. Under normal register update conditions, PSW is written to with various combinations of flags, flag set/clear commands, and/or from the M input. The implementation uses a case statement to update the various bits in the PSW when the write enable PSW signal, WE_P, is asserted. This approach was used because the original mechanism for implementation of the PSW as individual registers with multi-level multiplexers proved difficult to modify in order to add the capabilities to set the interrupt mask, clear the decimal mode flag, etc. when special circumstances occurred.
The last component of the M65C02 ALU implemented is the stack pointer register. It is implemented in a straightforward manner using a register updated by the StkOp input or by Reg_WE, WSel, and Rdy. The StkOp input controls whether the register increments (pulls/pops) or decrements (pushes). Reg_WE, WSel, and Rdy are used to control the updating of the register from the X register.

Implementation of the Binary and Decimal Arithmetic Modes

In most cases, the M65C02 is expected to operate in the binary arithmetic mode. The adjustments that must be applied to each nibble of a binary sum require too much logic to implement in a single cycle, dual-mode arithmetic module while attempting to maintain the objective of 100 MHz operation.

Furthermore, the additional logic stage required for decimal mode operation of the ADd memory to accumulator plus Carry (ADC) and the SuBtract memory from accumulator plus Carry (SBC) instructions would impose a performance penalty on all binary arithmetic operations of the M65C02 core: ADC, SBC, INC, DEC, INX, DEX, INY, DEY, CMP, CPX, and CPY.

Within the M65C02 ALU module binary and decimal mode arithmetic is performed by two sub-modules: M65C02_BIN and M65C02_BCD. Two modules are used for consistency. The binary adder module is so simple that it could have been implemented directly within the M65C02 ALU module. However, since the more complex decimal mode adder module is better implemented as a sub-module and instantiated in the ALU module, the binary mode adder module was implemented in a like manner.
For both modules the inputs are the Q and R outputs of the first multiplexer stages and a carry input. The binary mode adder splits the sum into two sections in order to develop the arithmetic overflow output as the exclusive OR of the carry out of bit 6 and the carry out of bit 7. This implementation of the binary mode adder may impose a performance penalty because the carry chain is broken in order to break into it to determine the carry out of bit 6 of the adder. However, the performance of this adder is not a contributing factor to the performance limit of the ALU, or the core, in general.
The implementation of the decimal mode adder is simply a binary first stage followed by a BCD adjustment stage. The sum of the first stage binary adder is registered, as are several auxiliary signals. In the second stage, the Valid output is asserted, and the binary sum is adjusted using a case statement to add one of six adjustment factors which are computed using the registered nibble carries from the first stage, and three magnitude comparators. The second stage BCD adjustment is performed using a full width binary adder instead of the two 4-bit nibble adders used in the first stage. The BCD adjustments performed correctly implement the decimal mode overflow and carry flags.
Implementation of the M65C02 Address Generator
Implementation of the M65C02 Microprogram Controller
The M65C02 soft-core is microprogrammed. Consequently, the M65C02 soft-core uses a Micro-Program Controller (MPC) based on the Fairchild F9408 Micro-Program Sequencer (MPS) found in the 1976 Fairchild Macro Logic Data Book.

(http://bitsavers.trailing-edge.com/pdf/fairchild/_dataBooks/1976_Fairchild_Macrologic.pdf)
Figure 2 below provides a block diagram of the MPC used for the M65C02 soft-core. As can be seen from examining the block diagram, the MPC consists of a micro-cycle length controller, a Last-In, First-Out micro-subroutine return address stack, a variable width micro-program counter and incrementer, and a 16 instruction decoder.
M65C02 MPC Micro-Cycle Length Controller
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The MPC for the M65C02 soft-core includes a fixed length micro-cycle controller. The purpose of a micro-cycle length controller is to allow the number of clock cycles of a micro-cycle to be controlled by the microprogram itself, or by external logic. In the case of the M65C02 core, the choice has been made to fix the number of clock cycles.

This design decision is easily reversed, and a variable length micro-cycle length can be found in the source control database of the M65C02 project files. However, in the case of the M65C02 soft-microprocessor, an external memory interface like that found on a standard 6502/65C02 is best implemented using a fixed length micro-cycle. Therefore, the built-in micro-cycle length of the M65C02 MPC is set for 4 clock cycles.

M65C02 MPC Micro-subroutine Return Address Stack

The M65C02’s MPC incorporates a return address stack implemented as a LIFO. It is retained in the M65C02 implementation of the F9408 MPS even though the microprogram for the M65C02 does not use any micro-subroutines. The unused capability has been retained in order to allow future updates to the microprograms to use at least one micro-subroutine level. 

The standard F9408 four level micro-subroutine stack has been commented out, but retained in the source code. The four-level F9408 return address stack has been replaced by a single return address register. Given the success in implementing the M65C02 microprogrammed soft-core without using any subroutines, the limitation imposed by a single level return stack is not considered too be unduly restrictive.
M65C02 MPC Micro-Program Counter (uPC) and Incrementer
The MPC’s uPC is a configurable width counter, whose width is determined by the application. In the case of the M65C02, the micro-program ROM addressed by the uPC is 512 words deep. This results in a 9-bit uPC and incrementer.

M65C02 MPC Instruction Decoder

The M65C02 MPC has a repertoire of 16 instructions/operations. The following table defines the instruction/operations that the M65C02 MPC is able to perform:

Figure � SEQ Figure \* ARABIC �1�: M65C02 ALU Top-Level ALU Block Diagram.
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Figure � SEQ Figure \* ARABIC �2�: M65C02 Micro-Program Controller (MPC) Block Diagram.
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