
 

MDCT IP Core 
Specification 

 
 
 

Author: Michal Krepa 
 

 
 
 

Rev. 1.1 
April 26, 2006 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary ii 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
This page has been intentionally left blank. 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary iii  

Revision History 
Rev. Date Author Description 
1.0 15/04/2006 Michal Krepa Initial Draft 
1.1 17/04/2006 Michal Krepa Updated all sections 
1.2 17/04/2006 Michal Krepa Updated Testbench section 
1.3 21/04/2006 Michal Krepa Added memory information 
1.4 25/04/2006 Michal Krepa Updated as per code redesign 
 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary iv  

Contents 
INTRODUCTION............................................................................................................. 1 

ARCHITECTURE............................................................................................................ 2 

OPERATION .................................................................................................................... 4 

REGISTERS...................................................................................................................... 6 
LIST OF REGISTERS........................................................................BŁĄD! NIE ZDEFINIOWANO ZAKŁADKI. 
REGISTER 1 – DESCRIPTION...........................................................BŁĄD! NIE ZDEFINIOWANO ZAKŁADKI. 

CLOCKS............................................................................................................................ 7 

IO PORTS.......................................................................................................................... 8 

APPENDIX A.................................................................................................................... 9 

APPENDIX B .................................................................................................................... 9 

INDEX.............................................................................................................................. 13 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 1 of 13 

1  
Introduction 

The MDCT core is two dimensional discrete cosine transform implementation 
designed for use in compression systems like JPEG. Architecture is based on parallel 
distributed arithmetic with butterfly computation. Done as row/column decomposition 
where two 1D DCT units are connected through transposition matrix memory. Core has 
simple input interface. Design is synchronous, with single positive clock edge and no 
internal tri-state buffers. Latency between first latched input data and first DCT 
transformed output is 85 clock cycles. Design is internally pipelined, when the pipeline is 
full 64 point input data is transformed in 64 clock cycles to 2D DCT values. Core uses 
double buffered (ping-pong scheme) RAM for storing intermediate product results after 
first DCT stage for maximized performance. This way both 1D DCT units can work in 
parallel effectively creating dual stage global pipeline. MDCT core takes 8 bit input data 
and produces 12 bit output using 12 bit DCT matrix coefficients. This may be enhanced 
to be configurable in the future. 

 Self checking testbench is included for testing operation of the MDCT core. 
Testbench takes matlab-converted bitmap image, MDCT core DCT-transforms it and 
testbench compares input image to reconstructed one by performing behavioral IDCT. 
Peak signal to noise ratio is computed to see how big error is introduced by fixed point 
arithmetic used in core. Testbench can also perform quantization of DCT output, but 
when this option is enabled DCT core operation is not verified. Testbench created DCT 
images (reconstructed image and error image) can be converted to JPEG format by 
matlab scripts (included). 

 Core was not yet tested on real HW FPGA, so it is considered beta release. 

 

 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 2 of 13 

2  
Architecture 

This section describes the architecture of the MDCT. Below is I/O schematic of MDCT 
core.

 
Figure 1. Top level schematic 

 

Block diagram is presented below describing the top level of the design. 

 
Figure 2. Block diagram of MDCT core 

output 
DCT 

input 
image DCT 1D 

1st stage 

DCT 1D 

2nd stage 
Transpose 

RAM 

DBUFCTL 

ROM 
memories 

ROM 
memories 

Transpose 
RAMs 

odv 
dcto 
odv1 
dcto1 

clk 
rst 

dcti
idv 

MDCT 

core



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 3 of 13 

 

MDCT core architecture is based two 1D DCT units connected through transpose matrix 
RAM. Transposition RAM is double buffered, that is, when 2nd stage of DCT reads out 
data from transposition memory 1, 1st DCT stage can populate 2nd transposition memory 
with new data. This enables creation of dual stage global pipeline where every stage 
consist of 1D DCT and transposition memory. 1D DCT units are not internally pipelined, 
they use parallel distributed arithmetic with butterfly computation to compute DCT 
values. Because of parallel DA they need considerable amount of ROM memories to 
compute one DCT value in  single clock cycle. Design based on distributed arithmetic 
does not use any multipliers for computing MAC (multiply and accumulate), instead it 
stores precomputed MAC results in ROM memory and grab them as needed. DBUFCTL 
block is essentially a memory arbiter between 1D DCT stages. Each stage can request 
memory buffer for read/write and basing on availability one of two RAM buffers is 
granted. Every RAM has 10 bit width data and 64 memory cells. 

On chip RAMs used are dual port synchronous memory with one clock cycle delay. 
These RAMs are currently 64 words x 14 bits size and there are two of them to create 
ping-pong buffers for improved throughput. 

Design uses also ROM memories for storing precomputed MAC coefficients. ROMs can 
be either asynchronous or synchronous. ./SOURCE/ROME.VHD and 
./SOURCE/ROMO.VHD memory models included in core sources are synchronous 
synthesizable ROM memory models which can be used for simulation and 
implementation. But, beware they seems to only synthesize to block rams with Mentor 
tools even if block rom inference is disabled (did not try with other tools). If you want to 
have asynchronous distributed ROMs remove clocking and input address register from 
these ROMs or use ./SOURCE/XILINX/ROM(E/O).VHD – CoreGen created 
synchronous distributed ROM memories. 

 

 

 

 

 

 

 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 4 of 13 

3  
Operation 

Interface for host communication is pretty simple. When idv is high dcti input is sampled 
by core and when eight input values are read internal DCT processing is started. MDCT 
core is always ready for new data, so there is no need for flow control. New input data 
can be feed into the core back to back with idv all the time pulled high.  

Regarding output DCT handling, there is odv pin - when high means that dcto output is 
valid (dcto output is 2D DCT transformed data). 

Below is example of host data transfer to MDCT core (only output values after first DCT 
stage are presented, ie. odv1 and dcto1).  

 

160 157 162 161 163 162 157 162 161

-2 1 88 4 -2 -1 1 -1 0 90 5 -3 -1 2 -1 -2 0

rst

dcti 160 157 162 161 163 162 157 162 161

idv

clk

odv1

dcto1 -2 1 88 4 -2 -1 1 -1 0 90 5 -3 -1 2 -1 -2 0

 
Figure 3. MDCT operation 

 

MDCT core uses synchronous internal RAM (they are connected within core top level 
which is MDCT entity).  

RAM write access example: 

 

-2 1 88 4 -2 -1 1 -1 0 90 5 -3 -1 2 -1 -2 0

-12 -4 5 13 21 29 -27 -19 -11 -3 6 14 22 30 -26 -18 -10 -2

clk

d -2 1 88 4 -2 -1 1 -1 0 90 5 -3 -1 2 -1 -2 0

waddr -12 -4 5 13 21 29 -27 -19 -11 -3 6 14 22 30 -26 -18 -10 -2

we
 

Figure 4. Synchronous RAM write access 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 5 of 13 

 

RAM read access example: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

63 73 81 90 86 88 90 91 -15 -10 -2 1 5 4 5

clk

raddr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q 63 73 81 90 86 88 90 91 -15 -10 -2 1 5 4 5

 
Figure 5. Synchronous RAM/ROM read access 

 

RAM read access waveform is also applicaple to on-chip ROM memories used. There is 
one cycle delay between read address and output data valid. 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 6 of 13 

4  
Registers 

There are no internal registers in the MDCT core.  



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 7 of 13 

5  
Clocks 

This section specifies all the clocks.  

There is only one clock used by core. 

 

Rates (MHz) Name Source 
Max Min Resolution 

Remarks Description 

clk Input Pad N/A N/A N/A Duty cycle N/A Core clock 
Table 1: List of clocks 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 8 of 13 

6  
IO Ports 

This section specifies the core IO ports. 

MDCT core has following ports:  

 
Figure 6. Core interface 

 
PIN width direction description 

clk 1 input clock 

rst 1 input async reset 

dcti 8 input input data 

idv 1 input input data valid (image sample) 

odv 1 output output data valid 

dcto 12 output output data (DCT transformed) 

odv1 1 output output data valid after 1st DCT stage (for debug) 

dcto1 12 output output data after 1st DCT stage (for debug) 

Table 2. Pins description 

 

 
odv 
dcto 
odv1 
dcto1 

clk 
rst 

dcti
idv 

MDCT 

core



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 9 of 13 

Appendix A  
Performance 

Core Performance/area with current implementation. 

Performance: 512 x 512 x 8 bit image is 2D DCT transformed in about 26.3 ms with 10 
MHz input clock. This gives 10 mega samples per second throughput with this frequency. 
When the pipeline is full new 2D DCT data is output on every clock cycle. Core latency 
is 85 clock cycles (time for latching first input to giving first DCT output). 

Area: 1550 slices and 2 RAMB16s Blockrams on Xilinx Spartan3 xc3s1000 device (45 
MHz max freq) with asynchronous on chip ROM. Using synchronous distributed ROM 
(with one clock delay) area is larger (1620 slices) but performance is better (55 MHz).  

 

 

 

 

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 10 of 13 

Appendix B  
Testbench 

Self-veryfing testbench included which takes matlab-converted image as input. Core 
transforms it to DCT coefficients and behavioral IDCT testbench code reconstructs from 
it original image. PSNR is computed between original and reconstructed image to find 
out error introduced by fixed point arithmetic, for sample Lena images PSNR is 48 dB. 

Matlab scripts are included for computing floating point DCT/IDCT as reference. Scripts 
for converting 8 bit bitmap to txt format readable by testbench and vice versa are also 
available. 
You can see here MDCT core-transformed image and reconstructed by behavioral IDCT.  

 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 11 of 13 

There are few Matlab scripts to aid core verification stored in ./Matlab directory: 

 

  dct_func.m 
Matlab dct_func() function which computes floating point 1D DCT using 
butterfly method. Warning: output from this function is transposed, so applying 
this function twice will produce 2D DCT without need to transpose after 1st stage. 

  dctf.m 
m-file for testing dct_func() operation. Before input is taken by dct_func() it is 
level shifted (128 number is subtracted from every input sample). M-file dctf.m 
also performs quantization after DCT for testing purposes using quantization 
matrix mentioned in JPEG STD. 

  dctm.m 
Computes 2D DCT using equation: 
 

 where C(u),C(v)  = 2-1/2 for u=0,v=0 

    = 1 otherwise  

 
This equation was used as reference for checking validity of row/column method. 
Before input is taken to equation above it is level shifted (128 number is 
subtracted from every input sample). 
 

  img2txt.m 
Converts bitmap (*.bmp) image to txt format readable by MDCT testbench core. 
If you want to use your own image for testing do the following: 

Set your bitmap filename in first line of img2txt.m and copy your bitmap to 
./Matlab folder. Run img2txt from Matlab – this will create txt file with extension 
*.txt and basename as your bmp filename. Then copy ‘filename’.txt to 
./SOURCE/TESTBENCH  and update constant FILEIN_NAME_C to match 
your image basename. Then you are good to go with running testbench. Note that 
image sizes (width, height) must be multiply of DCT block size which is set to 8. 

  txt2img.m 
Converts testbench output images (error image and reconstructed image) to JPEG 
format. After VHDL testbench finished testing, copy 
./SOURCE/TESTBENCH/imageo.txt and ./SOURCE/TESTBENCH/imagee.txt 
to ./MATLAB folder and run txt2img.m to obtain imageo.jpg and imagee.jpg. 
Then you can visually estimate if testing went good. 

 

2N 
1)v(2j 

cos 
2N

1)u (2i
cosy)x(x,C(v)C(u) 

 
2 

v) X(u, 
1 

j=0

1N              
  i=0N 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 12 of 13 

Testbench configurable constants 

There are few constants in MDCTTB_PKG.VHD package which configure testing 
environment: 

  ENABLE_QUANTIZATION_C  
When true testbench quantizes MDCT core output with quantization matrix given 
by Q_MATRIX_USED constant. So far two quantization matrices are supported: 
Q_JPEG_STD (from JPEG standard) and Q_CANON10D (used in Canon EOS 
digital camera, super fine quality). Warning: when you enable quantization no 
error checking is performed on image being transformed. 

  RUN_FULL_IMAGE 
When true, testbench transforms image with name from FILEIN_NAME_C 
constant. Can be set to false to speed up simulation – there are independent testing 
scenarios used before image transformation scenario. 

 

Testbench uses random number generator (RANDOM1.VHD) by Gnanasekaran 
Swaminathan to create different input loading of data to be transformed in one of test 
cases (ie. clock cycles between consecutive dcti samples). 

 

 
 



 OpenCores Specifications Template 4/26/2006 

 
 
www.opencores.org Rev 1.3 Preliminary 13 of 13 

Index  

This section contains an alphabetical list of helpful document entries with their 
corresponding page numbers. 


