
Instruction decoding

This document is the reference one about the

instruction decoding module included in the miniMIPS

core. It contains every details needed to better

understand the sources of the module and of course

to understand the functionning way of the core. The

reason of this module is also given.

The instruction formats

The goal of this stage is to decode an

instruction in order to produce the set of control and

data signals for the next stages. The way of

functionning is closely related to the format of the

processor miniMIPS instructions.

Basically, three types of formats exist. In each

format, different fields are defined. The table,

following, presents the formats.

Formats Bits 31 - 26 Bits 25 - 21 Bits 20 - 16 Bits 15 - 11 Bits 10 - 6 Bits 5 - 0

Registers op rs rt rd shamt funct

Immediate op rs rt imm

Jump op address

Table 1 : Instruction format

The signification of the different fields are as

following :

● The field op contains the type of instructions.

● The fields rs, rt and rd define the address in the

banks of registers (system coprocessor or the

GPRs). Those fields are the operands of the

instruction.

● The field shamt contain the shift of a shifter

operation.

● The field funct permits to define a type of

registers instruction.

● The field imm contains an immediate value as an

operand.

● The field address contains the address where to

jump.

The implementation of the decoding

In the current miniMIPS implementation, there

are more than fifty instructions. To permit this stage

to decode each instruction, a table is defiend

containing the different control signals according to

the op and funct fields. The table, following, contains

the signification of each entry of the instruction table.

Entry Signification

op_mode The signal op_mode defines the type of operations of the instruction. There

are four different operation modes. It is defined in instruction by the bits 31 to

26. The modes are :

● OP_SPECIAL : those instructions work in general with 3 registers.

● OP_REGIMM : those instructions are branch instructions which compare a register to

zero, but not all those instructions are OP_REGIMM.

● OP_COP0 : those instructions are instructions working specifically on the coprocessor

system.

● OP_NORMAL : all other instructions are in that mode.

By determining the mode of operation, the op_code signal can be decoded in

the instruction as the op_code is in different place in the instruciton according

to the op_mode. With that two signals, the instruction can be found in the

table.

op_code The pair of signals op_code and op_mode defines the instruction in the table.

bra The signal bra defines if the instruction is branch one.

link The signal link defines a branch with a link. That means that the return

address is saved in a register.

code_ual The signal code_ual defines the type of operations to execute in the alu.

op_mem The signal op_mem defines the instruction is a memory operation.

r_w If the instruction is a memory operation, the signal r_w defines a read or

write access.

mode For a branch instruction, defines if the address must be calculated with the

current PC or the first operand of the alu.

Entry Signification

off_sel The off_sel signal defines the calculation of the offset for an instruction

needing one. Four ways are possible to calculate an offset :

● OFS_PCTRL : the four upper bits of the PC is concatenated with the address field

(aligned on a word).

● OFS_NULL : no offset calculated.

● OFS_SESH : the imm field is signed extended and aligned on a word.

● OFS_SEXT : the imm field is signed extended

exc_cause This signal defines an unconditionnal type of exception.

cop_org1 This signal defines the origin of the first register : general purpose registers or

coprocessor system registers.

cop_org2 This signal defines the origin of the second register : general purpose

registers or coprocessor system registers.

cs_imm1 This signal defines if the operand 1 is an immediate value or a register value.

cs_imm2 This signal defines if the operand 2 is an immediate value or a register value.

imm1_sel When the operand 1 is an immediate value, imm1_sel selects zero as operand

or the field shamt.

imm2_sel When the operand 2 is an immediate value, imm2_sel selects the signed

extended or not field imm as operand.

level The signal level defines the stage where the result of the instruction is

available.

ecr_reg Defines if the instruction needs to write a register. This information is

necessary to determine the data hazards.

bank_des Defines which bank of register is selected for the writing of the register.

des_sel Defines which field of the register contains the register address :

● D_RT : for the field Rd

● D_RS : for the field Rs

● D_31 : for the instructions with link which implicitly use the GPR 31.

Table 2 : Instruction record

Once the instruction decoded, the stage sends

the data and control signals to the next stage

(Execution stage). Differents possibilities exist :

● if a reset appears, a nop instruction is sent.

● if the signal stop_all is asserted then nothing

happened and the last clocked informations are

keeped. That signal appears when a data read in

memory is not accessible at the moment.

● if a stop_di (data hazards) or a clear (bad branch

prediction) signal occurs then there is also a nop

instruction on the outputs.

● In the other cases, the current decoded

instruction is provided.

