
Branch Prediction

This document is the reference one about the

branch prediction module included in the miniMIPS

core. It contains every details needed to better

understand the sources of the module and of course

to understand the functionning way of the core. The

reason of this module is also given.

The need of branch prediction

In a processor core, as the miniMIPS, based

on a pipeline, the apparition of branch or jump

instruction launch branch hazards. Those are due to

the ignorance of the branch address calculation

result.

In order to continue the progress of the

pipeline, the result must be known immediatly.

Different solutions are possible. First, the first pipeline

stage can be locked and wait for the result of the

branch instruction. That solution means that at each

branch instruction, clock cycles are lost. In our case,

it is 3.

The next solution is to anticipate the result of

the branch address calculation. That means to

predict the result. If the prediction is true then no

cycle is lost. Of course there is a cost if the

prediction is wrong. In that case, 3 cycles are also

lost. This solution is supposing that a branch

instruction result is frequently the same. As in many

programs there are loops that may be a good

solution. Of course that implies more hardware to

implement such a solution than for the first solution.

Thus the choice to predict becomes a

necessity as we need a performant execution for

our core. The saving time may be very interesting in

many programs.
Illustration 1 : Branch hazard resolution with method 1

I5 I4 I3 I1I2

PF EI DI MEMEX

I5 Stall I4 I2I3

I5 Stall Stall I3I4

I49 Stall Stall I4Stall

Cycle n

Cycle n+1

Cycle n+2

Cycle n+3

The state are seen at the pipeline stage output

Illustration 2 : Bad prediction to resolve branch hazard

I5 I4 I3 I1I2

PF EI DI MEMEX

I49 I5 I4 I2I3

I50 I49 I5 I3I4

I51 I50 I49 I4I5

Cycle n

Cycle n+1

Cycle n+2

Cycle n+3

The state are seen at the pipeline stage output

I6 clear clear I5clearCycle n+4

The principle of the prediction

As said just before, branch predictions are a

mean to reduce the cost of a branch hazards by

anticipating the result of a branch. This section gives

the principle of that method.

The idea is to save the last branch

instructions results and for that a table of prediction

must be designed and maintained during the

execution. The contents of that table should be at

least :

● the branch address

● the result of the branch.

Three main actions must be done to achieve

predictions and maintain the table :

● check if the current instruction address match

with one in the prediction table. If there is a

match, then branch automatically to the result of

the branch.

● check if a new branch instruction has appeared in

the pipeline. In that case, store in the table the

new instruction and as the result of the branch,

the next instruction must be taken in account.

● check if the prediction is ok. If the response is

affirmative, nothing happens. In the other case,

the pipeline must be cleared to delete the wrong

instructions.

The implementation in the miniMIPS

The entity predict is the module which does

the branch prediction. The table of predictions

contains records that are defined with the signals as

follow :

● is_affected : a bit signal. When asserted, that

means the record contains valid datas.

● last_bra : a bit signal. When asserted, that

means that the last execution of the instruction

had a confirmed test result.

● code_bra : a 32 bits large signal. Contains the

address of the branch instruction.

● bra_adr : a 32 bits large signal. Contains the

branch address result of the last execution.

Three pipeline stage are directly concerned

by the branch prediction : PF, DI and EX.

First of all, the predict entity try to find a

match to the PC actually in the PF_pc register. If a

match is asserted then the signal PR_bra_cmd is

asserted to perform a new PC and PR_bra_adr

gives that PC which is determined thanks to the

bra_adr signal from the matched prediction record.

If a data hazard has appeared just an instruction

before then the hazard resolution is executed first.

Then, the predict entity try to find a match to

the current PC in the DI_adr register. If the match

is ok then nothing happens as the branch instruction

is already registered. In the other case, if the

current PC is the address of a branch instruction

(defined by the DI_bra signal), a new record is

affected. An older record may be erased. The

next_out signal defined the next record to be

cleared. For now, the arbitration of the next_out

signal is simply the oldest one.

The last step of the prediction is to check if the

predictions are ok. That can be done with the result

from the EX pipeline stage. In that stage the branch

address result and the test result are achieved. The

only things to do is to compare the last_bra signal

with the EX_bra_confirm signal which asserts if the

test result is ok and to compare the branch address

result (EX_adresse) with bra_adr signal. If the

comparison are true then all gets its own way. If

one of the comparison is wrong then the pipeline

must be cleared (EI, DI and EX stages only) by

setting PR_clear, the PC must be changed to the

right address by setting PR_bra_bad and

PR_bra_adr and the table of prediction must be

updated with the new results.

The illustration following present the mapping

of the predict component in the pipeline.

Illustration 3 : Mapping of the predict component

PF EI DI EX MEM

Predict
PR_bra_cmd

PR_bra_adr

PF_pc DI_bra

DI_adr

EX_bra_confirm

EX_adresse

EX_adr

PR_clear

PR_bra_bad

