
ADD Add Word ADDI Add Immediate Word

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
ADD

1 0 0 0 0 0

Format : ADD rd, rs, rt

Fonction : To add 32-bit integers. If an overflow occurs, then trap.

Description : rd rs + rt 

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to
produce a 32-bit result. If the addition results in 32-bit 2’s complement arith-
metic overflow, the destination register is not modified and an Integer
Overflow exception occurs. If the addition does not overflow, the 32-bit result
is placed into GPR rd.

Restrictions : None

Exceptions : Integer Overflow

Notes : ADDU performs the same arithmetic operation but does not trap on
overflow.

31 26 25 21 20 16 15 11 10 6 5 0

ADDI
0 0 1 0 0 0 rs rt immediate

Format : ADDI rt, rs, immediate

Fonction : To add a constant to a 32-bit integer. If overflow occurs, then
trap.

Description : rt rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to pro-
duce a 32-bit result. If the addition results in 32-bit 2’s complement arithme-
tic overflow, the destination register is not modified and an Integer Overflow
exception occurs. If the addition does not overflow, the 32-bit result is pla-
ced into GPR rt.

Restrictions : None

Exceptions : Integer Overflow

Notes : ADDIU performs the same arithmetic operation but does not trap on
overflow.

31 26 25 21 20 16 15 0



ADDIU Add Immediate Unsigned Word ADDU Add Unsigned Word

ADDIU
0 0 1 0 0 1 rs rt Immediate

Format : ADDIU rt, rs, immediate

Fonction : To add a constant to a 32-bit integer

Description : rt rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the
32-bit arithmetic result is placed into GPR rt. No Integer Overflow exception
occurs under any circumstances.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
ADDU

1 0 0 0 0 1

Format : ADDU rd, rs, rt

Fonction : To add 32-bit integers

Description : rd rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and
the 32-bit arithmetic result is placed into GPR rd. No Integer Overflow
exception occurs under any circumstances.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



AND And ANDI And Immediate

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
AND

1 0 0 1 0 0

Format : AND rd, rs, rt

Fonction : To do a bitwise logical AND

Description : rd rs AND rt 

The contents of GPR rs are combined with the contents of GPR rt in a bit-
wise logical AND operation. The result is placed into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

ANDI
0 0 1 1 0 0 rs rt immediate

Format : ANDI rt, rs, immediate

Fonction : To do a bitwise logical AND with a constant 

Description : rt rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the
contents of GPR rs in a bitwise logical AND operation. The result is placed
into GPR rt.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0



BEQ Branch on Equal BGEZ

BEQ
0 0 0 1 0 0 rs rt offset

Format : BEQ rs, rt, offset

Fonction : To compare GPRs then do a PC-relative conditional branch

Description : if rs = rt then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs and GPR rt are equal, branch to the effective target add-
ress after the instruction in the delay slot is executed.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 Kbytes. Use jump (J) or jump register (JR) instructions to
branch to addresses outside this range.

31 26 25 21 20 16 15 0

Branch on Greater Than or Equal to Zero

REGIMM
0 0 0 0 0 1 rs BGEZ

0 0 0 0 1 offset

Format : BGEZ rs, offset

Fonction : To test a GPR then do a PC-relative conditional branch

Description : if rs >= 0 then branch
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs are greater than or equal to zero (sign bit is 0), branch
to the effective target address after the instruction in the delay slot is execu-
ted.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump (J) or jump register (JR) instructions to
branch to addresses outside this range.

31 26 25 21 20 16 15 0



BGEZAL Branch on Greater than or Equal to Zero And Link BGTZ Branch on Greater Than Zero

REGIMM
0 0 0 0 0 1 rs BGEZAL

1 0 0 0 1 offset

Format : BGEZAL rs, offset

Fonction : To test a GPR then do a PC-relative conditional procedure call

Description : if rs >= 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the
second instruction following the branch, where execution continues after a
procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address.
If the contents of GPR rs are greater than or equal to zero (sign bit is 0),
branch to the effective target address after the instruction in the delay slot is
executed.

Restrictions : GPR 31 must not be used for the source register rs, becau-
se such an instruction does not have the same effect when reexecuted. The
result of executing such an instruction is UNPREDICTABLE. This restriction
permits an exception handler to resume execution by reexecuting the
branch when an exception occurs in the branch delay slot.

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump and link (JAL) or jump and link register
(JALR) instructions for procedure calls to addresses outside this range.

BGTZ
0 0 0 1 1 1 rs 0

0 0 0 0 0 offset 

Format : BGTZ rs, offset

Fonction : To test a GPR then do a PC-relative conditional branch

Description : if rs > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs are greater than zero (sign bit is 0 but value not zero),
branch to the effective target address after the instruction in the delay slot is
executed.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump (J) or jump register (JR) instructions to
branch to addresses outside this range.

31 26 25 21 20 16 15 031 26 25 21 20 16 15 0



BLEZ Branch on Less Than or Equal to Zero BLTZ Branch on Less Than Zero

BLEZ
0 0 0 1 1 0 rs 0

0 0 0 0 0 offset

Format : BLEZ rs, offset

Fonction : To test a GPR then do a PC-relative conditional branch

Description : if rs <= 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs are less than or equal to zero (sign bit is 1 or value is
zero), branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump (J) or jump register (JR) instructions to
branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM
0 0 0 0 0 1 rs BLTZ

0 0 0 0 0 offset

Format : BLTZ rs, offset

Fonction : To test a GPR then do a PC-relative conditional branch

Description : if rs < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs are less than zero (sign bit is 1), branch to the effective
target address after the instruction in
the delay slot is executed.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump and link (JAL) or jump and link register
(JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 11 10 6 5 0



BLTZAL Branch on Less Than Zero And Link BNE Branch on Not Equal

REGIMM
0 0 0 0 0 1 rs BLTZAL

1 0 0 0 0 offset

Format : BLTZAL rs, offset

Fonction : To test a GPR then do a PC-relative conditional procedure call

Description :  if (rs < 0) then procedure_call

Place the return address link in GPR 31. The return link is the address of the
second instruction following the branch, where execution continues after a
procedure call. An 18-bit signed offset (the 16-bit offset field shifted left 2
bits) is added to the address of the instruction following the branch (not the
branch itself), in the branch delay slot, to form a PC-relative effective target
address. If the contents of GPR rs are less than zero (sign bit is 1), branch
to the effective target address after the instruction in the delay slot is execu-
ted.

Restrictions : GPR 31 must not be used for the source register rs, becau-
se such an instruction does not have the same effect when reexecuted. The
result of executing such an instruction is UNPREDICTABLE. This restriction
permits an exception handler to resume execution by reexecuting the
branch when an exception occurs in the branch delay slot.

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump and link (JAL) or jump and link register
(JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

BNE
0 0 0 1 0 1 rs rt offset

Format : BNE rs, rt, offset

Fonction : To compare GPRs then do a PC-relative conditional branch

Description : if rs != rt then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs and GPR rt are not equal, branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions : None

Exceptions : None

Notes : With the 18-bit signed instruction offset, the conditional branch
range is ± 128 KBytes. Use jump (J) or jump register (JR) instructions to
branch to addresses outside this range.

31 26 25 21 20 16 15 0



BREAK Break Point COP0 Coprocessor system operation

SPECIAL
0 0 0 0 0 0 Code BREAK

0 0 1 1 0 1

Format : BREAK

Fonction : To cause a Breakpoint exception

Description : 

A breakpoint exception occurs, immediately and unconditionally transferring
control to the exception handler. The code field is available for use as soft-
ware parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions : None

Exceptions : Breakpoint

Notes : None

31 26 25 6 5 0

Format : COP0 cop_fun

Fonction : Execute a coprocessor system function

Description :

The coprocessor instruction defined by the cop_fun field is done by the
coprocessor system. The different instructions are detailed in the coproces-
sor specifications.

Restrictions : None

Exceptions : None

Notes : None

COP0
0 1 0 0 0 0

MF
0 0 0 0 1 cop_fun

31 26 25 21 20 0



J Jump

J
0 0 0 0 1 0 instr_index

Format : J  target

Fonction : To branch within the current 256 MB-aligned region

Description :

This is a PC-region branch (not PC-relative); the effective target address is
in the “current” 256 MB-aligned region. The low 28 bits of the target address
is the instr_index field shifted left 2 bits. The remaining upper bits are the
corresponding bits of the address of the instruction in the delay slot (not the
branch itself).

Restrictions : None

Exceptions : None

Notes : Forming the branch target address by catenating PC and index bits
rather than adding a signed offset to the PC is an advantage if all program
code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an
action not allowed by a signed relative offset.

31 26 25 0

JAL Jump And Link

JAL
0 0 0 0 1 1 instr_index

Format : JAL target

Fonction : To execute a procedure call within the current 256 MB-aligned
region

Description :

Place the return address link in GPR 31. The return link is the address of the
second instruction following the branch, at which location execution conti-
nues after a procedure call. This is a PC-region branch (not PC-relative); the
effective target address is in the “current” 256 MB-aligned region. The low
28 bits of the target address is the instr_index field shifted left 2 bits. The
remaining upper bits are the corresponding bits of the address of the instruc-
tion in the delay slot (not the branch itself).

Restrictions : None

Exceptions : None

Notes : Forming the branch target address by catenating PC and index bits
rather than adding a signed offset to the PC is an advantage if all program
code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an
action not allowed by a signed relative offset.

31 26 25 0



JR Jump Register

SPECIAL
0 0 0 0 0 0 rs 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JR

0 0 1 0 0 0

Format : JR rs

Fonction : To execute a branch to an instruction address in a register

Description : PC rs

Jump to the effective target address in GPR rs.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 6 5 0

JALR Jump And Link Register

SPECIAL
0 0 0 0 0 0 rs 0

0 0 0 0 0 rd 0
0 0 0 0 0

JALR
0 0 1 0 0 1

Format : JALR  rs   (rd = 31 implicite)
JALR  rd, rs

Fonction : To execute a procedure call to an instruction address in a regis-
ter

Description : rd return_addr, PC rs

Place the return address link in GPR rd. The return link is the address of the
second instruction following the branch, where execution continues after a
procedure call.

Restrictions : Register specifiers rs and rd must not be equal, because
such an instruction does not have the same effect when reexecuted. The
result of executing such an instruction is UNPREDICTABLE. This restriction
permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.

Exceptions : None

Notes : This is the only branch-and-link instruction that can select a register
for the return link; all other link instructions use GPR 31. The default regis-
ter for GPR rd, if omitted in the assembly language instruction, is GPR 31.

31 26 25 21 20 16 15 11 10 6 5 0



LUI Load Upper Immediate LW Load Word

LUI
0 0 1 1 1 1

0
0 0 0 0 0 rt immediate

Format : LUI rt, immediate

Fonction : To load a constant into the upper half of a word

Description : rt immediate | | 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of
low-order zeros. The 32-bit result is placed into GPR rt.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0

LW
1 0 0 0 1 1 base rt offset

Format : LW rt, offset(base)

Fonction : To load a word from memory as a signed value

Description : rt memory[base+offset]

The contents of the 32-bit word at the memory location specified by the ali-
gned effective address are fetched, sign-extended to the GPR register
length if necessary, and placed in GPR rt. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0



LWC0 Load Word to Coprocessor System

LWC0
1 1 0 0 0 0 base cs offset

Format : LWC0 cs, offset(base)

Fonction : To load a word from memory to an coprocessor system register.

Description : cs memory[base+offset]

The contents of the 32-bit word at the memory location specified by the ali-
gned effective address are fetched and placed into the coprocessor 0 gene-
ral register cs. The 16-bit signed offset is added to the contents of GPR base
to form the effective address.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0

MFC0 Move From Coprocessor System

COP0
0 1 0 0 0 0

MF
0 0 0 0 0 rt cs 0 0 0 0 0 0 0 0 0 0 0

Format : MFC0 rt, cs

Fonction : To move the contents of a coprocessor 0 register to a general
register.

Description : rt cs

The contents of the coprocessor 0 register cs is loaded into general register
rt.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 0



MFHI Move From HI register

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 rd 0

0 0 0 0 0
MFHI

0 1 0 0 0 0

Format : MFHI rd

Fonction : To copy the special purpose HI register to a GPR

Description : rd HI

The contents of special register HI are loaded into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 16 15 11 10 6 5 0

MFLO Move From LO register

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 rd 0

0 0 0 0 0
MFLO

0 1 0 0 1 0

Format : MFLO rd

Fonction : To copy the special purpose LO register to a GPR

Description : rd LO

The contents of special register LO are loaded into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 16 15 11 10 6 5 0



MTC0 Move To Coprocessor System

COP0
0 1 0 0 0 0

MT
0 0 1 0 0 rt cs 0 0 0 0 0 0 0 0 0 0 0

Format : MTC0 rt, cs

Fonction : To move the contents of a general register to a coprocessor 0
register.

Description : cs rt

The contents of general register rt are loaded into the coprocessor 0 regis-
ter rd

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 0

MTHI Move To HI register

SPECIAL
0 0 0 0 0 0 rs 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MTHI

0 1 0 0 0 1

Format : MTHI rs

Fonction : To copy a GPR to the special purpose HI register

Description : HI rs

The contents of GPR rs are loaded into special register HI.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 6 5 0



MTLO Move To LO register

SPECIAL
0 0 0 0 0 0 rs 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MTLO

0 1 0 0 1 1

Format : MTLO rs

Fonction : To copy a GPR to the special purpose LO register

Description : HI rs

The contents of GPR rs are loaded into special register LO.

Restrictions : None

Exceptions : None 

Notes : None

31 26 25 21 20 6 5 0

MULT Multiply Word

SPECIAL
0 0 0 0 0 0 rs rt 0

0 0 0 0 0 0 0 0 0 0
MULT

0 1 1 0 0 0

Format : MULT rs, rt

Fonction : To multiply 32-bit signed integers

Description : (LO, HI) rs x rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs,
treating both operands as signed values, to produce a 64-bit result. The low-
order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is splaced into special register HI. No arithmetic
exception occurs under any circumstances.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 6 5 0



MULTU Multiply Unsigned Word

SPECIAL
0 0 0 0 0 0 rs rt 0

0 0 0 0 0 0 0 0 0 0
MULTU

0 1 1 0 0 1

Format : MULTU rs, rt

Fonction : To multiply 32-bit unsigned integers

Description : (LO, HI) rs x rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs,
treating both operands as unsigned values, to produce a 64-bit result. The
low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is placed into special register HI. No arithmetic
exception occurs under any circumstances.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 6 5 0

NOR Not Or

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
NOR

1 0 0 1 1 1

Format : NOR rd, rs, rt

Fonction : To do a bitwise logical NOT OR

Description : rd rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bit-
wise logical NOR operation. The result is placed into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



OR Or

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
OR

1 0 0 1 0 1

Format : OR rd, rs, rt

Fonction : To do a bitwise logical OR

Description : rd rs OR rt

The contents of GPR rs are combined with the contents of GPR rt in a bit-
wise logical OR operation. The result is placed into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

ORI Or Immediate

ORI
0 0 1 1 0 1 rs rt immediate

Format :  ORI rt, rs, immediate

Fonction : To do a bitwise logical OR with a constant

Description : rt rs OR immediate

The 16-bit immediate is zero-extended to the left and combined with the
contents of GPR rs in a bitwise logical OR operation. The result is placed
into GPR rt.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0



SLL Shift Word Left Logical

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 rt rd sa SLL

0 0 0 0 0 0

Format : SLL rd, rt, sa

Fonction : To left-shift a word by a fixed number of bits

Description : rd rt << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting
zeros into the emptied bits; the word result is placed in GPR rd. The bit-shift
amount is specified by sa.

Restrictions : None

Exceptions : None

Notes : SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to
denote no operation.

31 26 25 21 20 16 15 11 10 6 5 0

SLLV Shift Word Left Logical Variable

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SLLV

0 0 0 1 0 0

Format : SLLV rd, rt, rs

Fonction :To left-shift a word by a variable number of bits

Description : rd rt << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting
zeros into the emptied bits; the result word is placed in GPR rd. The bit-shift
amount is specified by the low-order 5 bits of GPR rs.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SLT Set On Less Than

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SLT

1 0 1 0 1 0

Format : SLT rd, rs, rt

Fonction : To record the result of a less-than comparison

Description : rd (rs < rt)

Compare the contents of GPR rs and GPR rt as signed integers and record
the Boolean result of the comparison in GPR rd. If GPR rs is less than GPR
rt, the result is 1 (true); otherwise, it is 0 (false). The arithmetic comparison
does not cause an Integer Overflow exception.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

SLTI Set on Less Than Immediate

SLTI
0 0 1 0 1 0 rs rt immediate

Format : SLTI rt, rs, immediate

Fonction : To record the result of a less-than comparison with a constant

Description : rt (rs < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed
integers and record the Boolean result of the comparison in GPR rt. If GPR
rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false). The
arithmetic comparison does not cause an Integer Overflow exception.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0



SLTIU Set on Less Than Immediate Unsigned

SLTIU
0 0 1 0 1 1 rs rt immediate

Format : SLTIU rt, rs, immediate

Fonction : To record the result of an unsigned less-than comparison with a
constant

Description : rt (rs < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as
unsigned integers and record the Boolean result of the comparison in GPR
rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0
(false). The arithmetic comparison does not cause an Integer Overflow
exception.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 0

SLTU Set on Less Than Unsigned

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SLTU

1 0 1 0 1 1

Format : SLTU rd, rs, rt

Fonction : To record the result of an unsigned less-than comparison

Description : rd (rs < rt)

Compare the contents of GPR rs and GPR rt as unsigned integers and
record the Boolean result of the comparison in GPR rd. If GPR rs is less than
GPR rt, the result is 1 (true); otherwise, it is 0 (false). The arithmetic compa-
rison does not cause an Integer Overflow exception.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SRA Shift Word Right Arithmetic

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 rt rd sa SRA

0 0 0 0 1 1

Format : SRA rd, rt, sa

Fonction : To execute an arithmetic right-shift of a word by a fixed number
of bits

Description : rd rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, dupli-
cating the sign-bit (bit 31) in the emptied bits; the word result is placed in
GPR rd. The bit-shift amount is specified by sa.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

SRAV Shift Word Right Arithmetic Variable

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SRAV

0 0 0 1 1 1

Format : SRAV rd, rt, rs

Fonction : To execute an arithmetic right-shift of a word by a variable num-
ber of bits

Description : rd rt >> rs  (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, dupli-
cating the sign-bit (bit 31) in the emptied bits; the word result is placed in
GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SRL Shift Word Right Logical

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 rt rd sa SRL

0 0 0 0 1 0

Format : SRL rd, rt, sa

Fonction : To execute a logical right-shift of a word by a fixed number of bits

Description : rd rt >> sa

The contents of the low-order 32-bit word of GPR rt are shifted right, inser-
ting zeros into the emptied bits; the word result is placed in GPR rd. The bit-
shift amount is specified by sa.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

SRLV Shift Word Right Logical Variable

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SRLV

0 0 0 1 1 0

Format : SRLV rd, rt, rs

Fonction : To execute a logical right-shift of a word by a variable number of
bits

Description : rd rt >> rs

The contents of the low-order 32-bit word of GPR rt are shifted right, inser-
ting zeros into the emptied bits; the word result is placed in GPR rd. The bit-
shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SUB Substract Word

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SUB

1 0 0 0 1 0

Format : SUB rd, rs, rt

Fonction : To subtract 32-bit integers. If overflow occurs, then trap

Description : rd rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR
rs to produce a 32-bit result. If the subtraction results in 32-bit 2’s comple-
ment arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is
placed into GPR rd.

Restrictions : None

Exceptions : Integer Overflow

Notes : SUBU performs the same arithmetic operation but does not trap on
overflow. 

31 26 25 21 20 16 15 11 10 6 5 0

SUBU Substract Unsigned Word

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
SUBU

1 0 0 0 1 1

Format : SUBU rd, rs, rt

Fonction : To subtract unsigned 32-bit integers

Description : rd rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR
rs and the 32-bit arithmetic result is and placed into GPR rd. No integer over-
flow exception occurs under any circumstances.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SW Store Word

SW
1 0 1 0 1 1 base rt offset

Format : SW rt, offset(base)

Fonction : To store a word to memory

Description : memory[base+offset] rt

The least-significant 32-bit word of register rt is stored in memory at the
location specified by the aligned effective address. The 16-bit signed offset
is added to the contents of GPR base to form the effective address.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0

SWC0 Store Word From Coprocessor System

SWC0
1 1 1 0 0 0 base cs offset

Format : SW cs, offset(base)

Fonction : To store a word from an COP0 register to memory

Description : memory[base+offset] cs

The word from COP0 cs is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents
of GPR base to form the effective address.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



SYSCALL System Call

SPECIAL
0 0 0 0 0 0 Code SYSCALL

0 0 1 1 0 0

Format : SYSCALL

Fonction : To cause a System Call exception

Description :

A system call exception occurs, immediately and unconditionally transferring
control to the exception handler. The code field is available for use as soft-
ware parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions : None

Exceptions : System Call

Notes : None

31 26 25 6 5 0

XOR Exclusive Or

SPECIAL
0 0 0 0 0 0 rs rt rd 0

0 0 0 0 0
XOR

1 0 0 1 1 0

Format : XOR rd, rs, rt

Fonction : To do a bitwise logical Exclusive OR

Description : rd rs XOR rt

LCombine the contents of GPR rs and GPR rt in a bitwise logical Exclusive
OR operation and place the result into GPR rd.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0



XORI Exclusive Or Immediate

XORI
0 0 1 1 1 0 rs rt immediate

Format :  XORI rt, rs, immediate

Fonction : To do a bitwise logical Exclusive OR with a constant

Description : rt rs XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in
a bitwise logical Exclusive OR operation and place the result into GPR rt.

Restrictions : None

Exceptions : None

Notes : None

31 26 25 21 20 16 15 11 10 6 5 0


