Minimal OpenRISC System on Chip
FAQ

Adaptation

How to adapt the firmware to my implementation?
Answer:
1. edit minsoc/sw/support/orp.ld line 14 LENGTH = 0x00006E00 to

a) your memory amount in Bytes 4.2 MFMORMAPRVIDTI “\yhere MEMORYADRWIDTH is
defined in "define MEMORY ADR WIDTH in “minsoc/rtl/verilog/minsoc defines.v”

4.0 MEMORYADRWIDTH minus ORIGIN = 0x00001200
e.g. =32, ytes = 0x =0x —0x =0x
4*2°13=32,768 B 0x8000 | LENGTH = 0x8000 — 0x1200 = 0x6E00

2. select your STACK size on “minsoc/sw/support/board.h” line 16 #define STACK SIZE
0x01000

a) change your IN_ CLK if not using 25000000 (25MHz)

How to configure the simulation
Answer:
1. configure your system: “minsoc/rtl/verilog/minsoc_defines.v”

a) You can uncomment ETHERNET on “minsoc_defines.v” to input data to the SoC's Ethernet
interface and read data from it.

2. configure “minsoc/bench/verilog/minsoc_bench defines.v”

a) Your testbench will use a memory model, not actually the same memory controller the
implementation uses. This enables the option “"define INITTALIZE MEMORY MODEL”,
where the firmware is loaded to the memory before testbench start.

b) You may use the actual implementation memory:
» comment “'define INITIALIZE MEMORY MODEL”
» edit “minsoc/sim/run/generate_bench”
* substitute “../bin/minsoc_model.txt” for “../bin/minsoc_memory.txt”

» You might want to uncomment ““define START UP”, it loads the firmware to a SPI
memory. At start of testbench the system reads this memory and loads the firmware to
main memory. Takes +-3 min. This is possible to be used for a real system, all you have
to do is uncomment “*define START UP” from “minsoc/rtl/verilog/minsoc_defines.v”.

3. Modify testbench as you please.

Please refer to “minsoc.pdf” chapter 4 Simulation for more information.

Is it possible to debug the simulation as | debug the firmware running on
my board?

Answer: Yes
Open 3 terminals:
1. terminal 1: from minsoc/sim/run/
a) ./generate_bench
b) ./run_bench <your firmware.hex>
» ./run_bench ../../sw/uart/uart-nocache-twobyte-sizefirst.hex
2. terminal 2: from minsoc/sim/run
a) ./start server
3. terminal 3: at minsoc/sw/uart
a) or32-elf-gdb uart-nocache.or32
b) target remote :9999
c¢) load
» if you have INITIALIZE MEMORY_ MODEL enabled you don't have to do this

» if you have START UP and waited for the message: “Memory start-up completed...”
you also don't need this

d) set $pc=0x100

e) ¢

My device is full, can I reduce the used logic of the SoC?
Answer: yes

1. configure minsoc/rtl/verilog/or1200/rtl/verilog/or1200 defines.v (recommended values for
different devices under synthesis_examples.pdf)

a) Target FPGA memories (OR1200 XILINX RAMBI16 for Xilinx, Spartan 3 and above,
OR1200_ALTERA _LPM for all Altera)

(if you do this, check: I have generate bench errors, what happened?)

b) Type of register file RAM (OR1200_ RFRAM_GENERIC, OR1200 RFRAM_ TWOPORT
or OR1200 RFRAM DUALPORT) (dual port is supported by Xilinx BRAM and Altera)

(select only one of the three)

» if Altera: include "define OR1200 ALTERA LPM_ XXX (right under "define

OR1200_ ALTERA _LPM if you wish)
¢) comment ‘define OR1200 PM_IMPLEMENTED
d) If not using Linux you can:
» uncomment "define OR1200 NO DC
» uncomment "define OR1200 NO IC
» uncomment ‘define OR1200 NO DMMU
» uncomment ‘define OR1200 NO IMMU
» comment out "define OR1200 CFGR IMPLEMENTED
e) If you don't need multiplication, mac operations or divisions
» comment out ‘define OR1200 MULT IMPLEMENTED
» comment out ‘define OR1200 MAC_IMPLEMENTED

» comment out "define OR1200 DIV _IMPLEMENTED

(If you do this, change sw/support/Makefile.inc line 7: GCC_OPT=-mhard-mul -g to
GCC_OPT=-msoft-mul -g)

Problems

I have generate bench errors, what happened?

Answer:

foo@ubuntu:~/minsoc/sim/run$./generate_bench
..I../bench/verilog/minsoc_bench.v:590: error: Could not find variable
““minsoc_top 0.0r1200_top.or1200_cpu.or1200 rf.rf_a.ramb16_s36_s36.mem" in
““minsoc_bench.init_fpga_memory"

.J../bench/verilog/minsoc_bench.v:591: error: Could not find variable
“minsoc_top_0.0r1200_top.or1200 cpu.or1200 rf.rf_b.ramb16_s36_s36.mem" in
““minsoc_bench.init_fpga_memory"

2 error(s) during elaboration.

foo@ubuntu:~/minsoc/sim/run$

You tried to use the Xilinx RAM or your specific memory, by uncommenting the 'define
OR1200 XILINX RAMBI16 or others in the minsoc/rtl/verilog/or1200/rtl/verilog/or1200_defines.v
file.

On or1200 r3 the register file, or1200 rf.v, always instantiates a generic memory for DUAL PORT
RAM. Previously it instantiated a target specific or generic memory depending on your sets of

or1200 defines.v.

Since the CPU does not work if the registers aren't set to zero previous to simulation start, my testbench
especifically set the memory content of the registers to zero, before simulation start. I didn't try to find
out why this is like that, I only noticed it was that way.

First, I commented out the initialization for dual port RAM to test if the new memory would work. The
simulation failed as it did before.

I could include a new initialization for the new memory. Because the new memory is generic and [
believe target specific memory should be used whenever possible, I'd recommend you to switch it back
to the way it was before and not to touch the memory initializations:

On or1200 rf.v: lines 304 and 280 edit this way:

line 304:
or1200_dpram_32x32
rf b

(

.rst_a(rst),

.rst_b(rst),
.0e_a(1'b1),

/[Port A

.clk_a(clk),
.ce_a(rf_enb),

line 280:
/* or1200_dpram #

(

.aw(5),
.dw(32)

)"/
or1200_dpram_32x32
rf a

(

.rst_a(rst),
.rst_b(rst),
.0e_a(1'b1),

// Port A
.clk_a(clk),
.ce_a(rf_ena),

This might be a typo or maybe a work around for something else. That's something the OpenRISC
developers have to tell us. It is remarkable that both, OR1200 RFRAM_ GENERIC and

OR1200 TWOPORT are exactly the way there were before. However, the
OR1200 RFRAM DUALPORT uses now a new module, which is basically an adaptation of the
OR1200_ RFRAM_GENERIC one, but with DUALPORT, of course.

MinSoC firmwares won't compile.

Answer: all sw from minsoc has been compiled with the regular GNU toolchain installed by the script
under http://www.opencores.org/openrisc.gnu_toolchain . Therefore it uses uClibc not newlib.
Precisely that might be your error.

http://www.opencores.org/openrisc,gnu_toolchain

Tweaks

I want my design to automatically initialize my firmware on power-up, how

do I do that?

Answer: Nowadays there are 3 options to do that:

1)

2)

3)

MinSoC comprehends the standard of them which is based on the project OR1k Start-up from
OpenCores. At system power-up the CPU's program counter is jumped to the OR1k Start-up
module by a Start-up Starter module (inside of minsoc_top.v). The OR1k Start-up contains a
hardwired code which reads the data from a SPI memory and copy it to main memory. The
amount of data copied is decided upon reading of the first 32 bits of the SPI memory, which
must contain the firmware's size. After the code has been completely copied, it restarts the CPU.

To use this, all you have to do is uncomment “*define START UP” from “minsoc_defines.v”.
Don't forget to load the hex file created by the project's Makefiles into the SPI memory, so
actually your firmware is copied to the main memory. The hex file is created from the or32
executable by the project's existing Makefiles.

Everytime the firmware is updated it has to be uploaded to the SPI memory.
You can read about it in more detail in the minsoc.pdf file chapter 2.3 Start-Up Modules.

Advantages: works with any memory type. The speed will be the speed needed by the memory
programmer to program the external SPI memory. After that you press the reset button and the
firmware will be loaded from the SPI memory by the system. It will then be run.

Drawback: no debugging, somewhat bigger SoC, required onboard SPI flash.

A Xilinx approach has been implemented by Ravi Kumar. A similar Altera approach has been
implemented by “sotusotu”. This approach creates a memory initialization file off the firmware
executable file, which is then linked to “minsoc_onchip ram_top.v”.

Everytime the firmware is changed the synthesizer and P&R must be run for the SoC.
Link Xilinx: http://opencores.org/forum,OpenRISC.0,3628.0 post 9.
Link Altera: http://opencores.org/forum.OpenRISC.0.3749 post 5.

Advantages: once you have a target firmware, it will be on RAM right after FPGA
configuration.

Drawbacks: you have to re-synthesize, re-place&Route to create the bitfile with the firmware,
no debugging, only works with onchip-RAM.

The XSOC project has yet another approach to pre-initialize the memory with a firmware. They
have created a Perl script, that update the SoC resulting bitfile substituting the memory
initialization with the target firmware.

The difference to approach 2 is that approach 2 requires new run of the synthesizer & P&R in
order to exchange the firmware, while this directly updates the bitfile result of that very process.
After that only a FPGA configuration is necessary to have the new firmware.

Link: http://pm.stu.cn.ua/wiki/10/Getting_started “Updating bitstream with new software”

Advantages: high speed,on RAM right after FPGA configuration.
Drawbacks: no debugging, only works with onchip-RAM.

http://pm.stu.cn.ua/wiki/10/Getting_started
http://opencores.org/forum,OpenRISC,0,3749
http://opencores.org/forum,OpenRISC,0,3628,0

I want to compile my firmware independent of MinSoC library but it does
not work, what am | doing wrong?

Short example: user “ag1986” says: “test.c

#include stdio.h
int main()
{inta,b,c;
a=5;b=10;
c=a+b;

}

binary generation: “or32-elf-gcc test.c -o test.or32”
simulating using “orlk-sim: or32-elf-sim -f sim.cfg --enable-profile test.or32” does not work.”

Answer: You need a "bootloader" in order to make your software work.

I will try to clearly explain its task in the following lines by comparing it to you running a program on
your own operating system.

When you type in the "linux shell" "Is" or "dir" in "windows command prompt", the operating system
creates a new process for this program; set a runnable environment for it, with stack, registers and
memory; and then at some point set the program counter to the start of your program.
(http://en.wikipedia.org/wiki/Process_fork).

The key points here are, you are creating a binary which:
-does not have any information about position in memory
-you are not initializing a stack

-you are not initializing registers

-you are not saying how much memory is available

And without these, your software will simply not work. For instance, if your binary will be located
starting at address 0x00, your software will not be ever executed from the beginning by the OpenRISC
since it resets to 0x100 and go then onwards until memory finishes.

So, how do I solve this? Generally you cannot directly set registers in C, so you actually need sort of a
C assembly mix and then link them together. Furthermore a linker script is used to create memory
spaces so you can actually organize the memory dividing data from instruction, exceptions from code
and so on.

In the link below you find a small Makefile project with a bootloader and explanation to it in the 5"
post.

Link: http://opencores.org/forum,OpenRISC.0.3598

Note: you find more about this in “minsoc.pdf” chapter 3.1 Bootstrapping: a tiny bootloader.
Advanced Debug System

I have problems compiling the adv_jtag_bridge, what is going on?
Answer: If you set in Makefile SUPPORT PARALLEL CABLES to true, you will need libioperm

http://opencores.org/forum,OpenRISC,0,3598
http://en.wikipedia.org/wiki/Process_fork).

under Cygwin, for Linux this option is standard.
Under Cygwin: run Cygwin setup.exe and select “libioperm”

If you set in Makefile SUPPORT USB_CABLES and SUPPORT FTDI CABLES to true, you need
libusb and libftdi:

Under Linux: install libusb (http://www.libusb.org/) and libftdi
(http://www.intra2net.com/en/developer/libftdi/)

Under Debian based distributions: sudo apt-get install libusb-dev libftdi-dev

Under Cygwin: run Cygwin setup.exe and select “libusb-win32”

-install libftdi from: http://www.intra2net.com/en/developer/libftdi/

Adv_jtag bridge does not connect to my cable, why?
Example: 'Failed to find USB-Blaster'

Answer: Nathan Yawn: “It should be possible. The error you are seeing basically means that libUSB
enumerated all USB devices, but did not find one with the manufacturer / device ID combo it was
looking for (09FB:6001). What are using for your development system?

If it's windows/cygwin, make sure you have a libUSB filter installed for the USBBlaster, then run the
libUSB test program and see what devices it shows. If it shows a USBBIlaster with a different ID, then
you can change the ID in cable usbblaster.c to match. If it shows nothing, then you need to set up
libUSB correctly. If you don't know what it shows, send me the output and I'll take a look.

If you're using Linux, then I think "lsusb" will show all the USB devices in the system. Again, look for
a USBBIlaster and see if it's ID matches, and if you can't tell what's there, send me the output.”

Adv_jtag bridge does not enumerate my device, why?

Example 1: sudo adv_jtag_bridge xpc3

Enumerating JTAG chain...
WARNING: maximum supported devices on JTAG chain (1024) exceeded.

Devices on JTAG chain:
Index Name ID Code IR Length

0: (unknown) OxFFFFFFFF -1
1: (unknown) OxFFFFFFFF -1
2: (unknown) OxXFFFFFFFF -1
3: (unknown) OxFFFFFFFF -1

1022: (unknown) OxFFFFFFFF -1
1023: (unknown) OXFFFFFFFF -1

Target device 0, JTAG ID = Oxffffffff

ERROR! Unable to autoprobe IR length for device index 0; Must set IR size on command line. Aborting.

Answer: This implies that you are using the wrong cable or wrong cable support, either you are
selecting the wrong cable (xpc3, xess, usbblaster, xpc_usb, ft2232), or you are using the wrong

implementation for your cable. That occurs especially on Altera USBBIasters. They have two different
implementations, a libftdi based and a libusb based.

You can solve the wrong cable selection by selecting the right cable.

The cable with wrong implementation can be solved by changing adv_jtag bridge Makefile:
SUPPORT FTDI CABLES=true
USE_ALT FTDI USBBLASTER_DRIVER=true

Recompile and then try again.

Note: Further information about cables can be found under
“rtl/verilog/adv_debug_sys/Software/adv_jtag bridge/doc/adv_jtag bridge.pdf”

Example 2: adv_jtag_bridge xpc_usb
Found Xilinx Platform Cable USB (DLC9)
Found Xilinx Platform Cable USB (DLC9)
firmware version = 0x0404 (1028)

cable CPLD version = 0x0012 (18)
Enumerating JTAG chain...

Devices on JTAG chain:
Index Name ID Code IR Length

0: (unknown) Ox06E5E093 -1
1: (unknown) 0xF5046093 -1
2: XC3S500E_FG320 0x41C22093 6

Target device 0, JTAG ID = 0x06e5e093

ERROR! Unable to autoprobe IR length for device index 0; Must set IR
size on command line. Aborting.

Answer: What occurs here is that the adv_jtag bridge does not know which protocol the target chip
uses. You have two options:

1. That is generally solved by copying the bsdl files into your home directory. In this special case
the FPGA chip is the third in the chain, in those cases the bsdl file for the two previous chips are
also required for the automatic enumeration. So copying the respective bsdl files for the two
remaining chips solves the issue.

2. You input 3 configuration parameters besides of the cable type instead of relying on the bsdl
files, for instance “adv_jtag bridge -x2 -1 2:6 -c 0x02 xpc_usb”. The parameter 'x' informs the
device index in the chain, 2 in this example. Then you need to find out (through bsdl file for
instance) what is the USER1 command of your chip, xc3s500e fg320.bsd:612:

“USER1” (000010),”

The parameter 'l' informs first again the chip index '2' and then the bit width of the chain
commands, in this case '6'. Finally, -¢ informs the USER1 command we just picked out from the
bsdl file, it is given in binary format so “2'b10” corresponds to 2 or 0x02 for 6 bit width.

Adv_jtag_bridge “Ignoring packet error, continuing... “ problem:

Answer: Nathan Yawn: “Ignoring packet error, continuing" means that GDB is timing out waiting for a
response from a packet. In adv_jtag bridge, rsp-server.c, set GDB_ BUF MAX back to it's original
value of (NUM_REGS) * 8 + 1). Smaller packets, done faster, GDB won't have to wait as long. Then,
be patient. Things happen very slowly in simulation. Minutes, not seconds.”

Note: same is true for xpc_usb and ftdi usbblaster, it seems.
Static solution:

Nathan Yawn: “In adv_jtag bridge, open rsp-server.c in a text editor and change the GDB_ BUF MAX
back to its earlier value of (NUM_REGS) * 8 + 1).”

Furthermore, ignore the “Ignoring packet error, continuing...”, it might take time to load depending on
the cable.

Dynamic solution:

AhmedHMSoliman: “Use the following command before any other command in gdb to set the remote
timeout at the first place.

"set remotetimeout 10"

and you can make sure time out was set to 10 seconds by using the following gdb command:
"show remotetimeout”

after that connect to remote target in the ordinary fashion:

"target remote :9999"”

Furthermore, ignore the “Ignoring packet error, continuing...”, it might take time to load depending on
the cable.

Adv_jtag_bridge self test fails?

Answer: | have the same problem here, do not start adv_jtag bridge with the “-t” option.

Nathan Yawn: “Yes, there appears to be some incompatibility with the OR1200v3 and the self-test that
the Advanced Debug System uses. Since the self-test hasn't changed any, there are two possibilities:

1. The self-test, which was written many years ago for jp2/OR1200v1, depends on some sort of non-
spec behavior of the OR1200, which has been 'fixed' in OR1200v3.

2. The OR1200v3 is broken.

I haven't taken the time to figure out which it is, and at this point I'm not sure I care to. I'll try again
once the new OR1200 has stabilized.

Warning: even if you disable the self-test, you'll still have problems with ADS and OR1200v3. When
I've tried it, the system (repeatably) stops responding the third time I do a stepi. YMMV.”

Cannot step through instructions after breakpoints, what to do?

Nathan Yawn: “This is a bug in the current versions of the OR1200 CPU (v3). The current version
(SVN rev. 388) has a bug related to the hardware single-step function. The maintainers have improved
the behavior some, but it's still a problem.

I recommend you checkout an older tag of the OR1200, and use that. Unless there's something in the
OR1200v3 you really need, the OR1200v1 will work just fine, and it doesn't have the single-step bug.”

	Adaptation
	How to adapt the firmware to my implementation?
	How to configure the simulation
	Is it possible to debug the simulation as I debug the firmware running on my board?
	My device is full, can I reduce the used logic of the SoC?

	Problems
	I have generate bench errors, what happened?
	MinSoC firmwares won't compile.

	Tweaks
	I want my design to automatically initialize my firmware on power-up, how do I do that?
	I want to compile my firmware independent of MinSoC library but it does not work, what am I doing wrong?

	Advanced Debug System
	I have problems compiling the adv_jtag_bridge, what is going on?
	Adv_jtag_bridge does not connect to my cable, why?
	Adv_jtag_bridge does not enumerate my device, why?
	Adv_jtag_bridge “Ignoring packet error, continuing... “ problem:
	Adv_jtag_bridge self test fails?
	Cannot step through instructions after breakpoints, what to do?

