MIIFPS

MIPS® Architecture For Programmers
Volume II-A: The MIPS32® Instruction
Set

Document Number: M D00086
Revision 3.02
March 21, 2011

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2001-2003,2005,2008-2011 M1 PS Technologies Inc. All rights reserved.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4K Ec, 4KEm, 4KEp, 4K S, 4K Sc, 4K Sd, M4K, M14K, 5K, 5K ¢, 5Kf, 24K, 24Kc,
24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the
user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Mata, MDM X, MED, MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD,
SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and
other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS32

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About ThiS BOOK .o,
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas
R | =1 o I ST PP TR PPPPPRPRR
g = o] o B =) PP T TR PPPRPRPRR
G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR
1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiie ittt ettt et e e snne e e s neeeanes
1.2.1: UNPREDICTABLE ...ttt ettt ekttt e bttt e ekt e e ekt e e e e nb e e e anb e e e enbe e e anneas
1.2.2: UNDEFRINEDceiiiiitit ittt ettt ettt ekttt e ettt skt e e ket e 4k bt e e eb b e e ekt e e emb e e e anbe e e enbneeanteas
L.2.3: UNSTABLE ..tttk bttt e e a bt o4kt e e kb e e ok bt e e eh bt e ekt e e e emb e e e anb e e e anbneeanneas
1.3: Special Symbols in PSeUdOCOAE NOTATIONuuuiiiiiiiieaeie ittt e e e e e e e e e e e e e e e e an
S o |V (o (=N [a1 {o] T 1 1 o] o BT T TP PPPTPTPP

Chapter 2: Guide to the INSITUCHION Stcooeiiiiiii e e
2.1: Understanding the INStrUCHON FIEIASuiiiiiiiiiie et
2. 1.0 INSEIUCTION FIEIAS ...ttt ettt e e et e e st e e s anneeas
2.1.2: Instruction Descriptive Name and MNEMONIC.cuuuriieiiiiiiieeiiiiee ettt
2,130 FOMMAL FIEI ...ttt et e e skt e e e et e e et e e s

2. 1.4 PUIPOSE FIEIA ...ttt ettt et e ettt e e e st e e ettt e e s
2.1.5: DESCHIPLION FIEIeeeieiieeeee ettt et e e st e e et e e e s ennneeas
2.1.6: RESICHONS FIEIO......ceiiiiiiieee ettt e et e st e e ettt e e s nnneeas
P S O o1 =i o] o N = (o PRSP PRPTPTP
2.1.8: EXCEPLIONS FIEI ...ttt ettt e ettt e s et e et e e as
2.1.9: Programming Notes and Implementation NOtes Fields. ...,
2.2: Operation Section NOtation and FUNCHONSuuiiiiiiiiii et eieree e
2.2.1: INSLruction EXECULION OFOEITNG . .eeiieiitiiiieeiiitie ettt ekt e et e e s sttt e e s e e e s annneeas
2.2.2: PSEUAOCOUE FUNCHIONS.ttt ettt ettt e ettt e s sttt e e ettt e e s et e e e s annnne s
2.3: Op and Function SUDFIEld NOTATION.........oiitiiiiieiiii et e et e e s abbreee e
2.4 FPU INSIIUCTIONS ...ttt e bttt e+ 4o ekttt e o4k bt e e o4 4a bbbt e e e 4okt bt e e e e anbb et e e e e anbb e e e e e sbbneeaeaas

Chapter 3: The MIPS32® INSIIUCTION STuiiiiiiiiiiiiiiiiiie et e e e e
3.1: Compliance and SUDSEIING........cccuiiiiiiiie e e e s e et e e e e e e s e e e e e e e aeae e s e e e reaaaeas
3.2: Alphabetical List Of INSTIUCTIONSuuviiiiiiiiiee e it e e e st e e e e e e e e s s s rreeeaeee s s e s snsentrnneeeaeeas
Y = 1S 11 1 PP PSR

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

[2 T 65
[T 22 66
[T 22 I TP 67
121 = PR O PP 68
121 =@ PP TP STO PP 69
[T] U 70
2]] Y O 71
S]] Y I O 72
[T] 4 74
[17U 75
[174 U 76
BLEZ ...ttt e e e e e e et e ettt ———————— e aeieaeeeeeaeeeaeaettttte—— . 77
[I 4 U 78
[I 1R 79
[I 174 O 80
[I 174 81
[I 174 R 83
BINE ..ottt ettt ettt eeeeeeeeeeeeeeeteeee—t————————————— e eaeaeaeeeaeeeaeaeattttrar 84
[T 1= T 85
ST AN S 86
(O o701 [0 14 11 AETUE PR PUSORRRRPPRIN 87
(07 N O | 91
(O8I 1 | 97
L8 1YV o | U 98
(O O3 99
2 e e e e e e e e e e e e eeeeetee e e et —————————————— 100
[1 LSO 101
Gz e e ieeeaeeaeaeeeeeeeteeteete i ————————————————— 102
GO e e ieieaeeeeeeeeeaeeteteeet et ——————————————— 103
[131 P UT 104
O 12 ST 106
(A I 10| U 107
(A I IR 11 T 108
(ORI S T SO 109
(ORI TR 11| U 110
(A I = T 111
(A I = O T 112
(A I VLR 11| ST 113
[0 = = OO 114
Dl ettt b — e eeeeeeeeeeeeeeeeeteteetttt——————————————— i ieieaeeeeeeeeeaetetteetttt i ————————————_ 115
[0] TP 116
[1AV {01 OO 118
[0] A A PO 119
EH B .ttt ettt ettt e e e e e e e e e e e e e e e e eeee et et et ——————— e ieieaeaeeeaeaeeeteteaetta———————————————————————— 120
) TS 121
o = T 122
E X T ettt ettt ettt ettt e e eeeeeeeeeeeeeeteeeeet——————————————————ieieaeaeeeeeaeeetetetetttr———— i ————————————— 123
[IO 0] = I 1 1 o USRS 125
[@O Y1V o | U 126
LN S S UPRRRURRPPRRPNt 127
e eeeeeeeeeeeeeeeeeeeteaeetttt——————— . aaaaaaaaaaeees 129
N 1 130

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

N I | = PO 133
N I P PORPPPR 137
TR e e e e eeet e et eeeeieeeetaeee—aeeettteeeetaeeeteeeetaaeeeet e ara e et aertaas 138
N1 | PP 140
0 T PSRPPP 142
0 1 TP 143
5 11 SR PPP 144
5 1T PRPPPP 145
[0 51 T TPRPPP 146
I ST PSRPPPP 147
0 T RPPPP 148
T PSRPPP 149
L T SRPPPP 150
[0 51 T PTURPPP 151
Y T PSRPPP 152
1YL 3t T RPPPP 153
YT T URPPPP 154
1Y T URPPP 155
YT T RPPP 157
[Y17 3 RPN 159
1Y N I 5 T PTPRPPP 160
Y VA D] B N i 1) SO P PO PPPPPR 161
1Y 7N 15 5 O T PTURPPPP 162
1Y T TPRPPP 163
1Y T PTSRPPP 164
1Y 2 PSRPPPP 165
1Y [T PTSRPPPP 166
1Y [T PPRPPPP 167
1Y T PTSRPPP 168
1Y 5 PR PPP 169
1Y (@ A 11 0 TP OO UPPPPPPR 170
1Y [YA T PSRPPP 171
1Y (@ A o {1 ¢ TP UPPPPPPR 172
1YL Y T PURPPPP 173
1Y L@ A\ VA 11 0 PSPPSR UPPPPPPR 174
1Y [Y TP PPPP 175
1Y/ (O A I 11 | OO PP UPPPPPPR 176
1Y [Y 2 T PTSRPPPP 177
Y (O A % 11 1| TP PP OO UPPPPPPR 178
1Y S 1 1 J PR PPPP 179
Y IS] = 0 11 ¢ TP UPPPPPPR 180
(1Y 1S 10 1= 1 T PTSRPPP 181
1Y ST SRPPP 182
1Y 31 T PTSRPPPP 183
1Y 22 T PTSRPPPP 184
1Y I8 [T PTPRPPPP 185
1Y I 5 [PSR UPPP 186
1Y N T PTURPPP 187
1Y I 5 T PTSRPPP 188
1Y T PTSRPPPP 189
1YL | PP OO UPPPPPPR 190
1Y T PTSRPPPP 191
MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02 5

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

N = TN 11 1 ST PP PP PP PPPPPPPPPPPUPPRTN 193
N N BB N 0| TP PP PP PP PP PP PPPPPPPPPPPPRTN 194
N ST = 11 | ST PP PP P PP PPPPPPPPPPPPRTN 195
N[O PP PPPTTPTPTTTI 196
N O R e e e e e et e et e e e e e e 197
L0 PP PP PP TP PPPPOPN 198
L0 PP PP P PO 199
PAUSE .o e e e e e 201
P L P S e e r e e e 203
P LU P S e et 204
P R EF e r e 205
P R X e e e 208
P UL P S e e e 209
PUU L P S oot e e e e e e r e e 210
RDHWR .ot e e oo e e et e e e e e e e e e et e e e e e e 211
RDPGPR e 213
Y= | o 1 ST PP PP PPPPPPPPPPPPPPRTN 214
ROTR et e e e oo e et e e e e e e e et e et e e e e e e 215
ROTRY et e oottt e e e e e e e s e e bbb et e e et e e e e e e a e 216
ROUND LTI Lottt e okt e e oo et e o4k bt e e e e bt e e e e eab et e e e anbre e e e e s nanneeeeeans 217
ROUND WVLIIMIT ettt ettt e oottt ookt e e ettt e e e e e ea bt e e e as b e e e e e s nnneeeeeaa 218
RS O I 111 PP PP P PP PP PPPPPPPPPPPPRTN 219
R PP P PO PR TP PPPPOPN 220
] OO PP P PP TT TP 221
SDBBP e e e e e e e e n e e e e e 223
] I L 1 PP TP PP TP PPTPOPN 224
Y L O PP PP TP TT TR PPPPOP 225
ST) O PP PP TP PR TP PRI 226
S B e e e e e e e e e e e e e e e 227
S H e e e e e e e e e 228
SH e e e e e e e e e r e e e e e 229
R I PP PP TP TT T PPTPOPN 230
R I PP P PR TT TP PPPOPN 231
R I PO PP PP PP RPN 232
R I I PP P PO TT TP 233
R I I 1O PP PP TP PP TT TP 234
STl e 235
10 I 10| ST P PP P PP PPUP PP PRI 236
S R A e e e e e e e r e r e e e e e 237
SR AV e e e e e et e e e e e e e e 238
S R e e e e e e et e e e e e e e e r e e a e e e e e s 239
SRV e e e e e e e e e e e e e 240
SSOINOIP e e e e e e e e e e e e e e 241
SU B e e e e e e e e e e e e e e e e e e e 242
10 = 11 0 ST PP OPEP PP PP P P PPUPPPPTRPP 243
SUBU e e e e e e e e e et r e e e e e e e 244
SU X C Lt e 245
S e e e e e e e e e e et r e e e e e e e e 246
Y O PP PP TP TT T PPTPOPN 247
S et e e e e e e e e n e e e e e 248
S L oo e e e e e e et e e e e e e e et r e e e e e e e e 249
S R e e e e e e e e e e e e r e e e e e e e e 251

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

S N C ettt h oottt e oo Rt e oo e e e a et et e e s 254
S YN Lttt e e R e e e e e ettt e s 259
SY SCALL ottt R et e et e e e et e e s 261
LI =1 PP PO P PP PP PUPRPPRN 262
LI =1 LT TP O PP PP PP PUPPPPN 263
LIS ST PR O P PP PP PPPPPPN 264
LIS = PP PR O PP PP PP PRPPPPRN 265
TGEIU. ettt et 266
LIS =L PP PR O PP P PP PPPPPPRN 267
LI = T TP O PP PP PP PPPPPPN 268
LI = PP O PP PP PUPPPPN 269
LI = PP TP O PP PP PUPPPPN 271
TLBWVR L.ttt ettt e e 44ttt oot e e e et e e e e e e e 273
LI TP PP O PP PP PP PRPRPPN 274
LI I PP TP O PP PP PP PUPRPPN 275
LI I L PP PR O PP PP PP PPPPPPRN 276
LI L TP PR O PP PP PP PUPRPPRN 277
LIS O PP PP PUPPPPN 278
LI = PP PO O P PP PP PRPPPPRN 279
LIRS L (O I 11 L TR PP PP PP PUPPTPPN 280
TRUNC.WWLIIME. .ttt e et e oot e oo st e e e et e e e et e e e e et e e e e nb e e e e e nenes 281
LT TP R T PP P PP PUPPRPRN 282
WRPGPR .ottt oottt oo oot e et e et e e e e 283
WMVSBH ..ot e oot e e e et e e e e e 284
DO PP O PP PP PP PUPPPPON 285
DO TR O PP PP PP PUPPPPN 286
AppendixX A: INSTruction Bit ENCOAINGS . .uuuuuiiiiiiiiiiiiiiiiiiiieiiisiieseresssssssssssesssesseesreesrreerarrrer————————. 287
A.1: Instruction Encodings and INSIIUCLION CIASSESuviieiiiiiiiieeiiii ettt 287
A.2: Instruction Bit ENCOAING TADIES......ccoiiiiiiieiiiiii et e e 287
A.3: Floating Point Unit Instruction FOrmat ENCOAINGSccooiiiiiiieiiiiiiieeeeie et 295
AppPeNndixX B: REVISION HISTOTIY ..ot e e e e e e e es 297
MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02 7

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:
Figure 2.25:
Figure 2.26:
Figure 2.27:
Figure 2.28:
Figure 2.29:
Figure 2.30:
Figure 2.31:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10
Figure 3.11
Figure 3.12
Figure A.1:

Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiit ettt e ettt e e e et e e e e e e e e e e aeeeeeeas 18
Example of INSTrUCTION FIEIASueiiiiiiiiie et e e e 19
Example of Instruction Descriptive Name and MNEMONICuuuiiiiiiiiiaeiiiiiiiiieie et 19
Example of INSTrUCTION FOMMIAL.........eiiiiiiiiii ittt e e e e et e e e e e e st neeeeeeas 19
Example Of INSTIUCTION PUIPOSEueeiiiiiiieeii ittt e e e e ettt e e e e e e e e e bbbneeeeeeas 20
Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiitetee ettt e e e e e e e e e e e e b e eeeeas 20
Example of INStruCtioN RESIICIONS.oiiiiiiiiiii ettt e e e e e e e e eeeeas 21
Example of INStrUCTION OPEIALION.ciiiiiiiiii ittt e e e e et e e e e e e e e s e bb e e eeeeas 21
Example of INStrUCTION EXCEPLION.ciiiiiiiiiiiiiti ettt e et e e e e e e e e e aeeeeeeas 21
Example of Instruction Programming NOTESuuiiiiiiiiiiieiiiii it e e e e 22
COP_LW PSeUAOCOUE FUNCHIONutttititieieee e e e e e e e ettt s s e s e s e e e e e e e aeaeaeeeeeaeeeeesssensnennnnes 23
COP_LD PSUAOCOTE FUNCLION......uutuiiiiieieie e e e e e e e e ee e e e e et s s s e s e s e e e e e e e e e aeaeeeeeeeeeeessaessnennnnes 23
COP_SW PSeUAOCOUE FUNCHION.utitiiiiiie et e e e e e e ettt s e s e s e e e e e e e e e aeaeeeeeeseeeesssessnennnnas 23
COP_SD PSeudOCOUE FUNCHIONuutiiiiiieisie i e e e e ettt s s e s e s e e e e e e e e e aeaeeeeeaeeeeessaesenennanas 24
CoprocessorOperation PSEUdOCOTE FUNCHIONuuuiiiiiiiiiieee ittt e e 24
AddressTranslation PSEUAOCOAE FUNCHIONuuiiiiiiiiiiei ittt e e 24
LoadMemory PSeudoCOde FUNCHIONuuuiiiiiciee et e s e e e e e e e e e e e aaaaaaaaaees 25
StoreMemory PSeUdOCOAE FUNCHON. i e e e e e e e e e e e e e e e e e e eeeeeeaeeraranaaas 25
Prefetch PSeudOCOdE FUNCLION.........uu ittt e e e bbbt e e e e e e e e e e e eaaaeees 26
SyncOperation PSeUdOCOAE FUNCLIONoiiiiiiiiiiiiiie ittt e e e e e e e e s enaeees 27
ValueFPR PSEUAOCOUE FUNCHONciiiiiiiiiiiitie ettt ettt e ettt e e e e e e e e eeeeeeeas 27
StoreFPR PS@UAOCOTE FUNCHIONiiiiiiiiiii ettt e e e e e e e e e e enneees 28
CheckFPException PSeudoCode FUNCLON. ...ttt a e 29
FPConditionCode PSeudocOde FUNCHON.........ooiiiiiiiiiiiiiie ettt e e e e e 29
SetFPConditionCode PSeudoCOde FUNCHIONcuuuiiiiiiiiiieiee et e e e 29
SignalException PSEUdOCOAE FUNCLIONiiiiiiiiiiiiiiee ettt e e e e e e e eaneees 30
SignalDebugBreakpointException Pseudocode FUNCLON...........cccuiiiiiiiiiiiieei e 30
SignalDebugModeBreakpointException Pseudocode FUNCHION...........uuviiiiiiiiiiieiiiiiiiieeieeeee e 30
NullifyCurrentinstruction PSeudoCode FUNCHONccociiiiii i e e e e e e e e e aaaans 31
JumpDelaySIlot PSEUAOCOUIE FUNCHONuuiiiiiiiiieeeii e e e e e 31
PolyMult PSEUdOCOAE FUNCLIONoiiiiiiiiiteieiee e ettt e e s e s e e e e e e e e e aaaaaaaaaeaees 31
Example of an ALNV.PS OPEIALIONcciiiiiiiitiite ettt e et e e e e e e e e e e bbb e eeeeas 50
Usage of Address Fields to Select INndeX and Waycooooeiiiiiiiiiiiiee e a e e ae e 91
Operation Of the EXT INSTIUCTIONuueiiiiiiiiiieiee ettt e e e e e e e s e e e e e e aaeeeaaaana 123
Operation Of the INS INSTIUCTIONiiiiiiiiiii et e e e e e e e e e e e e e e e e e e aaas 127
Unaligned Word Load Using LWL and LWR.........uuuiiii e e e e e e e 155
Bytes Loaded DY LWL INSIFUCTIONcciiiiiiieeiiete ettt n e e e e e e e e e e e aaaeees 156
Unaligned Word Load Using LWL and LWR.........uuuiiiie e a e e e 157
Bytes Loaded by LWR INSIIUCTION.........ooiiiiiiieiet ettt e e e e e e e e e e aaaeees 158
Unaligned Word Store UsSing SWL and SWRuuuiiiiii s e e e e e e 249
: Bytes Stored by an SWL INSITUCTIONoooiiiiiiieeeeeee s 250
: Unaligned Word Store Using SWR and SWLouvuiiiiiiiiiiiis e 251
: Bytes Stored By SWR INSTIUCHION.coooiiiiiii e e e e e e e e 252
Sample Bit ENCOAING TaDIE ..ot e e e e e e e 288
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1:
Table 2.1:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:

Symbols Used in Instruction Operation State@mMENTS........coooiiiiiiiiiiiiii e 13
AccessLength Specifications for LOAAS/STIOIESuviiiiiiiiiie et 26
CPU ArthMELIC INSIIUCTIONS ...ttt e e e e e e ettt et e e e e e e e e e s nnebbebeeeeeeas 34
CPU Branch and JUMP INSTIUCTIONScoiiiiiiiiiiiiee ittt e e e e ettt e e e e e e e e e e s nnebe e eeeeeas 35
CPU Instruction Control INSIIUCTIONScooiiiiiiiiiiiie ettt e e e e e e e e e s eeee s 36
CPU Load, Store, and Memory Control INStIUCHIONSccoeiiiiiiiiiiieeeeeeeeee e e e e e e e e e e aaaeaens 36
CPU LOGICAI INSIIUCTIONSt e e e e e e e e e e e e e e e e et et e e e e e e e et e e e s e e e e e aeaaaeaeaeeeees 36
CPU INSEI/EXITACE INSIIUCTIONSteeiiiiieeee ettt et e e e e e e ettt et e e e e e e e e e s nbnbeebeeeeeeas 37
CPU MOVE INSIIUCTIONS ...ttt et e e oo ettt e e e e e e e e e s e kbbb e st e et e e e e e e e e e e s bbb baeeeeaeaeas 37
CPU Shift INSIIUCTIONS ...ttt e ettt e e e e e e e e e s e bbbt bt e et e e e e e e e e e s bbb bbeeeeaeaeas 37

Table 3.9: CPU Trap INSTIUCTIONSuuutiiiiiiiieeee ittt e e e ettt e e e e e e e e e e s ek bbb be e et e e e e e e e e e s e abbbbsseeeeeaeaeeeaaaanns 38
Table 3.10: Obsolete CPU Branch INSIIUCLIONSuiiiiiiiiaaiiiiiiiiei ettt e e e e e e e e e e e e e e e e s e annnanee 38
Table 3.11: FPU ArithmetiC INSTIUCTIONS.cciiiiiiiiee ittt e e e e e e s e s e bbbt e et e e e e e e e s e e annnnees 39
Table 3.12: FPU BranCh INSITUCTIONSciiiiiiiiiiiiiit ettt e ettt et e e e e e e e e s s bbb e be e et e e e e e eaaaaanns 39
Table 3.13: FPU COMPAre INSIIUCTIONSciii ittt ettt e e e e e e ettt e e e e e e e e e s e b b bbab e e et e e e eeeeaaaannnnees 39
Table 3.14: FPU CONVEIt INSTIUCTIONSceiiiiiiiiiiiiiiitt ittt e e ettt e e e e e e e e bbbttt e e e e e e e e e s e s b bbe b et et e e aeeeeaaaannnnees 40
Table 3.15: FPU Load, Store, and Memory Control INSIIUCLIONSuuueiiiiiiiieie e 40
Table 3.16: FPU MOVE INSIIUCTIONSeetitiiieeaieiiiiiitte ettt et e e ettt e e e e e e e e 4o ek bbbt bttt e e e e e e e e e s e nbbbbsbeeeeeaeaeeeaananns 41
Table 3.17: Obsolete FPU BranCh INSTIUCTIONSuuuiiiiiiiieaiiiiiitiie ettt e e e e e e e s e e e e e e e e e e e e aannneee 41
Table 3.18: Coprocessor BranCh INSITUCHIONSuuiiiiiiiiie et e e e e e e e e e e e e s e aaneneee 41
Table 3.19: Coprocessor EXECULE INSIIUCTIONSuuuiiiiiiiieaiiiiite ettt e e e e e e e e e e e e e e e e e e s e e aanneees 42
Table 3.20: Coprocessor Load and Store INSITUCHIONS.........ooiiiiiiiiiiii et e e e e 42
Table 3.21: COProCesSOr MOVE INSIIUCTIONS.uuieiiiiiiieee ettt e e ettt e e e e e e e e e e bbb e e e et e e e e e e e s e e annnnees 42
Table 3.22: Obsolete Coprocessor BranCh INStIUCTIONS.oiiuiiiiiiiiieeie et e e e e e 42
Table 3.23: Privileged INSIIUCHONSuuiiiiiiiee et e e e e e e e e e e e e e e e e aeeeeeeeeeaesesesene e aeeeeas 42
Table 3.24: EJTAG INSIIUCTIONSuieiiieiieeieeeee ettt e ettt et et e e e a4 e 4o ek bbbt ettt e e e e e e e e e s e nbbbbsbeeeeeaeaeeeaananns 43
Table 3.25: FPU Comparisons Without Special Operand EXCEPLIONScooviiiiiiiiiiiiiiiiieeee et 88
Table 3.26: FPU Comparisons With Special Operand Exceptions for QNaNScoiiiiiiiiiiiiiiiiiieee e 89
Table 3.27: Usage Of EffECHVE AQUMNESS.....uu i e e e e e e e e e e e e et e et e e e e e e eeas 91
Table 3.28: Encoding of Bits[17:16] of CACHE INSIUCTIONuutiiiiiiiiiieee ettt 92
Table 3.29: Encoding of Bits [20:18] of the CACHE INSIIUCTIONueiiiiiiiaiiiiiiiiiee e 93
Table 3.30: Values of hint Field for PREF INSITUCHIONoiiiiiiiiiiiiii ettt 205
Table 3.31: RDHWR ReQIStEr NUMDEISuueiiiiiiiii et as 211
Table 3.32: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field..........ccccccooiiiiiiiiiii, 256
Table A.1: Symbols Used in the Instruction Encoding TabIesuuuiiiiiiiiiii 288
Table A.2: MIPS32 Encoding of the Opcode FIEld ... 289
Table A.3: MIPS32 SPECIAL Opcode Encoding of FUNCtion Field............ooooiiiiiiiii e 290
Table A.4: MIPS32 REGIMM ENCoding Of It FIEIAcooiiiiiii e 290
Table A.5: MIPS32 SPECIAL2 Encoding of FUNCLION Fieldovviiiiiiiiiii e 290
Table A.6: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.............ccccceeeeeenn.n. 291
Table A.7: MIPS32 MOVCI ENCOING Of tf Bit.....ccieiiiiie e e e 291
Table A.8: MIPS32 SRL Encoding of Shift/ROLALEooiiiiiieee e s 291
Table A.9: MIPS32 SRLV Encoding of Shift/ROtALE..............cooiiiiie e e 291
Table A.10: MIPS32 BSHFL Encoding of Sa FIeld..........ccoooiiiiiiiiee e s 292
Table A.11: MIPS32 COPO ENcoding Of 1S FIeldccoooiiiie et 292
Table A.12: MIPS32 COPO Encoding of Function Field When rS=CO.......uiiiiiiiiiiiicecececeeeeeeeee e 292
Table A.13: MIPS32 COP1 ENcoding Of 1S FIeldccoooiiiiii e 293
MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02 9

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table A.14:
Table A.15:
Table A.16:
Table A.17:
Table A.18:
Table A.19:
Table A.20:
Table A.21:

10

MIPS32 COP1 Encoding of Function Field When rS=S.........oooviiiiiiiiiiie e 293
MIPS32 COP1 Encoding of Function Field When rS=Doovviiiiiiiiiiiiiiece e 293
MIPS32 COP1 Encoding of Function Field When rS=W O Lvvvvieiiiiiiiiiie e 294
MIPS64 COP1 Encoding of Function Field When rS=PS ..., 294
MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF.................ccevvvvvrvrrirnnnnns 294
MIPS32 COP2 ENcoding Of IS FIEIAueeeii i e e e e e e e e e e e e 295
MIPS64 COP1X Encoding of FUNCLION FIeldcoooiiiiii e 295
Floating Point Unit Instruction Format ENCOTINGS............oiiiiiiiiiiiiiiees e e e e e e e e e e e e e e e 295

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS® Architecture For Programmers Volume 11-A: The MIPS32® Instruction Set comes as part of a multi-vol-
ume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volumel-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

e Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* VolumeIV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture and
microM1PS64™. It is not applicable to the MIPS32® document set nor the microM1PS32™ document set

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture

* Volume IV-e describes the MIPS® DSP Application-Specific Extension to the MIPS® Architecture
* Volume IV-f describes the MIPS® MT Application-Specific Extension to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 ltalic Text

* isused for emphasis

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 11

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

About This Book

isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S D,
and PS

is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

represents aterm that is being defined

isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

is used for ranges of numbers; the rangeisindicated by an éllipsis. For instance, 5..1 indicates numbers 5 through
1

is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

12

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructions
inaprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABL E results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

Implementations of operations generating UNPREDI CTABL E results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

UNPREDI CTABL E operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

UNPREDI CTABL E operations must not halt or hang the processor

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operationa state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy. 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless
than z, this expression is an empty (zero length) bit string.
+,— 2's complement or floating point arithmetic: addition, subtraction
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 13

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison

> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[SRSCltlcgs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR{X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCRI[x] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[X] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Satus register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

14 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
(I This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a

timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
|abeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-
erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36

physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,
FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-

aly in MIPS32 Release?2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in
any FPR.

In MIPS32 Release 1 implementations, FP32Register sM ode is always a 0. M1PS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Satus register. If thisbitisa 0, the pro-
cessor operates asiif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows abranch or jump, but which
is not executed in the delay slot of abranch or jump.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 15

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

16 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 19

* “Instruction Descriptive Name and Mnemonic” on page 19

e “Format Field” on page 19

» “Purpose Field” on page 20

» “Description Field” on page 20

* “Restrictions Field” on page 20

e “Operation Field” on page 21

+ “Exceptions Field” on page 21

» “Programming Notes and Implementation Notes Fields’ on page 22

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 17

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name —————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
e 0 . a 0 | exaune
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \A

Format: EXAMPLE fd,rs,rt MI1PS32
Assembler format(s) for each /7
definition)
/D Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic descriptio ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of ———————>> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction = Restrictions:

and operands

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language. ——J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ¢ GPR[rs] exampleop GPR[rt]

GPR[rd] « temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction
Notes for programmers — I~ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ——J~ [Implementation Notes:

Like Programming Notes, except for processor implementors

18 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in afield are shown in binary below the symbolic or hexadecimal value.

e All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

e Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs ft rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The origina assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MI1PS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 19

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word
To add 32-hit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of the instruction is feasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

e |If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs" is the floating point operand register specified by theinstruction field fs. “ CP1 register
fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control
/Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Validvaluesfor instruction fields (for example, see floating point ADD.fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)
» Validvalues of operands (for example, see ALNV.PS)

20 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

» Valid operand formats (for example, see floating point ADD.fmt)

» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

» Vaid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsq||GPR[rtlsq o)
if temps;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« temp
endif

See 2.2 “Operation Section Notation and Functions” on page 22 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception
Exceptions:

Integer Overflow

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 21
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

22

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 22

» “Pseudocode Functions’ on page 22

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

» “Coprocessor General Register Access Functions’ on page 22

e “Memory Operation Functions’ on page 24

* “Floating Point Functions’ on page 27

» “Miscellaneous Functions’ on page 30

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CPO, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and
how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. Thisbehavior is abstracted into
the functions described in this section.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.
Figure 2.11 COP_LW Pseudocode Function
COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor
/* Coprocessor-dependent action */
endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function
COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.
/* Coprocessor-dependent action */
endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function
dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value
/* Coprocessor-dependent action */
endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 23
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceisto Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

24 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the datais not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 25

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

26

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CCA: Cacheability&Coherency Attribute, the method used to access */
caches and memory and resolve the reference. */
AccessLength: Length, in bytes, of access */

MemElem: Data in the width and alignment of a memory element. */

The width is the same size as the CPU general */
purpose register, either 4 or 8 bytes, */
aligned on a 4- or 8-byte boundary. For a */
partial-memory-element store, only the bytes that will be*/
stored must be valid.*/

PAddr: physical address */

vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/*
/*
/*
/*

/*
/*

CCA: Cacheability&Coherency Attribute, the method used to access */
caches and memory and resolve the reference. */
pPAddr: physical address */

vAddr: virtual address */
DATA: Indicates that access is for DATA */
hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and storesindicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* 1s not known as, for example, in SWC1l and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprgq # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR < FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR < FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 27
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR[fpr+l] < UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« value
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

28 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq. . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function
tf «FPConditionCode (cc)

/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then

FPConditionCode ¢« FCSRj3
else

FPConditionCode ¢ FCSRjg,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢ FCSR3; 24 || tf || FCSRy;. g
else
FCSR ¢ FCSR31. 254cc | | tf | | FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 29

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

30

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignhalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignhalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from
non-Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction

The NullifyCurrentInstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-rélative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a

variable subfield.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 31
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

Bit encodings for mnemonics are given in Volume , in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 31 for a description of the op and function subfields.

32 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS32® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the M1PS32 Architecture, designs must implement a set of required features, as described in
this document set. To alow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules.
Animplementation that follows these rules is compliant with the MIPS32 Architecture aslong asit adheres strictly to
therules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architectureis only allowed
by adding functions to the SPECIAL2 major opcode, by adding control for co-processors viathe COP2, LWC?2,
SWC2, LDC2, and/or SDC2, or viathe addition of approved Application Specific Extensions.

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the M1PS32 architecture.
The use of the COP3 is now reserved for the future extension of the architecture. Implementations using Releasel of
the MIPS32 architecture are strongly discouraged from using the COP3 opcode for a user-available coprocessor as
doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

Theinstruction set subsetting rules are as follows:
» All CPU instructions must be implemented - no subsetting is allowed (unless described in thislist).

* TheFPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determineif an FPU isimplemented by checking the state of the FP bit in the Configl CPO regis-
ter. If the FPU isimplemented, it must include S, D, and W formats, operate instructions, and all supporting
instructions. Software may determine which FPU data types are implemented by checking the appropriate bit in
the FIR CP1 register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

* NoFPU
 FPUwith S, D, and W formats and all supporting instructions

» Coprocessor 2 isoptional and may be omitted. Software may determine if Coprocessor 2 isimplemented by
checking the state of the C2 bit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be
omitted on an instruction-by-instruction basis.

» Supervisor Modeisoptional. If Supervisor Mode is not implemented, bit 3 of the Status register must be ignored
on write and read as zero.

* The standard TLB-based memory management unit may be replaced with asimpler MMU (e.g., a Fixed Map-
ping MMU). If thisis done, the rest of the interface to the Privileged Resource Architecture must be preserved. If
a TLB-based memory management unit isimplemented, it must be the standard TLB-based MMU as described
in the Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the
MT field in the Config CPO register.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 33

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The MIPS32® Instruction Set

» ThePrivileged Resource Architecture includes several implementation options and may be subsetted in accor-
dance with those options.

* Instruction, CPO Register, and CP1 Control Register fields that are marked “Reserved” or shown as“0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

» Supported ASEs are optional and may be subsetted out. If most cases, software may determineif a supported
ASE isimplemented by checking the appropriate bit in the Configl or Config3 CPO register. If they are imple-
mented, they must implement the entire ISA applicable to the component, or implement subsets that are
approved by the ASE specifications.

» EJTAG isoptional and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification.

* TheJALX instruction is only implemented when there are other instruction sets are available on the device
(microMIPS or MIPS16€).

» If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3.1 through Table 3.24 provide alist of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3.1 CPU Arithmetic Instructions

Mnemonic Instruction
ADD Add Word
ADDI Add Immediate Word
ADDIU Add Immediate Unsigned Word
ADDU Add Unsigned Word
CLO Count Leading Onesin Word
CLz Count Leading Zerosin Word
DIV Divide Word
DIVU Divide Unsigned Word
MADD Multiply and Add Word to Hi, Lo
MADDU Multiply and Add Unsigned Word to Hi, Lo
MSUB Multiply and Subtract Word to Hi, Lo
MSUBU Multiply and Subtract Unsigned Word to Hi, Lo
MUL Multiply Word to GPR
MULT Multiply Word
MULTU Multiply Unsigned Word
34 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3.1 CPU Arithmetic Instructions (Continued)

Mnemonic Instruction
SEB Sign-Extend Byte Release 2 & subsequent
SEH Sign-Extend Halftword Release 2 & subsequent
SLT Set on Less Than
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
SLTU Set on Less Than Unsigned
SuUB Subtract Word
SUBU Subtract Unsigned Word
Table 3.2 CPU Branch and Jump Instructions
Mnemonic Instruction
B Unconditional Branch
BAL Branch and Link
BEQ Branch on Equal
BGEZ Branch on Greater Than or Equal to Zero
BGEZAL Branch on Greater Than or Equal to Zero and Link
BGTZ Branch on Greater Than Zero
BLEZ Branch on Less Than or Equal to Zero
BLTZ Branch on Less Than Zero
BLTZAL Branch on Less Than Zero and Link
BNE Branch on Not Equal
J Jump
JAL Jump and Link
JALR Jump and Link Register
JALR.HB Jump and Link Register with Hazard Barrier Release 2 & subsequent
JALX Jump and Link Exchange microMIPS or MIPS16e
also implemented
JR Jump Register
JR.HB Jump Register with Hazard Barrier Release 2 & subsequent

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

35

The MIPS32® Instruction Set

Table 3.3 CPU Instruction Control Instructions

Mnemonic Instruction
EHB Execution Hazard Barrier Release 2 & subsequent
NOP No Operation
PAUSE Wait for LLBIt to Clear Release 2.1 & subsequent
SSNOP Superscalar No Operation

Table 3.4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LL Load Linked Word
Lw Load Word
LWL Load Word L eft
LWR Load Word Right
PREF Prefetch
SB Store Byte
SC Store Conditional Word
SH Store Halfword
SW Store Word
SWL Store Word Left
SWR Store Word Right
SYNC Synchronize Shared Memory
SYNCI Synchronize Caches to Make Instruction Writes Effective Release 2 & subsequent

Table 3.5 CPU Logical Instructions

Mnemonic Instruction
AND And
ANDI And Immediate
36 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3.5 CPU Logical Instructions (Continued)

Mnemonic Instruction
LUI Load Upper Immediate
NOR Not Or
OR Or
ORI Or Immediate
XOR Exclusive Or
XORI Exclusive Or Immediate

Table 3.6 CPU Insert/Extract Instructions

Mnemonic Instruction
EXT Extract Bit Field Release 2 & subsequent
INS Insert Bit Field Release 2 & subsequent
WSBH Word Swap Bytes Within Halfwords Release 2 & subsequent

Table 3.7 CPU Move Instructions

Mnemonic Instruction
MFHI Move From HI Register
MFLO Move From LO Register
MOVF Move Conditional on Floating Point False
MOVN Move Conditional on Not Zero
MOVT Move Conditional on Floating Point True
MOVZ Move Conditional on Zero
MTHI Move To HI Register
MTLO Move To LO Register
RDHWR Read Hardware Register Release 2 & subsequent

Table 3.8 CPU Shift Instructions

Mnemonic Instruction
ROTR Rotate Word Right Release 2 & subsequent
ROTRV Rotate Word Right Variable Release 2 & subsequent
SLL Shift Word Left Logical

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

37

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The MIPS32® Instruction Set

38

Table 3.8 CPU Shift Instructions (Continued)

Mnemonic Instruction
SLLV Shift Word Left Logical Variable
SRA Shift Word Right Arithmetic
SRAV Shift Word Right Arithmetic Variable
SRL Shift Word Right Logical
SRLV Shift Word Right Logical Variable
Table 3.9 CPU Trap Instructions
Mnemonic Instruction
BREAK Breakpoint
SYSCALL System Call
TEQ Trap if Equal
TEQI Trap if Equal Immediate
TGE Trap if Greater or Equal
TGEI Trap if Greater of Equal Immediate
TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned
TLT Trap if Less Than
TLTI Trap if Less Than Immediate
TLTIU Trap if Less Than Immediate Unsigned
TLTU Trap if Less Than Unsigned
TNE Trap if Not Equal
TNEI Trap if Not Equal Immediate
Table 3.10 Obsolete! CPU Branch Instructions
Mnemonic Instruction
BEQL Branch on Equal Likely
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
BGEZL Branch on Greater Than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLEZL Branch on Less Than or Equal to Zero Likely

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3.10 Obsolete! CPU Branch Instructions (Continued)

Mnemonic Instruction
BLTZALL Branch on Less Than Zero and Link Likely
BLTZL Branch on Less Than Zero Likely
BNEL Branch on Not Equal Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuture revision
of the MIPS32 architecture.

Table 3.11 FPU Arithmetic Instructions

Mnemonic Instruction
ABS.fmt Floating Point Absolute Value
ADD.fmt Floating Point Add
DIV.fmt Floating Point Divide
MADD.fmt Floating Point Multiply Add
MSUB.fmt Floating Point Multiply Subtract
MUL.fmt Floating Point Multiply
NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add

NMSUB.fmt Floating Point Negative Multiply Subtract
RECIPfmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation
SQRT.fmt Floating Point Square Root

SUB.fmt Floating Point Subtract

Table 3.12 FPU Branch Instructions

Mnemonic Instruction
BC1F Branch on FP False
BC1T Branch on FP True

Table 3.13 FPU Compare Instructions

Mnemonic Instruction
C.cond.fmt Floating Point Compare
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 39

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The MIPS32® Instruction Set

40

Table 3.14 FPU Convert Instructions

Mnemonic Instruction
ALNV.PS Floating Point Align Variable 64-bit FPU Only
CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only
CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point
CVT.D.fmt Floating Point Convert to Double Floating Point
CVT.L.fmt Floating Point Convert to Long Fixed Point 64-bit FPU Only
CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only
CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only
CVT.Sfmt Floating Point Convert to Single Floating Point
CVT.W.fmt Floating Point Convert to Word Fixed Point
FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-hit FPU Only
FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point
PLL.PS Pair Lower Lower 64-bit FPU Only
PLU.PS Pair Lower Upper 64-bit FPU Only
PUL.PS Pair Upper Lower 64-bit FPU Only
PUU.PS Pair Upper Upper 64-bit FPU Only
ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only
ROUND.W.fmt | Floating Point Round to Word Fixed Point
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

Table 3.15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LDXC1 Load Doubleword Indexed to Floating Point 64-bit FPU Only
LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only
LwcCi Load Word to Floating Point
LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only
PREFX Prefetch Indexed
SDC1 Store Doubleword from Floating Point

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3.15 FPU Load, Store, and Memory Control Instructions (Continued)

Mnemonic Instruction
SDXC1 Store Doubleword Indexed from Floating Point 64-bit FPU Only
SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-bit FPU Only
SWC1 Store Word from Floating Point
SWXC1 Store Word Indexed from Floating Point 64-bit FPU Only
Table 3.16 FPU Move Instructions
Mnemonic Instruction
CFC1 Move Control Word from Floating Point
CTC1 Move Control Word to Floating Point
MFC1 Move Word from Floating Point
MFHC1 Move Word from High Half of Floating Point Register Release 2 & subsequent
MOV.fmt Floating Point Move
MOVEfmt Floating Point Move Conditional on Floating Point False
MOVN.fmt Floating Point Move Conditional on Not Zero
MOV T.fmt Floating Point Move Conditional on Floating Point True
MOVZ.fmt Floating Point Move Conditional on Zero
MTC1 Move Word to Floating Point
MTHC1 Move Word to High Half of Floating Point Register Release 2 & subsequent
Table 3.17 Obsolete! FPU Branch Instructions
Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuturerevision
of the MIPS32 architecture.

Table 3.18 Coprocessor Branch Instructions

Mnemonic Instruction
BC2F Branch on COP2 False
BC2T Branch on COP2 True
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 41

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The MIPS32® Instruction Set

Table 3.19 Coprocessor Execute Instructions

Mnemonic Instruction
COP2 Coprocessor Operation to Coprocessor 2

Table 3.20 Coprocessor Load and Store Instructions

Mnemonic Instruction
LDC2 Load Doubleword to Coprocessor 2
LwcC2 Load Word to Coprocessor 2
SDC2 Store Doubleword from Coprocessor 2
SWC2 Store Word from Coprocessor 2

Table 3.21 Coprocessor Move Instructions

Mnemonic Instruction
CFC2 Move Control Word from Coprocessor 2
CTC2 Move Control Word to Coprocessor 2
MFC2 Move Word from Coprocessor 2
MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 & subsequent
MTC2 Move Word to Coprocessor 2
MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 & subsequent

Table 3.22 Obsolete! Coprocessor Branch Instructions

Mnemonic Instruction
BC2FL Branch on COP2 False Likely
BC2TL Branch on COP2 True Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuturerevision
of the MIPS32 architecture.

Table 3.23 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation

42 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3.23 Privileged Instructions (Continued)

Mnemonic Instruction
DI Disable Interrupts Release 2 & subsequent
El Enable Interrupts Release 2 & subsequent
ERET Exception Return
MFCO Move from Coprocessor 0
MTCO Move to Coprocessor 0
RDPGPR Read GPR from Previous Shadow Set Release 2 & subsequent
TLBP Probe TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode
WRPGPR Write GPR to Previous Shadow Set Release 2 & subsequent
Table 3.24 EJTAG Instructions
Mnemonic Instruction
DERET Debug Exception Return
SDBBP Software Debug Breakpoint

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

43

Floating Point Absolute Value

44

ABS.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 ABS
010001 fnt 00000 fs fd 000101
6 5 5 5 5 6
Format: ABS.fmt
ABS.S fd, fs M1PS32
ABS.D f£d, fs M1PS32

ABS.PS fd, fs

Purpose: Floating Point Absolute Value

Description: FPR[£d] <« abs (FPR[fs])

MIPS64, MIPS32 Release 2

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-

tions.

Cause hits are ORed into the Flag hits if no exception is taken.

This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:

Thefields fs and fdmust specify FPRs valid for operands of type fnt. If they are not valid, the result is UNPREDICT -

ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of ABS.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

AbsoluteValue (ValueFPR(fs,

fmt)))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Add Word ADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADD
000000 00000 100000
6 5 5 5 5 6
Format. 2DD rd, rs, rt MIPS32

Purpose: Add Word
To add 32-hit integers. If an overflow occurs, then trap.

Description: GPR[rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

» If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:
None

Operation:

temp < (GPR[rslj;;||GPRIlrsls; o) + (GPR[rtlsq||GPRIrtlss g)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] < temp
endif

Exceptions:
Integer Overflow

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 45

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Add

46

ADD.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 ADD
010001 fnt ft fs fd 000000
6 5 5 5 5 6
Format: ADD. fmt
ADD.S fd, fs, M1PS32
ADD.D fd, fs, M1PS32

ADD.PS fd,

Purpose: Floating Point Add

To add floating point values

fs,

ft

Description: FPR[fd] « FPR[fs] + FPR[ft]

Thevalue in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated

exceptions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

MIPS64, MIPS32 Release 2

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of ADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd

Exceptions:

’

fmt, ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

fmt) +¢e ValueFPR(fL,

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Add Immediate Word ADDI

31 26 25 21 20 16 15 0
ADDI . .
001000 rs rt immediate
6 5 5 16
Format: aDDI rt, rs, immediate M1PS32

Purpose: Add Immediate Word
To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] <« GPR[rs] + immediate
The 16-bit signed immediate is added to the 32-bit value in GPR rsto produce a 32-bit result.

» If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:
None

Operation:

temp < (GPR[rslj;i||GPRI[rsls; o) + sign_extend(immediate)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rt] « temp
endif

Exceptions:
Integer Overflow

Programming Notes:
ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 a7

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word ADDIU

48

31 26 25 21 20 16 15 0
ADDIU .]
001001 rs rt immediate
6 5 5 16
Format: aDDIU rt, rs, immediate M1PS32

Purpose: Add Immediate Unsigned Word
To add a constant to a 32-hbit integer

Description: GPR[rt] <« GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

temp ¢ GPR[rs] + sign_extend(immediate)
GPR[rt] ¢« temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Add Unsigned Word ADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format. aADDU rd, rs, rt MIPS32

Purpose: Add Unsigned Word
To add 32-hit integers

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ¢ GPR[rs] + GPR[rt]
GPR[rd] ¢« temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 49
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

50

Floating Point Align Variable ALNV.PS

31 26 25 21 20 16 15 11 10 6 5 0
COPIX ALNV.PS
010011 rs ft fs fd 011110
6 5 5 5 5 6
Format: aLnv.pPs fd, fs, ft, rs MI1PS64, M| PS32 Release 2

Purpose: Floating Point Align Variable
To align amisaligned pair of paired single values

Description: FPR[£d] <« ByteAlign(GPR[rs]l, o, FPR[fs], FPR[ft])

FPR fs is concatenated with FPR ft and this value is funnel-shifted by GPR rs, g bytes, and written into FPR fd. If
GPRrs, gis0, FPR fd receives FPR fs. If GPR rs, (iS4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR ft.

Figure 3.1 Example of an ALNV.PS Operation

FPRfs] FPRIft]
A AN
63 32 31 0
S—
FPR[fd]

The moveis non arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPRrs; g are non-zero, the results are UNPREDICTABLE.
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rsl, o = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))
else if GPR[rsl, o # 4 then

UNPREDICTABLE
else if BigEndianCPU then

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft,PS)gs;. 35)
else

StoreFPR(fd, PS, ValueFPR(ft, PS)i3; o || ValueFPR(fs,PS)g;. 35)
endif

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable ALNV.PS

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:
ALNV.PSisdesigned to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16) of data TO to T1l, TO unaligned, T1 aligned.
Reads one dw beyond the end of TO. */

LUXC1 FO, 0(T0) /* set up by reading 1lst src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, TO, 8 /* base for odd dw loads */
ADDIU T5, Tl, -8/* base for odd dw stores */
LOOP:
LUXC1 F1l, T3(T4)
ALNV.PS F2, FO, F1, TO/* switch FO, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 FO, T3(TO)
ALNV.PS F2, Fl1, FO, TO/* switch F1l, FO for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)
DONE:

ALNV.PSisaso useful with SUXCL1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = TO[i] + F8, TO aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes lst pair into FO0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get TO[1i+42]/TO0[1i+3] */
ADD.PS Fl, F2, F8/* compute T1[i+2]/T1[i+43] */
ALNV.PS F3, FO, F1, Tl/* align to dst memory */
SUXC1 F3, T3(T1l)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* 1 =1+ 4 */
LDC1 F2, T3(TO0)/* get TO[i+0]/TO[i+1] */
ADD.PS FO, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, FO, Tl/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+43] */

/* Loop trailer stores all or half of FO, depending on Tl alignment */

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 51
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

And

52

31

26 25

21 20

16 15

11

10

AND

SPECIAL
000000

rs

rt

rd

00000

AND
100100

6

Format. AND rd,

Purpose: And

5

rs, rt

To do abitwise logical AND

Description: GPR[rd] <« GPR[rs] AND GPR[rt]

6

MIPS32

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is

placed into GPR rd.

Restrictions:
None

Operation:

GPR[rd] ¢« GPR[rs] and GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

And Immediate ANDI
31 26 25 21 20 16 15 0
ANDI . .
001100 rs rt immediate
6 5 5 16
Format: aANDI rt, rs, immediate M1PS32

Purpose: And Immediate
To do a bitwise logical AND with a constant

Description: GPR[rt] <« GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin abitwiselogical AND

operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:
None

«— GPR[rs] and zero_extend(immediate)

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

53

54

Unconditional Branch

31

26 25

21 20

16 15

BEQ
000100

00000

00000

offset

6

Format: B offset

Purpose: Unconditional Branch

To do an unconditional branch

Description: branch

16

Assembly Idiom

B offset is the assembly idiom used to denote an unconditional branch. The actua instruction is interpreted by the

hardware as BEQ r0, r0, offset.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:
I:
I+1:

Exceptions:

None

Programming Notes:

target_offset <« sign_extend(offset || 02)
PC « PC + target_offset

With the 18-hit signed instruction offset, the conditional branch range is+ 128 Kbytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Branch and Link BAL

31 26 25 21 20 16 15 0
REGIMM 0 BGEZAL offset
000001 00000 10001
6 5 5 16
Format: BAL offset Assembly Idiom

Purpose: Branch and Link
To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset isthe assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL rO0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted |eft 2bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an excep-
tion handler to resume execution by re-executing the branch when an exception occurs in the branch delay sot.
Operation:

I: target_offset ¢« sign_extend(offset || 02)
GPR[31] « PC + 8
I+1: PC < PC + target_offset

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 55

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP False BC1F

56

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 “ lolo offset
6 5 3 1 1 16
Format: BC1F offset (cc = 0 implied) M1PS32
BC1F cc, offset MIPS32

Purpose: Branch on FP False
To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 0 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit ccisfalse (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) = 0
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Satus register. MIPS, I1, and 111 architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, 11, and 111 architectures there must be at least one instruction between the compare instruction that sets

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 57
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely BC1FL

58

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 “ 110 offset
6 5 3 1 1 16
Format: BC1FL offset (cc = 0 implied) M1PS32
BC1FL cc, offset MIPS32

Purpose: Branch on FP False Likely

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if FPConditionCode(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is false (0), the program branches to the effective target address after the instruction in the delay
dot is executed. If the branch is not taken, the instruction in the delay ot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition « FPConditionCode(cc) = 0
target_offset « (offset;g) PREEN-(16+2) || offget || 02
I+1: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely BC1FL

encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPS |1 and 111 architectures, there must be at |east one instruction between the compare instruction that sets a
condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 59
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP True BC1T

60

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 © lol1 offset
6 5 3 1 1 16
Format: BC1T offset (cc = 0 implied) M1PS32
BC1T cc, offset MIPS32

Purpose: Branch on FP True
To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) =1
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Satus register. MIPS |, I1, and 11 architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, 11, and 111 architectures there must be at least one instruction between the compare instruction that sets

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 61
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely BC1TL

62

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 © 111 offset
6 5 3 1 1 16
Format: BC1TL offset (cc = 0 implied) M1PS32
BC1TL cc, offset MIPS32

Purpose: Branch on FP True Likely

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay dlot only if
the branch is taken.

Description: if FPConditionCode(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code hit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition « FPConditionCode(cc) =1
target_offset « (offsetl5)CPREEN-(16+2) || offset || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely BC1TL

will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BCLT instruction instead.
Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPS |1 and 111 architectures, there must be at |east one instruction between the compare instruction that sets a
condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 63

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False BC2F

64

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 “ lolo offset
6 5 3 1 1 16
Format: BC2F offset (cc = 0 implied) M1PS32
BC2F cc, offset MIPS32

Purpose: Branch on COP2 False
To test a COP2 condition code and do a PC-relative conditional branch

Description: if copP2Condition(cc) = 0 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢« COP2Condition(cc) = 0
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False Likely BC2FL

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 “ 110 offset
6 5 3 1 1 16
Format: BC2FL offset (cc = 0 implied) M1PS32
BC2FL cc, offset MIPS32

Purpose: Branch on COP2 False Likely

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch istaken.

Description: if corP2Condition(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.
I: condition ¢ COP2Condition(cc) = 0
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 65

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True

66

BC2T

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 © lol1 offset
6 5 3 1 1 16
Format: BC2T offset (cc = 0 implied) M1PS32
BC2T cc, offset MIPS32

Purpose: Branch on COP2 True

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cop2Condition(cc)

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

1 then branch

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.
I:

I+1:

Exceptions:

condition ¢« COP2Condition(cc)

target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
if condition then

PC < PC + target_offset

endif

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KByt
(JR) instructions to branch to addresses outside this range.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

es. Usejump (J) or jump register

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Branch on COP2 True Likely BC2TL

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 © 111 offset
6 5 3 1 1 16
Format: BC2TL offset (cc = 0 implied) M1PS32
BC2TL cc, offset MIPS32

Purpose: Branch on COP2 True Likely

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if cop2Condition(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay ot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢« COP2Condition(cc) =1
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 67

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Equal BEQ

68

31 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
Format: BEQ rs, rt, offset M1PS32

Purpose: Branch on Equal
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition ¢« (GPR[rs] = GPR[rt])
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, rO offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL
010100 rs rt offset
6 5 5 16
Format: BEQL rs, rt, offset M1PS32

Purpose: Branch on Equal Likely
To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay sot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset <« sign_extend(offset || 02)
condition « (GPR[rs] = GPR[rt])
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved | nstruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 69

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

70

Branch on Greater Than or Equal to Zero

31

26 25

21 20

16 15

BGEZ

REGIMM
000001

rs

BGEZ
00001

offset

6

Format: BGEZ rs, offset

5

Purpose: Branch on Greater Than or Equal to Zero
To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs]

0 then branch

16

MIPS32

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the

instruction in the delay dlot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] > QCFRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 26 25 21 20 16 15 0
REGIMM BGEZAL
000001 rs 10001 offset
6 5 5 16
Format. BGEZAL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] > 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition « GPR[rs] > QCGFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL isused in amanner similar to JAL, but provides PC-relative addressing and amore limited target PC range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 71

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

72

31 26 25 21 20 16 15 0
REGIMM BGEZALL
000001 rs 10011 offset
6 5 5 16
Format. BGEZALL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero and Link Likely
To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Descﬁpﬁon: if GPR[rs] =2 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] 2 QGPRLEN
GPR[31] « PC + 8
I+1: if condition then
PC« PC + target_offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use thisinstruction when thereis a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Historical Information:
In the MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 73
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero Likely BGEZL

74

31 26 25 21 20 16 15 0
REGIMM BGEZL
000001 rs 00011 offset
6 5 5 16
Format. BGEZL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay dlot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset <« sign_extend(offset || 02)
condition « GPR[rs] > QCFRLEN
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved | nstruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero BGTZ
31 26 25 21 20 16 15 0
BGTZ 0
000111 rs 00000 offset
6 5 5 16
Format: BGTZ rs, offset M1PS32

Purpose: Branch on Greater Than Zero

To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address

after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] > OQCFPRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

75

Branch on Greater Than Zero Likely BGTZL

76

31 26 25 21 20 16 15 0
BGTZL 0
010111 rs 00000 offset
6 5 5 16
Format. BGTZL rs, offset MIPS32

Purpose: Branch on Greater Than Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay dlot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset <« sign_extend(offset || 02)
condition « GPR[rs] > (QCPRLEN
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved | nstruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero BLEZ
31 26 25 21 20 16 15 0
BLEZ 0
000110 s 00000 offset
6 5 5 16
Format: BLEZ rs, offset M1PS32

Purpose: Branch on Less Than or Equal to Zero

To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs]

0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] < QCFRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

77

Branch on Less Than or Equal to Zero Likely BLEZL

78

31 26 25 21 20 16 15 0
BLEZL 0
010110 rs 00000 offset
6 5 5 16
Format: BLEZL rs, offset MI1PS32

Purpose: Branch on Less Than or Equal to Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset <« sign_extend(offset || 02)
condition « GPR[rs] < QCFRLEN
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero BLTZ

31 26 25 21 20 16 15 0
REGIMM BLTZ
000001 rs 00000 offset
6 5 5 16
Format: BLTZ rs, offset M1PS32

Purpose: Branch on Less Than Zero
To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC <« PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 79
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM BLTZAL
000001 rs 10000 offset
6 5 5 16
Format: BLTZAL rs, offset MI1PS32

80

Purpose: Branch on Less Than Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link Likely BLTZALL

31 26 25 21 20 16 15 0
REGIMM BLTZALL
000001 rs 10010 offset
6 5 5 16
Format. BLTZALL rs, offset MIPS32

Purpose: Branch on Less Than Zero and Link Likely
To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 81
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Historical Information:
In the MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

82 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0
REGIMM BLTZL
000001 rs 00010 offset
6 5 5 16
Format: BLTZL rs, offset MI1PS32

Purpose: Branch on Less Than Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay dlot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset <« sign_extend(offset || 02)
condition ¢« GPR[rs] < OQCPRLEN
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved | nstruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 83
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal

84

31

26 25

21 20

16 15

BNE

BNE
000101

rs

rt

offset

6

5

Format: BNE rs, rt, offset

Purpose: Branch on Not Equal
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] # GPR[rt] then branch

16

MIPS32

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition ¢

(GPR[rs]

I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

GPR[rt])

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Branch on Not Equal Likely BNEL

31 26 25 21 20 16 15 0
BNEL
010101 rs rt offset
6 5 5 16
Format: BNEL rs, rt, offset M1PS32

Purpose: Branch on Not Equal Likely
To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] # GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset <« sign_extend(offset || 02)
condition « (GPR[rs] # GPR[rt])
I+1l: if condition then
PC < PC + target_offset
else
NullifyCurrentInstruction()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved | nstruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 85

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

86

Breakpoint BREAK

31 26 25 6 5 0
SPECIAL code BREAK
000000 001101
6 20 6
Format: BREAK MIPS32

Purpose: Breakpoint
To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:
None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
COP1 A| FC
010001 fmt ft fs cc 0 ol 11 cond
6 5 5 5 3 1 1 2 4
Format: cC.cond.fmt

C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64, M| PS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Compare
To compare FP values and record the Boolean result in a condition code

Description: FPuConditionCode (cc) <« FPR[fs] compare cond FPR[ft]

Thevaluein FPR fsis compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by cond, ; istrue for the operand values, the result istrue; otherwise, the result isfalse. If
no exception istaken, the result is written into condition code CC; trueis 1 and falseis 0.

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the valuesisan SNaN, or conds is set and at least one of the valuesis a QNaN, an Invalid Operation condi-
tionisraised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the |EEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of theinstruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields atrue result.

Logica negation of acompare result allows eight distinct comparisons to test for the 16 predicates as shown in Table
3.25. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth
of thefirst predicate. When the first predicate is true, the result is true as shown in the “ If Predicate Is True” column,
and the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do
not follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of thefirst predicate can be made with the Branch on FP True (BCL1T) instruction and the truth of the second
can be made with Branch on FP False (BCL1F).

Table 3.26 shows another set of eight compare operations, distinguished by aconds value of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition israised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 87

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

88

Floating Point Compare C.cond.fmt
exception occurs.
Table 3.25 FPU Comparisons Without Special Operand Exceptions
Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con_dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp. if Field
Mnemonic Predicate (Abbreviation) > <| =7 Is True QNaN? 3 2.0
F False [this predicate is always False] FIF|F|F F No 0 0
True(T) TIT|T|T
UN Unordered FIF|F|T T 1
Ordered (OR) T|IT|T|F F
EQ Equal FIF|T|F T 2
Not Equal (NEQ) T|T|F|T F
UEQ Unordered or Equal FIF|T|T T 3
Ordered or Greater Than or Less Than (OGL) T|IT|F|F F
OLT Ordered or Less Than FIT|F|F T 4
Unordered or Greater Than or Equal (UGE) TIF|T|T F
ULT Unordered or Less Than FIT|F|T T 5
Ordered or Greater Than or Equal (OGE) TIF|T|F F
OLE Ordered or Less Than or Equal FIT|T|F T 6
Unordered or Greater Than (UGT) TIF|F|T F
ULE Unordered or Less Than or Equal FIT|T|T T 7
Ordered or Greater Than (OGT) T|IF|F|F F
Key: ? = unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Compare

C.cond.fmt

Table 3.26 FPU Comparisons With Special Operand Exceptions for QNaNs

Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Condition
. . Values . Inv_Op Field
Cond Name of Predicate and Logically Negated If Predicate| Excp If
Mnemonic Predicate (Abbreviation) >(<|=]? Is True QNaN? 3 2.0
SF Signaling False [this predicate always False] FIF|F|F F Yes 1 0
Signaling True (ST) T|IT|T|T
NGLE Not Greater Than or Less Than or Equal FIF|F|T T 1
Greater Than or Less Than or Equal (GLE) T|IT|T|F F
SEQ Signaling Equal FIF|T|F T 2
Signaling Not Equal (SNE) T|IT|F|T F
NGL Not Greater Than or Less Than FIF|T|T T 3
Greater Than or Less Than (GL) T|T|F|F F
LT Less Than FIT|F|F T 4
Not Less Than (NLT) TIF|T|T F
NGE Not Greater Than or Equal FIT|F|T T 5
Greater Than or Equal (GE) TIF|T|F F
LE Less Than or Equal FIT|T|F T 6
Not Less Than or Equal (NLE) TIF|F|T F
NGT Not Greater Than FIT|T|T T 7
Greater Than (GT) T|IF|F|F F
Key: ? = unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result isUNPREDICT -
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of C.cond.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the condi-
tion code number is odd.

Operation:

if SNaN (ValueFPR(fs,
QNaN (ValueFPR(fs,
less ¢« false
equal « false
unordered « true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond; and (QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft,fmt))))

SignalException (InvalidOperation)

fmt))
fmt))

or SNaN (ValueFPR(ft,
or QNaN (ValueFPR(ft,

fmt))
fmt))

or
then

then

endif

else
less « ValueFPR(fs, fmt) <g, ValueFPR(ft, fmt)
equal <« ValueFPR(fs, fmt) =g, ValueFPR(ft, fmt)

unordered <« false
endif

89
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

90

Floating Point Compare C.cond.fmt

condition ¢« (cond, and less) or (cond; and equal)
or (condy and unordered)
SetFPConditionCode (cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN

c.eq.d $f2,s$f4 # check for equal

nop

bclt L2 # it is equal

c.un.d $f2,$f4 # it is not equal,

but might be unordered

bclt ERROR # unordered goes off to an error handler

not-equal-case code here

equal-case code here
L2:

comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
nop
it 1s not unordered here

not-equal-case code here

equal-case code here

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE
31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format: CACHE op, offset (base) M1PS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective addressis used in one of the following ways based on the operation to be performed and the type of cache as

described in the following table.

Table 3.27 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address
Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)
Address Physical The effective address is trandated by the MMU to a physical address. The physi-
cal addressisthen used to address the cache
Index N/A The effective addressis trandlated by the MMU to aphysical address. It isimple-

mentation dependent whether the effective address or the trandlated physical
address is used to index the cache. As such, aksegO address should aways be
used for cache operations that require an index. See the Programming Notes sec-
tion below.

Assuming that the total cache sizein bytesis CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)

IndexBit ¢« Log2(CS / A)

WayBit ¢ IndexBit + Ceiling(Log2 (A))

way ¢ AddrV\IayBitfl..IndexBit

Index ¢ Addripgexpit-1..offsetBit
For adirect-mapped cache, the Way calculation isignored and the Index value
fully specifies the cache tag. Thisis shown symboalically in the figure below.

Figure 3.2 Usage of Address Fields to Select Index and Way

WayBit OffsetBit

[[IndexBit [i

Unused

Way Index Byte Index

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

91

92

Perform Cache Operation CACHE

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 3.28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of alarger cache (every address which isresident in the smaller cache is also resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHE instruction implementation nor the software cache flush sequence follow this pol-
icy, then the inclusion property of the caches can be broken, which might be a condition that the cache management
hardware can not properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHE instruction is still needed whenever writeback data has to be resident in the next level of
memory hierarchy.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

CACHE

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect al coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either al affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b000 | Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.
This required encoding may be used by soft-
ware to invalidate the entire instruction cache
by stepping through all valid indices.
D Index Writeback Index For awrite-back cache: If the state of the Required
Invalidate / Index cache block at the specified index is valid and
Invalidate dirty, write the block back to the memory
address specified by the cache tag. After that
- operation is completed, set the state of the ——
ST Index Writeback Index cache block to invalid. If theblock isvalidbut | Requiredif ST
Invalidate / Index not dirty, set the state of the block to invalid. cacheisimple-
Invalidate mented
For awrite-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by soft-
ware to invalidate the entire data cache by
stepping through al valid indices. Note that
Index Store Tag should be used to initialize the
cache at power up.
0b001 All Index Load Tag Index Read the tag for the cache block at the speci- Recommended

fied index into the TagLo and TagHi Copro-
cessor 0 registers. If the Datal.o and DataHi
registers are implemented, also read the data
corresponding to the byte index into the
Datal.o and DataHi registers. This operation
must not cause a Cache Error Exception.

The granularity and alignment of the data read
into the Datal.o and DataHi registersis
implementation-dependent, but istypically the
result of an aligned access to the cache, ignor-
ing the appropriate low-order bits of the byte
index.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

93

Perform Cache Operation CACHE
Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the speci- Required
fied index from the TagLo and TagHi Copro-
cessor 0 registers. This operation must not
cause a Cache Error Exception.
This required encoding may be used by soft-
ware to initialize the entire instruction or data
caches by stepping through all valid indices.
Doing so requires that the TagLo and TagHi
registers associated with the cache be initial -
ized first.
0b011 All Implementation Unspecified | Available for implementation-dependent oper- Optional
Dependent ation.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruc-
address, set the state of the cache block to tion Cache Encod-
invalid. ing Only),
This required encoding may be used by soft- Recommended oth-
ware to invalidate a range of addresses from erwise
the instruction cache by stepping through the
address range by the line size of the cache.
ST Hit Invalidate Address Optional, if
In multiprocessor implementationswith coher- | Hit_Invalidate D is
ent caches, the operation may optionally be implemented, the S
broadcast to all coherent cacheswithinthesys- | a@nd T variantsare
tem. recommended.
Ob101 | Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Address For awrite-back cache: If the cache block con- Required
Invalidate / Hit tains the specified address and it isvalid and
Invalidate dirty, write the contents back to memory. After
that operation is completed, set the state of the
- - cache block to invalid. If the block isvalid but ——
ST Hit Writeback Address | not dirty, set the state of the block to invalid. Requiredif S, T
Invalidate / Hit For awrite-through cache: If the cache block cacheisimple-
Invalidate mented

contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by soft-
ware to invalidate arange of addresses from
the data cache by stepping through the address
range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to al coherent caches within the sys-
tem.

94

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

CACHE

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
Ob110 D Hit Writeback Address If the cache block contains the specified Recommended
address and it is valid and dirty, write the con-
- - tents back to memory. After the operation is - -
ST Hit Writeback Address | completed, leave the state of the line valid, but ~ Optiond, if
clear the dirty state. For awrite-through cache, | Hit_Writeback Dis
this operation may be treated as a nop. implemented, the S
and T variants are
In multiprocessor implementations with coher- recommended.
ent caches, the operation may optionally be
broadcast to al coherent caches within the sys-
tem.
Ob111 I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a Recommended

writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on afill from memory isimple-
mentation dependent.

Thelock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or viaan Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the imple-
mentation-dependent cache tag and cache line
organization, and that Index and Index Write-
back Invalidate operations are dependent on
cache line organization. Only Hit and Hit
Writeback Invalidate operations are generally
portable across implementations.

It isimplementation dependent whether a
locked lineis displaced as the result of an
external invalidate or intervention that hits on
the locked line. Software must not depend on
the locked line remaining in the cache if an
external invalidate or intervention would
invalidate the line if it were not locked.

It isimplementation dependent whether a
Fetch and Lock operation affects more than
one line. For example, more than oneline
around the referenced address may be fetched
and locked. It is recommended that only the
single line containing the referenced address
be affected.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

95

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

96

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or awriteback invalidate.

If thisinstruction is used to lock all ways of acache at a specific cache index, the behavior of that cache to subsequent
cache missesto that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of thisinstruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback datais not yet visible at the next level of the memory hierarchy.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Fixed Point Ceiling Convert to Long Fixed Point

CEIL.L.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 CEILL
010001 fmt 00000 fs fd 001010
6 5 5 5 5 6
Format: CEIL.L.fmt

Purpose: Fixed Point Ceiling Convert to Long Fixed Point
To convert an FP value to 64-hit fixed point, rounding up

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

CEIL.L.S fd, fs
CEIL.L.D fd, fs

MI1PS64, M1 PS32 Release 2
MIPS64, M1 PS32 Release 2

Thevaluein FPR fs, in format ft, is converted to a value in 64-bit long fixed point format and rounding toward +eo

(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 2%3-1, the result cannot be

represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fimt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operatio

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs,

n:

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating

Invalid Operation, Unimplemented Operation, I nexact, Overflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Point Exceptions:

fmt) ,

fmt,

L))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

97

Floating Point Ceiling Convert to Word Fixed Point

98

CEIL.W.fmt

31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd CEIL.W
010001 00000 001110
6 5 5 5 5 6
Format: CEIL.W.fmt
CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format and rounding toward +oo

(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, I nexact, Overflow

fmt) ,

fmt, W))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Control Word From Floating Point CFC1

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 000 0000 0000
6 5 5 5 11
Format. crc1 rt, fs MIPS32

Purpose: Move Control Word From Floating Point
To copy aword from an FPU control register to aGPR

Description: GPR[rt] « FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fsinto GPR rt.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

Operation:

if fs = 0 then
temp <« FIR
elseif fs = 25 then

temp < 02* || FCSR3; 55 || FCSRy;
elseif fs = 26 then

temp « 0 || FCSRy; 1, || 0° || FCSRg , || 02
elseif fs = 28 then

temp « 0%° || FCSRyy 5 || 0% || FCSRy, || FCSRy, o

elseif fs = 31 then
temp ¢« FCSR
else
temp <« UNPREDICTABLE
endif
GPR[rt] « temp
Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, 11 and Il architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPS I, 11, I11, or IV.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 99

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Control Word From Coprocessor 2 CFC2

31 26 25 21 20 16 15 11 10 0
CoP2 CF . .
010010 00010 P
6 5 5 16
Format: crc2 rt, Impl MI1PS32

The syntax shown above is an example using CFC1 as amodel. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2
To copy aword from a Coprocessor 2 control register to aGPR

Description: GPR[rt] ¢« CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. Theinterpretation of the Impl
field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:
The result is UNPREDICTABLE if Impl specifies aregister that does not exist.

Operation:

temp ¢ CP2CCR[Impl]
GPR[rt] ¢« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

100 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Count Leading Ones in Word

31

26 25

21 20

16 15

11 10

CLO

SPECIAL2
011100

rs

rt

rd

00000

CLO
100001

6

Format: cLO rd, rs

Purpose: Count Leading Onesin Word
To count the number of leading onesin aword

Description: GPR[rd] ¢« count_leading_ones GPR[rs]

MIPS32

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading onesis counted

and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rdis 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp <

32

for i in 31
if GPR[rs]; = 0 then

temp « 31 - i

break

endif

endfor
GPR[rd]

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

— temp

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

101

Count Leading Zeros in Word

102

31

26 25

21 20

16 15

11 10

CLz

SPECIAL2
011100

rs

rt

rd

00000

CLz
100000

6

Format: cLz rd, rs

Purpose: Count Leading Zerosin Word

Count the number of leading zerosin aword

Description: GPR[rd] ¢« count_leading_zeros GPR[rs]

MIPS32

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading zerosis counted
and the result iswritten to GPR rd. If no bits were set in GPR rs, the result written to GPR rdis 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp <

32

for i in 31 .. 0
if GPR[rs]; = 1 then

temp « 31 - i
break

endif

endfor
GPR[rd]

Exceptions:
None

— temp

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Coprocessor Operation to Coprocessor 2 COP2

31 26 25 24 0
COP2 CcO cofun
010010 1
6 1 25
Format. copr2 func MIPS32

Purpose: Coprocessor Operation to Coprocessor 2
To perform an operation to Coprocessor 2

DESCI’iptiOhZ CoprocessorOperation (2, cofun)

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and interna state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 103

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point CTC1

104

31 26 25 21 20 16 15 11 10 0
COP1 CT rt fs 0
010001 00110 000 0000 0000
6 5 5 5 11
Format. cTCcl rt, fs MIPS32

Purpose: Move Control Word to Floating Point
To copy aword from a GPR to an FPU control register

Description: FP_control[fs] « GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit and
its corresponding Enable bit are both set. The register iswritten before the exception occurs. Writing to FEXRto set a
cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set causes
the appropriate exception. The register is written before the exception occurs and the EPC register contains the
address of the CTCL1 instruction.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

Operation:

temp < GPR[rtlsq g
if fs = 25 then /* FCCR */
if temps, g # 024 then
UNPREDICTABLE
else
FCSR « temp; 1 || FCSRy, || tempy || FCSRyy o
endif
elseif fs = 26 then /* FEXR */
if tempszq 13 # 0 or tempy; 5 # 0 or temp, o # Othen
UNPREDICTABLE
else
FCSR ¢« FCSR31 15 || tempiy 15 || FCSRyp 7 ||
temps » || FCSRy. g
endif
elseif fs = 28 then /* FENR */
if temps; 1, # 0 or tempg 3 # 0 then

UNPREDICTABLE

else
FCSR ¢« FCSR31 55 || temp, || FCSRp3. 15 || tempip. 5
|| FCSRg. .5 || tempi o

endif

elseif fs = 31 then /* FCSR */
if (FCSRppp field is not implemented) and(temp,; 15 # 0) then
UNPREDICTABLE
elseif (FCSRpy,; field is implemented) and tempy; 13 # 0 then
UNPREDICTABLE
else
FCSR « temp
endif
else

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point CTC1

UNPREDICTABLE
endif

CheckFPException () Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS 1, 1l and |11 architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTCL1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPS I, 11, 11, or IV.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 105

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Control Word to Coprocessor 2 CTC2

106

31 26 25 21 20 16 15 11 10 0
COP2 CT o o
010010 00110 P
6 5 5 16
Format:. cTC2 rt, Impl MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax isimplementation dependent.

Purpose: Move Control Word to Coprocessor 2
To copy aword from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] <« GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:
The result is UNPREDICTABLE if rd specifies aregister that does not exist.

Operation:

temp ¢ GPR[rt]
CP2CCR[Impl] ¢« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Double Floating Point

31 26 25

21 20

16 15

11 10

CVT.D.fmt

COP1
010001

fmt

00000

fs

CVTD
100001

Format. cvT.D.fmt

CVT.D.S fd, fs
CVT.D.W fd, fs
CVT.D.L fd, fs

Purpose: Floating Point Convert to Double Floating Point
To convert an FP or fixed point value to double FP

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

MIPS32
MIPS32

MIPS64, MIPS32 Release 2

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is aways

exact.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for double floating point—if they are not valid,
theresult is UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers

mode.

Operation:

StoreFPR (fd, D, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, I nexact

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) ,

fmt,

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

107

Floating Point Convert to Long Fixed Point CVT.L.fmt
31 26 25 21 20 16 15 11 10 5 0
COP1 0 CVTL
010001 fmt 00000 fs fd 100101
6 5 5 5 5 6

Format: cvT.L.fmt

108

CVT.L.S fd, fs
CVT.L.D fd, fs

Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-hit fixed point

Description: FPR[£d] <« convert_and_round (FPR[fs])

MI1PS64, M1 PS32 Release 2
MIPS64, M1 PS32 Release 2

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. Theresult is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 28°—1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating

Invalid Operation, Unimplemented Operation, I nexact, Overflow

Point Exceptions:

(fd, L, ConvertFmt (ValueFPR(fs,

fmt) ,

fmt,

L))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair to Paired Single CVT.PS.S

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd CVT.PS
010001 10000 100110
6 5 5 5 5 6
Format. cvr.ps.s fd, fs, ft M1PS64, M1PS32 Release 2

Purpose: Floating Point Convert Pair to Paired Single

To convert two FP values to a paired single value

Description: FPR[fd] « FPR[fslsy..o || FPRIftls1. .o

The single-precision values in FPR fs and ft are written into FPR fd as a paired-single value. The value in FPR fsis
written into the upper half, and the value in FPR ft is written into the lower half.

fs ft

31 0 31 0

63 32 31

fd
CVT.PS.Sissimilar to PLL.PS, except that it expects operands of format Sinstead of PS,
The move is non-arithmetic; it causes no |EEE 754 exceptions.

o

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type S, if they are not valid, the result is UNPREDICT -
ABLE.

The operand must be avaluein format S if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 109

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Single Floating Point

110

CVT.S.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt 0 fs td CVTS
010001 00000 100000
6 5 5 5 5 6
Format. cvT.s.fmt
CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32

CVT.S.L fd, fs

Purpose: Floating Point Convert to Single Floating Point
To convert an FP or fixed point value to single FP

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

MIPS64, MIPS32 Release 2

Thevauein FPR fs, in format fmt, is converted to avalue in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the

resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers

mode.

Operation:

StoreFPR(fd, S,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

ConvertFmt (ValueFPR (fs,

fmt) ,

fmt,

S))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair Lower to Single Floating Point

31 26 25

21 20

16 15

11 10

CVT.S.PL

COP1
010001

fmt
10110

00000

fs

fd

CVT.SPL
101000

6

Format. cvT.s.pPL fd,

Purpose:

Floating Point Convert Pair Lower to Single Floating Point
To convert one half of a paired single FP value to single FP

5

fs

Description: FPR[£d] « FPR[fsl3;. o

6

MI1PS64, M1 PS32 Release 2

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. Thisinstruction can be used to isolate the lower half of a paired single value.

The operation is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PL isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

PS),

PL,

S))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

111

Floating Point Convert Pair Upper to Single Floating Point

112

31

26 25

21 20

16 15

11 10

CVT.S.PU

COP1
010001

fmt
10110

00000

fs

fd

CVT.SPU
100000

6

Format. cvT.s.pPU fd,

5

fs

Purpose: Floating Point Convert Pair Upper to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[fd] <« FPR[fslgs. 32

6

MI1PS64, M1 PS32 Release 2

The upper paired single value in FPR fs, in format PS is converted to a value in single floating point format. The
result is placed in FPR fd. Thisinstruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PU is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

PS),

PU, S))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Word Fixed Point

CVT.W.fmt

31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd CVT.W
010001 00000 100100
6 5 5 5 5 6
Format. cvT.w.fmt
CVT.W.S fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose: Floating Point Convert to Word Fixed Point
To convert an FP value to 32-bit fixed point

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to avaluein 32-bit word fixed point format and rounded according to

the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, I nexact, Overflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) ,

fmt, W))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

113

Debug Exception Return DERET

114

31 26 25 24 6 5 0
COPO CcO 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG

Purpose: Debug Exception Return
To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

Thisinstruction is legal only if the processor is executing in Debug Mode. The operation of the processor is UNDE-
FINED if aDERET is executed in the delay ot of a branch or jump instruction.

Operation:

Debugpy ¢ 0

Debugrpxr < 0

if IsMIPSl16Implemented() | (Config3;ga > 0) then
PC « DEPC3;..7 || O
ISAMode < DEPCj,

else
PC « DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Disable Interrupts DI

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sc| O 0
0100 00 01011 01100 000 00 0| 0O 000
6 5 5 5 5 1 2 3
Format. b MI1PS32 Release 2
DI rt MIPS32 Release 2

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
rO isimplied, which discards the previous value of the Status register.

Description: GPR[rt] <« Status; Statusig < O

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data ¢« Status

GPR[rt] ¢« data

Statusig < 0
Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the | E bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction can not be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. Thishazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 115
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Divide Word DIV

116

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 DIV
000000 00 0000 0000 011010
6 5 5 10 6
Format: DIV rs, rt MIPS32

Purpose: Divide Word
To divide a 32-bit signed integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
g < GPR[rslszj, .o div GPRI[rtlsq, .o
LO < g

r < GPR[rsls3;, .o mod GPR[rtlz;. .o
e

HI r

Exceptions:
None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction istypically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

By default, most compilers for the MIPS architecture will emit additional instructions to check for the divide-by-zero
and overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV r0, rs, rt” can be
used to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subse-

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 117
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Divide

118

31

26 25

21 20

16 15

11 10

DIV.fmt

COP1
010001

fmt

ft

fs

fd

DIV
000011

Format. DIv.fmt
DIV.S fd, fs, ft
DIV.D fd, fs, ft

Purpose: Floating Point Divide
To divide FP values

Description: FPR[£fd] <« FPR[fs] / FPR[ft]

MIPS32
MIPS32

Thevaluein FPR fsis divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fmt.

Restrictions:

Thefieldsfs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRED-

ICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

fmt)

/ ValueFPR (ft,

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Divide Unsigned Word

31

26 25

21 20 16 15

DIVU

SPECIAL
000000

rs

rt

0
00 0000 0000

DIvU
011011

6

Format. DIVU rs, rt

Purpose: Divide Unsigned Word

To divide a 32-bit unsigned integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rsis divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:

q —
r —
LO «
HI <«

(0 || GPR[rs]3;..
(0 || GPRI[rslay..
sign_extend(qgsq,
sign_extend(rsq ., .

Exceptions:

None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

o)
o)
.0)
o)

di

(0 || GPRIrtlay..o

v
mod (0 || GPR[rtlay..q)

10

)

6

MIPS32

119

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Execution Hazard Barrier EHB

120

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 3 SLL
000000 00000 00000 00000 00011 000000
6 5 5 5 5 6
Format. EHB MI1PS32 Release 2

Purpose: Execution Hazard Barrier
To stop instruction execution until all execution hazards have been cleared.

Description:

EHB isthe assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
wareas SLL rQ, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statusgyq, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of abranch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in amanner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have aready cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Enable Interrupts El

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sc| O 0
0100 00 01011 01100 000 00 1| 00 000
6 5 5 5 5 1 2 3
Format. EI MI1PS32 Release 2
EI rt MIPS32 Release 2

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If El is specified without an argument, GPR
rO isimplied, which discards the previous value of the Status register.

Description: GPR[rt] <« Status; Statusig < 1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register isthen set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data ¢« Status
GPR[rt] ¢« data
Statusiy < 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of thisinstruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the El
instruction can not be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 121

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Exception Return ERET

122

31 26 25 24 6 5 0
COPO CcO 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format. ERET MIPS32

Purpose: Exception Return
To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtl g5 from SRSCtlss in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of abranch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtl g5 from SRSCtlpgg if Statusggy, = 1, or if Statusgg =
1 because any exception that sets Statusgr; t0 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlggin
SRSCltlpgg. If software sets Statusgg, to 1, it must be aware of the operation of an ERET that may be subsequently
executed.

Operation:

if Statusgg; = 1 then
temp < ErrorEPC
Statusggp, < O
else
temp < EPC
Statusgy;, < O
if (ArchitectureRevision 2 2) and (SRSCtlyqg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented/() | (Config3;ga > 0) then
PC « temps; 1 || O
ISAMode <« tempg
else
PC < temp
endif
LLbit « 0
ClearHazards ()

Exceptions:

Coprocessor Unusable Exception

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Extract Bit Field

EXT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 rs " mshd Isb EXT
011111 (size-1) (pos) 000000
6 5 5 5 5 6

Format: EXT rt, rs, pos, size

Purpose: Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] <« ExtractField(GPR[rs], msbd, 1lsb)

MIPS32 Release 2

The hit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ¢« size-1
1lsb « pos

The values of pos and size must satisfy al of the following relations:

0 £ pos < 32
0 < size < 32
0 < pos+size <

32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 3.3 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
IJKL MNOP RST
\ Q
GPRrs 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 mshd 0
0 MNOP
GPR rtFinal 32-size size
Value 32-(msbd+1) msbd+1

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

The operation is UNPREDICTABLE if Isb+mshd > 31.

Operation:
if (1sb + msbd)

> 31) then

UNPREDICTABLE

endif

temp <« 032— (msbd+1)

| | GPR[rS]msbd+lsb. .1sb

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

123

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

GPR[rt] <« temp

Exceptions:
Reserved Instruction

124 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Long Fixed Point

31

26 25

21 20

16 15

11 10

FLOOR.L.fmt

COP1
010001

fmt

00000

fs

fd

FLOOR.L
001011

6

5

Format. FLOOR.L.fmt

FLOOR.L.S fd,
FLOOR.L.D f£fd,

Purpose: Floating Point Floor Convert to Long Fixed Point
To convert an FP value to 64-hit fixed point, rounding down

Description: FPR[£d] <« convert_and_round (FPR[fs])

6

MI1PS64, M1 PS32 Release 2
MIPS64, M1 PS32 Release 2

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -

(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable hit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 28°—1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Invalid Operation, Unimplemented Operation, I nexact, Overflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) ,

fmt,

L))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

125

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt
31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111
6 5 5 5 5 6
Format: FLOOR.W.fmt

FLOOR.W.S fd, fs MIPS32
FLOOR.W.D fd, fs MI1PS32

126

Purpose: Floating Point Floor Convert to Word Fixed Point
To convert an FP value to 32-hit fixed point, rounding down

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —o

(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, I nexact, Overflow

fmt) ,

fmt, W))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Insert Bit Field

INS

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 rs " msb Isb INS
011111 (postsize-1) (pos) 000100
6 5 5 5 5 6

Format. INS rt,

rs, pos, size

Purpose: Insert Bit Field
To merge aright-justified bit field from GPR rsinto a specified field in GPR rt.

Description: GPR[rt] ¢« InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of
thefield), ininstruction bits 10..6, as follows:

msb ¢« pos+size-1

1lsb « pos

The values of pos and size must satisfy al of the following relations:

0

0

Figure 3-10 shows the symbolic operation of the instruction.

GPRs

GPR 1t
Initial Value

GPRrtFinal
Value

Restrictions:

<
0 < size <
< pos+size £ 32

pos < 32
32

Figure 3.4 Operation of the INS Instruction

MIPS32 Release 2

size size-1
31 msb-Isb+1 msb-Isb 0
ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
IJKL MNOP y QRST
32-(pos+size) size pos
32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1
31 msb+1 msb 0
IJKL EFGH QRST
32-(pos+size) size pos
32-(msb+1) msb-Isb+1 Isb

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

127

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The operation is UNPREDICTABLE if Isb > msb.

Operation:

if 1lsb > msb) then
UNPREDICTABLE
endif

GPR[rt] ¢ GPRIrtls; meps1 || GPRITSIpgp-1sn..0 || GPRIrtlig, 1. .o

Exceptions:
Reserved Instruction

128 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump J

31 26 25 0
J instr_index
000010 -
6 26
Format: J target MIPS32

Purpose: Jump
To branch within the current 256 M B-aligned region

Description:

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 hits of the target addressis the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jJump itself.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I:
I+l: PC ¢« PCqprrien-1..28 || instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 256M B region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction isin the last word of a256MB region,
it can branch only to the following 256M B region containing the branch delay sot.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 129

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump and Link JAL

31 26 25 0
JAL . .
000011 instr_index
6 26
Format: JAL target MIPS32

Purpose: Jump and Link
To execute a procedure call within the current 256MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256MB-aligned region.
The low 28 bits of the target addressis the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: GPR[31] « PC + 8
I+l: PC < PCeppren-1. 28 || instr_index || 02
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 256M B region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256MB
region, it can branch only to the following 256M B region containing the branch delay slot.

130 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump and Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs 0 rd hint JALR
000000 00000 001001
6 5 5 5 5 6
Format: JALR rs (rd = 31 implied) M1PS32
JALR rd, rs MIPS32

Purpose: Jump and Link Register
To execute a procedure call to an instruction address in aregister

Description: GPR[rd] ¢« return_addr, PC ¢« GPR[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE nor microMIPS32/64 1SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when bit 0 of the source register is one.

For processors that do implement the MIPS16e ASE or microMIPS32/64 | SA:

e Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rshbit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit O of the source register is one.

In release 1 of the architecture, the only defined hint field valueis 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such aninstructionis UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microM1PS32/64 | SA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16e ASE nor microMIPS32/64 ISA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched
as an instruction.

For processors that do implement the MIPS16e ASE or microMI1PS32/64 ISA, if target ISAMode bit is 0 (GPR rs bit
0) is zero and hit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp ¢« GPR[rs]
GPR[rd] « PC + 8

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 131
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

I+1l:if Configlyy = 0 then
PC « temp
else

PC « tempgprren-1..1 || O
ISAMode <« temp,
endif

Exceptions:
None

Programming Notes:

This branch-and-link instruction that can select aregister for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

132 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier JALR.HB

31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL < 0 y L IA”QO;H?{ ALR
000000 00000 € 001001
value
6 5 5 5 1 2 6
Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose: Jump and Link Register with Hazard Barrier

To execute a procedure call to an instruction address in aregister and clear all execution and instruction hazards

Description: GPR[rd] ¢« return_addr, PC « GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE nor microMIPS32/64 | SA:

« Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch
delay dot, before executing the jump itself. Bit O of the target addressis aways zero so that no Address
Exceptions occur when bit O of the source register is one.

For processors that do implement the MIPS16 ASE or microMIPS32/64 1SA:

» Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the |SA Mode bit to the valuein GPR rsbit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit O of the source register is one.

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor O is
enabled, whereas JALR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses hit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microM1PS32/64 | SA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16 ASE nor microMI1PS32/64 ISA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched
as an instruction.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 133

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier JALR.HB

134

For processors that do implement the MIPS16 ASE or microMIPS32/64 I1SA, if bit O is zero and bit 1 is one, an
Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp ¢« GPR[rs]
GPR[rd] ¢« PC + 8
I+1l:if Configlyy = 0 then
PC « temp
else
PC ¢« tempgppren-1..1 || 0
ISAMode <« tempg
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a cal (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*

* Code used to modify ASID and call a routine with the new

* mapping established.

*

* a0 = New ASID to establish

* al = Address of the routine to call

*/
mfc0 v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */
nop

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 135
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

136 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump and Link Exchange JALX

31 26 25 0
JALX . .
011101 instr_index
6 26
Format: JALX target M IPS32 with (microM I PS32 or M1PS16€)

Purpose: Jump and Link Exchange

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS32 to
microMIPS32 or MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of the | SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address isthe instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the |SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

Restrictions:

Thisinstruction only supports 32-bit aligned branch target addresses.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

If the microMIPS base architecture is not implemented and the MIPS16e ASE is not implemented, a Reserved
Instruction Exception isinitiated.

Operation:
I: GPR[31] « PC + 8
I+l: PC < PCuprrmn-1. .28 || instr_index || 02

ISAMode <¢— (not ISAMode)

Exceptions:
None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding a signed offset to the PC is
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay dot.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 137

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump Register JR

138

31 26 25 21 20 11 10 6 5 0
SPECIAL rs 0 hint JR
000000 00 0000 0000 001000
6 5 10 5 6
Format. JRrR rs MIPS32

Purpose: Jump Register
To execute a branch to an instruction address in a register

Description: pPC « GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay dlot,
before jumping.
For processors that implement the MIPS16e ASE or microMI1PS32/64 | SA, set the |SA Mode bit to the value in GPR

rsbit 0. Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source regis-
ter isone

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the M1PS16e ASE or microMIPS ISA, if either of the two least-signif-
icant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an
instruction.

For processors that do implement the MIPS16e ASE or microMIPS ISA, if bit O is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsegquently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

I: temp < GPR[rs]
I+1l:if Configley = 0 then
PC « temp
else
PC « tempgprren-1..1 || O
ISAMode ¢« tempg
endif

Exceptions:
None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02 139
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier JR.HB

140

31 26 25 21 20 11 10 9 6 5 0
SPECIAL < 0) IA”QO;H?{ R
000000 00 0000 0000 € 001000
value
6 5 10 1 4 6
Format: JR.HB rs MIPS32 Release 2

Purpose: Jump Register with Hazard Barrier
To execute a branch to an instruction address in aregister and clear al execution and instruction hazards.

Description: pPC « GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay dlot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor O is
enabled, whereas JR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses hit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the M1PS16e ASE or microM|1PS32/64 | SA, set the | SA Mode bit to the value in GPR
rshit 0. Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source regis-
ter isone.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the MIPS16 ASE or microMIPS ISA, if either of the two |least-signifi-
cant bits are not zero, an Address Error exception occurs when the branch target i s subsequently fetched as an instruc-
tion.

For processors that do implement the MIPS16 ASE or microMIPS ISA, if bit O is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsegquently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay dlot of the JR.HB. Only hazards
created by instructions executed before the JR.HB are cleared by the JR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dlot of abranch or jump.

Operation:

I: temp < GPR[rs]

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier JR.HB

I+1l:if Configley = 0 then
PC « temp
else
PC « tempgprren-1..1 || O
ISAMode ¢« tempg
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards aone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
seguence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Routine called to modify ASID and return with the new
* mapping established.

*

* a0 = New ASID to establish

*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making awrite to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazardsin-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */
10:
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 141

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Byte LB

142

31 26 25 21 20 16 15 0
LB
100000 base rt offset
6 5 5 16
Format: 1B rt, offset(base) M1PS32

Purpose: Load Byte
To load a byte from memory as asigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAddrpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[rt] « sign_extend(memwordy,g+pyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Byte Unsigned LBU

31 26 25 21 20 16 15 0
LBU
100100 base rt offset
6 5 5 16
Format: LBU rt, offset (base) M1PS32

Purpose: Load Byte Unsigned
To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAddrpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[rt] « zero_extend(memwordy,gshyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 143
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Floating Point LDC1

31 26 25 21 20 16 15 0
LDC1
110101 base ft offset
6 5 5 16
Format: 1»DCl ft, offset (base) M1PS32

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR

Description: FPR[ft] <« memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword ¢« memmsw || memlsw

StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)
Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

144 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Coprocessor 2

LDC2

31 26 25 21 20 16 15 0
LDC2
110110 base rt offset
6 5 5 16
Format: L»DC2 rt, offset(base)

Purpose: Load Doubleword to Coprocessor 2
To load a doubleword from memory to a Coprocessor 2 register

Description: cPR[2,rt,0] < memory[GPR[base] + offset]

MIPS32

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset)

+ GPR[base]

if vAddr, # 0% then SignalException(AddressError) endif

(pAddr, CCA) ¢« AddressTranslation

(vAddr,

DATA, LOAD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw <« LoadMemory (CCA, WORD, pAddr,
paddr <« paddr xor 0bl00
memmsw ¢ LoadMemory (CCA, WORD, pAddr,
<—memlsw
—memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

145

Load Doubleword Indexed to Floating Point LDXC1

146

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd LDXC1
010011 00000 000001
6 5 5 5 5 6
Format: r»DxCc1l fd, index(base) M1 PS64

MIPS32 Release 2

Purpose: Load Doubleword Indexed to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ¢« memory[GPR[base] + GPR[index]]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword ¢« memmsw || memlsw

StoreFPR (fd, UNINTERPRETED_DOUBLEWORD, memdoubleword)
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Halfword

LH

31 26 25 21 20 16 15 0
LH
100001 base rt offset
6 5 5 16

Format: LH rt, offset(base)

Purpose: Load Hafword
To load a halfword from memory as asigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

MIPS32

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrze-1..2 || (PAddr, xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] ¢ sign_extend(memwordis,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

147

Load Halfword Unsigned

LHU

31 26 25 21 20 16 15 0
LHU
100101 base rt offset
6 5 5 16

Format: LHU rt, offset (base)

Purpose: Load Halfword Unsigned
To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

MIPS32

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrze-1..2 || (PAddr, xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] ¢« zero_extend(memword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

148 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load

Linked Word LL

31 26 25 21 20 16 15 0
LL
110000 base rt offset
6 5 5 16
Format: LL rt, offset(base) M1PS32

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
seguence without attempting a write.

Restrictions:

The addressed |ocation must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 |east-significant bits of the effective address is hon-
zero, an Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 149

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Upper Immediate LUI

150

31 26 25 21 20 16 15 0
LUl 0 -
001111 00000 t immediate
6 5 5 16
Format: LUI rt, immediate M1PS32

Purpose: Load Upper Immediate
To load a constant into the upper half of aword

Description: GPR[rt] ¢« immediate || 0%°

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:
None

Operation:

GPR[rt] ¢« immediate || ole

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Doubleword Indexed Unaligned to Floating Point LUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd LUXC1
010011 00000 000101
6 5 5 5 5 6
Format: rLuxcl fd, index(base) M1 PS64

MIPS32 Release 2

Purpose: Load Doubleword Indexed Unaligned to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[£d] <« memory[(GPR[base] + GPR[index])pgrzp-1. 3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective
address. The effective address is doubleword-aligned; EffectiveAddress, o areignored.

Restrictions:
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
vAddr < (GPR[basel+GPR[index])¢; 5 || 03
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 0?)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw < LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword ¢« memmsw || memlsw

StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)
Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 151

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word LW

152

31 26 25 21 20 16 15 0
LW
100011 base rt offset
6 5 5 16
Format: 1w rt, offset (base) M1PS32

Purpose: Load Word
To load aword from memory as asigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word to Floating Point LWC1
31 26 25 21 20 16 15 0
LWC1
110001 base ft offset
6 5 5 16
Format: rwcl ft, offset (base) M1PS32

Purpose: Load Word to Floating Point
To load aword from memory to an FPR

Description: FPR[ft] ¢« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR fs become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; # 07 then
SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr,

memword ¢« LoadMemory (CCA, WORD, pAddr,

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

DATA, LOAD)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 153

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word to Coprocessor 2

LWC2

31 26 25 21 20 16 15 0
LwWC2
110010 base rt offset
6 5 5 16

Format: Lwc2 rt, offset (base)

Purpose: Load Word to Coprocessor 2
To load aword from memory to a COP2 register

Description: cPR[2,rt,0] < memory[GPR[base] + offset]

MIPS32

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 16-bit signed offset is added to the con-

tents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddri, #0° then
SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr,

memword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr,

CPR[2,rt,0] ¢« memword

Exceptions:

DATA, LOAD)

DATA)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

154 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word Left LWL

31 26 25 21 20 16 15 0
LWL
100010 base rt offset
6 5 5 16
Format: LwL rt, offset (base) M1PS32

Purpose: Load Word L eft
To load the most-significant part of aword as a signed value from an unaligned memory address

Description: GPR[rt] <« GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of Wisin the aligned word containing the EffAddr. This part of Wisloaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPRrt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytesin 2.5 form an unaligned word starting at location 2. A part of W, 2 bytes, isin the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3.5 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | 1|27 3 | 4] 5 | 6 | 7 | 8 | 9 | Memory initial contents

(e[[e]"]

| 2 | 3 | 4 | 5 | Then after LWR $24,5($0)

GPR 24 Initia contents

After executing LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr, g), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 155

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word Left LWL

Figure 3.6 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
| I | 3 | K | L | offset (vAddry o) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3] J K L

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAAAr < pAddrpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword ¢« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢« memwords,gspyte..0 || GPRITt]z3 gepyte. .o
GPR[rt] « temp
Exceptions:
None

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

156 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR
100110 base rt offset
6 5 5 16
Format: LwR rt, offset (base) M1PS32

Purpose: Load Word Right
To load the least-significant part of aword from an unaligned memory address as a signed value

Description: GPR[rt] <« GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, isin the aligned word containing EffAddr. This part of W isloaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-hit registers. The 4 con-
secutive bytesin 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, isin the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

Figure 3.7 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
|o|1 2[3]a]s 6|7|8|9| Memory initial contents

| e | f | g | h | GPR 24 Initial contents

| e | f | 4 | 5 | After executing LWR $24,5($0)

| 2 | 3 | 4 | 5 | Then after LWL $24,2($0)

The bytes |oaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr, g), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 157
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word Right LWR

Figure 3.8 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «bhig-endian
| | | 3 | K | L | offset (vAddr, g) ’ e ‘ f ‘ g ‘ h ‘
3 2 1 0 <« little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g | I 0 I J K L
e f | | J 1 e | | J K
e | | J K 2 e f | | J
I J K L 3 e f g | I

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAAAr < pAddrpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword ¢« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp « memwords; 3z-gspyte || GPRITtI31 grpyte..o
GPR[rt] « temp

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

158 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Load Word Indexed to Floating Point LWXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd LWXC1
010011 00000 000000
6 5 5 5 5 6
Format: rwxcl fd, index(base) M1 PS64

MIPS32 Release 2

Purpose: Load Word Indexed to Floating Point
To load aword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ¢« memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bitswide, bits 63..32 of FPR fs become UNPREDICTABLE. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o+ 0 (nhot word-aligned).

Operation:

vAddr ¢« GPR[base] + GPR[index]
if vAddr; , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

StoreFPR (fd, UNINTERPRETED_WORD,
memword)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 159

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply and Add Word to Hi,Lo MADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs " 0 0 MADD
011100 0000 00000 000000
6 5 5 5 5 6
Format. MADD rs, rt MIPS32

Purpose: Multiply and Add Word to Hi,Lo
To multiply two words and add the result to Hi, Lo

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs. 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

160 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Add MADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MADD
010011 fr ft fs fd 100 fmt
6 5 5 5 5 3 3

Format: MADD. fmt

MADD.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
MADD.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Multiply Add
To perform a combined multiply-then-add of FP values

Description: FPR[fd] « (FPR[fs] X FPR[ft]) + FPR[fr]

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is added to the product. The result
sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, and placed into FPR
fd. The operands and result are values in format fmt. The results and flags are as if separate floating-point multiply
and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir <« ValueFPR(fr, fmt)
vis ¢« ValueFPR(fs, fmt)
vit <« ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgpe vEL) +gpe VEr)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 161

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply and Add Unsigned Word to Hi,Lo MADDU

162

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs " 0 0 MADDU
011100 00000 00000 000001
6 5 5 5 5 6
Format. MADDU rs, rt MIPS32

Purpose: Multiply and Add Unsigned Word to Hi,Lo
To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs. 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move from Coprocessor 0 MFCO
31 26 25 21 20 16 15 11 10 0
COPO MF t d 0
010000 00000 00000000
6 5 5 5 8
Format: MFCO rt, rd MIPS32
MFCO rt, rd, sel MIPS32

Purpose: Move from Coprocessor O

To move the contents of a coprocessor O register to ageneral register.

Description: GPR[rt] « CPR[O0,rd, sell

The contents of the coprocessor O register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor O registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

data <« CPR[0,rd, sel]

GPR[rt]

Exceptions:

< data

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

163

Move Word From Floating Point MFC1
31 26 25 21 20 16 15 11 10 0
COP1 MF " fs 0
010001 00000 000 0000 0000
6 5 5 5 11
Format: wMFCl rt, fs MIPS32

164

Purpose: Move Word From Floating Point
To copy aword from an FPU (CP1) general register to aGPR

Description: GPR[rt] <« FPR[fs]

The contents of FPR fsare loaded into general register rt.
Restrictions:

Operation:

data <« ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] <« data

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS |, MIPS 11, and MIPS 111 the contents of GPR rt are UNPREDICTABLE for the instruction immediately

following MFC1.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Word From Coprocessor 2 MFC2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MF it Imol
010010 00000 P
6 5 5
Format: MFC2 rt, Impl MI1PS32
MFC2, rt, Impl, sel MIPS32

The syntax shown above is an example using MFC1 as amodel. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy aword from a COP2 general register to a GPR

Description: GPR[rt] ¢« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:
data <« CP2CPR[Impl]
GPR[rt] <« data
Exceptions:

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

165

Move Word From High Half of Floating Point Register

166

31

26 25

21 20

16 15

11 10

MFHC1

COP1
010001

MFH
00011

rt

fs

0
000 0000 0000

6

5

Format:. MFHC1 rt, fs

Purpose: Move Word From High Half of Floating Point Register
To copy aword from the high half of an FPU (CP1) general register to aGPR

Description: GPR[rt] <« FPR[fslgs. 32

11

MIPS32 Release 2

The contents of the high word of FPR fs are loaded into general register rt. Thisinstruction is primarily intended to
support 64-hit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Theresults are UNPREDICTABLE if Statuseg = 0 and fsis odd.

Operation:

data ¢ ValueFPR(fs, UNINTERPRETED_DOUBLEWORD) g3 35
GPR[rt] ¢« data

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Word From High Half of Coprocessor 2 Register MFHC2

31 26 25 21 20 16 15 11 10 3 2 0
COP2 MFH it Imol
010010 00011 P
6 5 5 16
Format. MFHC2 rt, Impl MI1PS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHCL as amodel. The specific syntax isimplementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy aword from the high half of a COP2 general register to aGPR

Description: GPR[rt] « CP2CPR[Impllgs. 39

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:

data <« CP2CPR[Impl]lgs 35
GPR[rt] <« data

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 167

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move From HI Register MFHI

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd 0 MFHI
000000 00 0000 0000 00000 010000
6 10 5 5 6
Format:. MFHI rd MIPS32

Purpose: Move From HI Register
To copy the specia purpose HI register to a GPR

Description: GPR[rd] <« HI

The contents of special register HI are loaded into GPR rd.

Restrictions:
None

Operation:

GPR[rd] <« HI

Exceptions:
None

Historical Information:

Inthe MIPS 1, 11, and 111 architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

168 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move From LO Register MFLO

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd 0 MFLO
000000 00 0000 0000 00000 010010
6 10 5 5 6
Format:. MFLO rd MIPS32

Purpose: Move From LO Register
To copy the special purpose LO register to aGPR

Description: GPR[rd] <« LO
The contents of special register LO are loaded into GPR rd.

Restrictions:
None

Operation:

GPR[rd] <« LO

Exceptions:
None

Historical Information:

Inthe MIPS, 11, and 111 architectures, the two instructions which follow the MFLO must not modify the HI register.
If this restriction is violated, the result of the MFLO is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 169

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Move

170

MOV.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 MOV
010001 fnt 00000 fs fd 000110
6 5 5 5 5 6
Format: MOV. fmt
MOV.S fd, fs M1PS32
MOV.D f£d, fs M1PS32

MOV.PS fd,

Purpose: Floating Point Move

fs

To move an FP value between FPRs

Description: FPR[fd] ¢« FPR[fs]

MIPS64, MIPS32 Release 2

The value in FPR fsis placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOV.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Conditional on Floating Point False

MOVF

31 26 25 21 20 18 17 16 15 11 10
SPECIAL rs cc 0| tf rd 0 MOVF
000000 0|0 00000 000001
6 5 3 1 1 5 5 6

Format: MoOvF rd, rs, cc

Purpose: Move Conditional on Floating Point False

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 0 then GPR[rd] ¢« GPR[rs]

MIPS32

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) =

GPR[rd]

endif

Exceptions:

<« GPR[rs]

0 then

Reserved Instruction, Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

171

Floating Point Move Conditional on Floating Point False MOVF.fmt

172

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 fmt cc 0| tf s fd MOVF
010001 0|0 010001

6 5 3 11 5 5 6

Format: MOVF. fmt

MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point False

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[fd] « FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fsisnot copied and FPR fd retainsits previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVFE.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is zero,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avaluein format fmt; if it is not, the result is UNPREDITABL E and the value of
the operand FPR becomes UNPREDICTABLE.

Theresult of MOVFE.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Conditional on Not Zero MOVN

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 MOVN
000000 00000 001011
6 5 5 5 5 6
Format:. MOVN rd, rs, rt MIPS32

Purpose: Move Conditional on Not Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] # 0 then GPR[rd] <« GPR[rs]

If the valuein GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] # 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 173

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Not Zero

174

MOVN.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 MOVN
010001 fnt t fs fd 010011
6 5 5 5 5 6
Format: MOVN. fmt
MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32

MOVN.PS fd, fs, rt

Purpose: Floating Point Move Conditional on Not Zero
To test a GPR then conditionally move an FP value

Description: if GPR[rt] # 0 then FPR[fd] ¢« FPR[fs]

MIPS64, MIPS32 Release 2

If thevaluein GPR rtis not equal to zero, then the valuein FPR fsis placed in FPR fd. The source and destination are

valuesin format fmt.

If GPR rt contains zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from aload or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Theresult of MOVN.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs,
else

StoreFPR(fd, fmt, ValueFPR(fd,
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

fmt))

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Conditional on Floating Point True

31

26 25

21 20

18

17

16 15

11 10

MOVT

SPECIAL
000000

rs

cCc

tf

rd

00000

MOVCI
000001

6

Format: ™MovT rd, rs, cc

5

Purpose: Move Conditional on Floating Point True

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode (cc)

1 then GPR[rd] ¢« GPR[rs]

MIPS32

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then

GPR[rd] ¢« GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

175

Floating Point Move Conditional on Floating Point True MOVT.fmt

176

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 it © |oft o . MOVCF
010001 01 010001

6 5 3 1 1 5 5 6

Format: MOVT. fmt

MOVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64, M| PS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point True
To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[fd] ¢« FPR[fs]

If the floating point condition code specified by CC is one, then the valuein FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVT.PS conditionally merges the lower half of FPR fsinto the lower half of FPR fd if condition code CC is one,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 isone. The
CC field should be even; if it is odd, the result of this operationis UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of MOVT.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Conditional on Zero MOVZ

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 MOVZ
000000 00000 001010
6 5 5 5 5 6
Format:. Movz rd, rs, rt MIPS32

Purpose: Move Conditional on Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] <« GPR[rs]

If thevaluein GPR rtis equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 177

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Zero

MOVZ.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 MOVZ
010001 fmt rt fs fd 010010
6 5 5 5 5 6
Format: Movz.fmt
MOVz.S fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MI1PS64, M1 PS32 Release 2
Purpose: Floating Point Move Conditional on Zero
To test a GPR then conditionally move an FP value
Description: if GPR[rt] = 0 then FPR[fd] « FPRI[fs]

If thevaluein GPR rtisequal to zero then the valuein FPR fsis placed in FPR fd. The source and destination are val-

uesin format fmt.

If GPR rtisnot zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain avalue either in format fmt or previously unused data from aload or move-to operation that could be interpreted

in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Theresult of MOVZ.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs,

else

StoreFPR(fd, fmt, ValueFPR(fd,

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

fmt))

fmt))

178 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply and Subtract Word to Hi,Lo MSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s rt 0 0 MSUB
011100 00000 00000 000100
6 5 5 5 5 6
Format. MSUB rs, rt MIPS32

Purpose: Multiply and Subtract Word to Hi,Lo
To multiply two words and subtract the result from HI, LO

Description: (HI,LO) ¢« (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])
HI « tempgs. 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 179
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Subtract MSUB.fmt

180

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MSUB
010011 fr ft fs fd 101 fmt
6 5 5 5 5 3 3

Format: MSUB. fmt

MSUB.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
MSUB.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
MSUB.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Multiply Subtract
To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] « (FPR[fs] X FPR[ft]) — FPR[fr]

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The valuein FPR fr is subtracted from the product. The
subtraction result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, and
placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if separate floatiing-
point multiply and subtract instructions were executed.

MSUB.PS muiltiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MSUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vEs Xgpe VEE) —gpe VED))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply and Subtract Word to Hi,Lo

MSUBU

MIPS32

31 26 25 21 20 16 15 11 10 0
SPECIAL2 rs " 0 0 MSUBU
011100 00000 00000 000101
6 5 5 5 5 6

Format: MSUBU rs, rt

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) « (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-

metic exception occurs under any circumstances.

Restrictions:
None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])

HI <« tempgs. 32
LO « tempsq. o

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

181

Move to Coprocessor O MTCO

182

31 26 25 21 20 16 15 11 10 3 2 0
COPO MT 0
010000 00100 t rd 0000 000 s
6 5 5 5 8 3
Format: MTCO rt, rd MI1PS32
MTCO rt, rd, sel MIPS32

Purpose: Moveto Coprocessor O
To move the contents of a general register to a coprocessor O register.

Description: cPR[0, rd, sel]l ¢« GPR[rt]

The contents of general register rt are loaded into the coprocessor O register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.
Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

data < GPR[rt]
CPR[O0,rd,sel] « data

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Word to Floating Point MTC1
31 26 25 21 20 16 15 11 10 0
COP1 MT it fs 0
010001 00100 000 0000 0000
6 5 5 5 11
Format: wMTCl rt, fs MIPS32

Purpose: Move Word to Floating Point
To copy aword from a GPR to an FPU (CP1) general register

Description: FPR[fs] <« GPR[rt]

Thelow word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data <« GPR[rt]3l__O
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:
Coprocessor Unusable

Historical Information:
For MIPS I, MIPS I1, and MIPS 111 the value of FPR fsis UNPREDICTABLE for the instruction immediately fol-

lowing MTCL.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

183

Move Word to Coprocessor 2 MTC2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MT it Imol
010010 00100 P
6 5 5 16
Format: wmMTC2 rt, Impl MIPS32
MTC2 rt, Impl, sel MIPS32

184

The syntax shown above is an example using MTC1 as amodel. The specific syntax isimplementation dependent.

Purpose: Move Word to Coprocessor 2

To copy aword from a GPR to a COP2 general register

Description: CP2CPR[Impl] <« GPR[rt]

Thelow word in GPR rt is placed into the low word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-

tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data

< GPR[rt]

CP2CPR[Impl] ¢« data

Exceptions:

Coprocessor Unusable

Reserved Instruction

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Move Word to High Half of Floating Point Register MTHC1

31 26 25 21 20 16 15 11 10 0
COP1 MTH " fs 0
010001 00111 000 0000 0000
6 5 5 5 11
Format:. MTHC1 rt, fs MI1PS32 Release 2

Purpose: Move Word to High Half of Floating Point Register
To copy aword from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fslg; 35 ¢« GPR[rt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Theresults are UNPREDICTABLE if Statuseg = 0 and fsis odd.

Operation:
newdata < GPR[rt]olddata < ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)sq
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write avalue to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCL.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to compl ete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 185
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move Word to High Half of Coprocessor 2 Register MTHC2

31 26 25 21 20 16 15 11 10 0
COP2 MTH it Imol
010010 00111 P
6 5 5 16
Format: MTHC2 rt, Impl MI1PS32 Release 2
MTHC2 rt, Impl, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register
To copy aword from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impllgs 35 ¢ GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data <« GPR[rt]

CP2CPR[Impl] « data || CPR[2,rd,sells;
Exceptions:
Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC2. This is because of the semantic definition of MTC2, which is not aware that software will be using an
MTHC?2 instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE
value.

186 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move to HI Register MTHI

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTHI
000000 000 0000 0000 0000 010001
6 5 15 6
Format: MTHI rs MIPS32

Purpose: Moveto HI Register
To copy a GPR to the special purpose HI register

Description: HI « GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before anew result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows thisillegal situation:

MULT r2,r4d # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTHI r6

code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value
Operation:

HI ¢« GPR[rs]

Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS 1V and later, including MIPS32 and M1PS64, this restriction does not exist.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 187

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Move to LO Register MTLO

188

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTLO
000000 000 0000 0000 0000 010011
6 5 15 6
Format:. MTLO rs MIPS32

Purpose: Moveto LO Register
To copy a GPR to the special purpose LO register

Description: LO « GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before anew result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example shows thisillega situation:

MULT r2,r4d # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTLO r6

code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value
Operation:

LO ¢« GPR[rs]

Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS 1V and later, including MIPS32 and M1PS64, this restriction does not exist.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply Word to GPR MUL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s " rd 0 MUL
011100 00000 000010
6 5 5 5 5 6
Format: MUL rd, rs, rt MIPS32

Purpose: Multiply Word to GPR
To multiply two words and write the result to a GPR.

Description: GPR[rd] <« GPR[rs] X GPR[rt]

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.
Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp ¢« GPR[rs] X GPR[rt]
GPR[rd] <« temps3; g
HI < UNPREDICTABLE
LO <« UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 189

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply

190

31

26 25

21 20

16 15

11 10

MUL.fmt

COP1
010001

fmt

ft

fs

fd

MUL
000010

Format: MUL. fmt

MUL.S fd, fs,
MUL.D fd, f£s,

MUL.PS fd,

fs,

ft

Purpose: Floating Point Multiply

To multiply FP values

Description: FPR[fd] « FPR[fs] x FPR[ft]

MIPS32
MIPS32
MIPS64
MIPS32 Release 2

Thevaluein FPR fsismultiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated

exceptiona condition

Restrictions:

S.

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of MUL.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd,

Exceptions:

fmt, ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

fmt) Xgne ValueFPR(fL,

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply Word MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 MULT
000000 00 0000 0000 011000
6 5 5 10 6
Format. MULT rs, rt MIPS32

Purpose: Multiply Word
To multiply 32-bit signed integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is splaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod < GPR[rs]ls3; g X GPR[rtls3; g
LO « prodsz; g
HI « prodgs, 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 191

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 MULTU
000000 00 0000 0000 011001
6 5 5 10 6
Format. MULTU rs, rt MIPS32

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod <« (0 || GPR[rslsi o) X (0 || GPRIrtlsi o)
LO « prodsz; g
HI <« prodgs. 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

192 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Negate

NEG.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 NEG
010001 fnt 00000 fs fd 000111
6 5 5 5 5 6
Format: NEG.fmt

NEG.S fd, fs M1PS32
NEG.D f£d, fs M1PS32
NEG.PS £d, fs MIPS64, M1PS32 Release 2

Purpose: Floating Point Negate

To negate an FP value

Description: FPR[fd] « -FPR[fs]

Thevaluein FPR fsis negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of NEG.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

Negate (ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt)))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

193

Floating Point Negative Multiply Add NMADD.fmt

194

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMADD
010011 fr ft fs fd 110 fmt
6 5 5 5 5 3 3

Format. NMADD. fmt

NMADD.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMADD.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMADD.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Negative Multiply Add
To negate a combined multiply-then-add of FP values

Description: FPR[fd] « - ((FPR[fs] X FPR[ft]) + FPR[fr])

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of NMADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —(vEr +gye (VEs Xgye vEE)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Subtract NMSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMSUB
010011 fr ft fs fd 111 fmt
6 5 5 5 5 3 3

Format: NMSUB. fmt

NMSUB.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMSUB.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Negative Multiply Subtract
To negate a combined multiply-then-subtract of FP values

Description: FPR[fd] « - ((FPR[fs] X FPR[ft]) — FPR[fr])

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign hit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are asif separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of NMSUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xgue VEL) —gpe vEX))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 195

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

No Operation

196

31

26 25

21 20

16 15

11 10

NOP

SPECIAL
000000

00000

00000

00000

00000

SLL
000000

6

Format:. nNop

Purpose: No Operation

To perform no operation.

Description:
NOP is the assembly idiom used to denote no operation.

ro, ro, O.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

6

Assembly ldiom

The actua instruction isinterpreted by the hardware as SLL

The zero instruction word, which represents SLL, r0, r0, O, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Not Or NOR
31 26 25 21 20 16 15 11 10 0
SPECIAL rs " rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS32

Purpose: Not Or

To do abitwise logical NOT OR

Description: GPR[rd] <« GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is

placed into GPR rd.

Restrictions:
None

Operation:

GPR[rd] ¢« GPR[rs] nor GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

197

Or

198

OR
31 26 25 21 20 16 15 11 10 0
SPECIAL rs " rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format: ORrR rd, rs, rt MIPS32

Purpose: Or

To do a bitwise logical OR

Description: GPR[rd] <« GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:
None

< GPR[rs] or GPR[rt]

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Or Immediate ORI
31 26 25 21 20 16 15 0
ORI .]
001101 rs rt immediate
6 5 5 16
Format: ORI rt, rs, immediate M1PS32

Purpose: Or Immediate

To do a bitwise logical OR with a constant

Description: GPR[rt] <« GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin a bitwise logical OR

operation. The result is placed into GPR rt.

Restrictions:
None

Operation:

GPR[rt] ¢« GPR[rs] or zero_extend(immediate)

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

199

200 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Wait for the LLBit to clear PAUSE

31 26 25 24 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 5 SLL
000000 00000 00000 00000 00101 000000
6 5 5 5 5 6
Format: PAUSE MIPS32 Release 2/MT ASE

Purpose: Wait for the LLBit to clear

Description:

L ocks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A typical lock implementation does aload-linked instruction and checks the value returned to determine whether
the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby implementing an
active busy-wait sequence. The PAUSE instructions is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The precise behavior of the PAUSE instruction isimplementation-dependent, but it usually involves descheduling the
instruction stream until the LLBIt is zero. In a single-threaded processor, this may be implemented as a short-term
WAIT operation which resumes at the next instruction when the LLBit is zero or on some other external event such as
an interrupt. On a multi-threaded processor, this may be implemented as a short term YIELD operation which
resumes at the next instruction when the LLBit is zero. In either case, it is assumed that the instruction stream which
gives up the software lock does so via a write to the lock variable, which causes the processor to clear the LLBIt as
seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or ajump.

Operation:

if LLBit # 0 then
EPC « PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction isintended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBiIt will ever be cleared.

An example use of the PAUSE instruction isincluded in the following example:

acquire_lock:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 201

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

11 t0, 0(al) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu tO0, tO0, 1 /* Set the software lock */
sc t0, 0(a0l) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:
Critical region code

release_lock:

sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */
/* for any PAUSEd waiters */
202 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Pair Lower Lower PLL.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PLL
010001 10110 ft fs fd 101100
6 5 5 5 5 6
Format: pLL.PS fd, fs, ft MIPS64, M1 PS32 Release 2

Purpose: Pair Lower Lower
To merge a pair of paired single values with realignment

Description: FPR[fd] « lower (FPR[fs]) || lower (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR
ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)3; o)

Exceptions:
Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 203
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Pair Lower Upper

204

PLU.PS

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt PLU
010001 10110 ft fs fd 101101
6 5 5 5 5 6
Format: pLU.Ps fd, fs, ft MIPS64, M1 PS32 Release 2

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] <« lower (FPR[fs])

| | upper (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR

ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)gs .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Format: PREF hint,offset (base) M1PS32

Purpose: Prefetch
To move data between memory and cache.

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or ater the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
State.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether thistype is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability& coherency attribute used for the
operation are determined by the memory access type and cacheability& coherency attribute of the effective address,
just asit would be if the memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Table 3.30 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asiif for aload.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 205
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Prefetch

206

PREF

Table 3.30 Values of hint Field for PREF Instruction

1 store Use: Prefetched datais expected to be stored or modified.
Action: Fetch data asif for astore.
2-3 Reserved Reserved for future use - not available to implementations.
4 load_streamed Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.
Action: Fetch dataasif for aload and place it in the cache so that it does not
displace data prefetched as “retained.”
5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.
Action: Fetch dataasif for astore and placeit in the cache so that it does not
displace data prefetched as “retained.”
6 load_retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data asif for aload and place it in the cache so that it is not
displaced by data prefetched as “ streamed.”
7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data asif for astore and placeit in the cache so that it is not
displaced by data prefetched as “ streamed.”
8-20 Reserved Reserved for future use - not available to implementations.
21-24 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent
use.
25 writeback_invalidate (also Use: Datais no longer expected to be used.
known as “nudge’) Action: For awriteback cache, schedule awriteback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back
asinvalid. If the cachelineis not dirty, it isimplementation dependent
whether the state of the cache lineis marked invalid or left unchanged. If the
cache lineislocked, no action is taken.
26-29 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent

use.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Prefetch

PREF

Table 3.30 Values of hint Field for PREF Instruction

30

PreparefForStore

Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the reference
missesin the cache, aline is selected for replacement, any valid and dirty
victim is written back to memory, the entire lineisfilled with zero data, and
the state of the line is marked as valid and dirty.

Programming Note: Because the cache lineisfilled with zero dataon acache
miss, software must not assume that this action, in and of itself, can be used
as afast bzero-type function.

31

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent
use.

Restrictions:

None

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)

Exceptions:

Bus Error, Cache Error

(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch

may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock datainto the cache.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

207

Prefetch Indexed PREFX

208

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index hint 0 PREFX
010011 00000 001111
6 5 5 5 5 6
Format: PREFX hint, index (base) M1 PS64

MIPS32 Release 2

Purpose: Prefetch Indexed
To move data between memory and cache.

Descﬂptknr prefetch_memory [GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Operation:
vAddr ¢« GPR[base] + GPR[index]
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Also refer to the corresponding section in the PREF instruction description.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Pair Upper Lower

PUL.PS

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt PUL
010001 10110 ft fs fd 101110
6 5 5 5 5 6
Format: puL.Ps fd, fs, ft MIPS64, M1 PS32 Release 2

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] <« upper (FPR[fs])

|| lower (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 3o || ValueFPR(ft, PS)s3q. .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

209

Pair Upper Upper PUU.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUU
010001 10110 ft fs fd 101111
6 5 5 5 5 6
Format: puu.ps fd, fs, ft MIPS64, M1 PS32 Release 2

Purpose: Pair Upper Upper
To merge a pair of paired single values with realignment

Description: FPR[£d] <« upper (FPR[fs]) || upper (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)g3. 32)

Exceptions:
Coprocessor Unusable, Reserved Instruction

210 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Read Hardware Register RDHWR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd 0 RDHWR
011111 00 000 000 00 111011
6 5 5 5 2 3 6
Format. RDHWR rt,rd MI1PS32 Release2

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

Description: GPR[rt] <« HWR[rd]

If access is allowed to the specified hardware register, the contents of the register specified by rd is loaded into gen-
era register rt. Access control for each register is selected by the bitsin the coprocessor 0 HWREnNa register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 3.31.

Table 3.31 RDHWR Register Numbers

Register
Number
(rd Value) | Mnemonic Description
CPUNum Number of the CPU on which the program is currently running. This register
0 provides read access to the coprocessor 0 EBasecpynum field.
SYNCI_Step | Address step size to be used with the SYNCI instruction, or zero if no caches
1 need be synchronized. See that instruction’s description for the use of this
value.
2 CcC High-resolution cycle counter. This register provides read access to the
coprocessor 0 Count Register.
CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:
CCRes Value Meaning
3 1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle
€etc.
428 These registers numbers are reserved for future architecture use. Access
) results in a Reserved Instruction Exception.
ULR User Local Register. Thisregister provides read access to the coprocessor 0
29 UserLocal register, if it isimplemented. In some operating environments,
the UserLocal register is a pointer to a thread-specific storage block.
30-31 These register numbers are reserved for implementation-dependent use. If
- they are not implemented, access resultsin a Reserved I nstruction Exception.
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 211

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Read Hardware Register RDHWR

Restrictions:
In implementations of Release 1 of the Architecture, thisinstruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If accessis not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

Operation:

case rd
0: temp <« EBasecpyyum
1: temp ¢« SYNCI_StepSize()
2: temp ¢« Count
3: temp « CountResolution/()
29: temp ¢« UserLocal
30: temp <« Implementation-Dependent-Value
31: temp ¢« Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)
endcase
GPR[rt] ¢« temp

Exceptions:
Reserved Instruction

212 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Read GPR from Previous Shadow Set

RDPGPR

31 26 25 21 20 16 15 11 10 0
COPO RDPGPR rt d 0
0100 00 01010 000 0000 0000
6 5 5 5 11
Format: RDPGPR rd, rt MI1PS32 Release2

Purpose: Read GPR from Previous Shadow Set
To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] <« SGPR[SRSCtlpgg, rt]

The contents of the shadow GPR register specified by SRSCtlpgg (signifying the previous shadow set number) and rt

(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

GPR[rd] ¢« SGPR[SRSCtlpgg, rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

213

Reciprocal Approximation

214

RECIP.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 RECIP
010001 fnt 00000 fs fd 010101
6 5 5 5 5 6
Format. RECIP.fmt
RECIP.S f4a, MIPS64, M| PS32 Release 2
RECIP.D fa, MIPS64, M| PS32 Release 2

Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly)

Description: FPR[£d] « 1.0 / FPRI[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in

format fnt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|EEE 754 Floating Point standard. The computed result differs from the both the exact result and the | EEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

1.0 / valueFPR(fs, fmt))

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Rotate Word Right

ROTR

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
000000 00 | t rd 82 000010
6 4 1 5 5 5 6

Format. ROTR rd, rt,

sa

Purpose: Rotate Word Right

To execute alogical right-rotate of aword by a fixed number of bits

Description: GPR[rd] <« GPR[rt] <> (right) sa
The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-

rotate amount is specified by sa.

Restrictions:

SmartMIPS Crypto, MIPS32 Release 2

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
S « sa
temp < GPR[rtlg ; o || GPRIrtls; o
GPR[rd] < temp
Exceptions:

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

215

Rotate Word Right Variable

216

ROTRV

31 26 25 21 20 16 15 11 10 6 0
SPECIAL R SRLV
000000 rs t rd oo | 000110
6 5 5 5 4 1 6

Format. ROTRV rd, rt, rs

Purpose: Rotate Word Right Variable

To execute alogical right-rotate of aword by a variable number of bits

Description: GPR[rd] ¢« GPR[rt] «>(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-

rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
S < GPR[rsl, g
temp < GPR[rtlg; o || GPRIrtls; o

GPR[rd] < temp

Exceptions:

Reserved Instruction

SmartMIPS Crypto, MIPS32 Release 2

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Long Fixed Point

ROUND.L.fmt

31 26 25 21 20 16 15 11 10 5
COP1 fmt 0 fs fd ROUND.L
010001 00000 001000
6 5 5 5 5 6
Format. ROUND.L.fmt
ROUND.L.S fd, fs MIPS64, M| PS32 Release 2
ROUND.L.D fd, fs MIPS64, M| PS32 Release 2

Purpose: Floating Point Round to Long Fixed Point
To convert an FP value to 64-hit fixed point, rounding to nearest

Description: FPR[£d] <« convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 26%-1, iswritten to fd.

Restrictions:

Thefields fs and fdmust specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;

Inexact, Unimplemented Operation, Invalid Operation, Overflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) ,

fmt,

L))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

217

Floating Point Round to Word Fixed Point ROUND.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 s ” ROUND.W
010001 00000 001100
6 5 5 5 5 6

Format: ROUND.W. fmt
ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32
Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-hit fixed point, rounding to nearest

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, iswritten to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow

218 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Reciprocal Square Root Approximation

RSQRT.fmt

31 26 25 21 20 16 15 11 10 5
COP1 0 RSQRT
010001 fmt 00000 fs fd 010110
6 5 5 5 5 6
Format. RSQRT. fmt
RSQRT. S fd, fs MIPS64, M| PS32 Release 2
RSQRT.D fd, fs MIPS64, M1 PS32 Release 2

Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[fd] « 1.0 / sqrt(FPR[fs])

Thereciprocal of the positive square root of the value in FPR fsis approximated and placed into FPR fd. The operand
and result are valuesin format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|IEEE 754 Floating Point standard. The computed result differs from both the exact result and the | EEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

1.0 / SquareRoot (valueFPR(fs,

fmt)))

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

219

Store Byte SB
31 26 25 21 20 16 15 0
SB
101000 base rt offset
6 5 5 16
Format: sB rt, offset (base) M1PS32

220

Purpose: Store Byte
To store a byte to memory

Description: memory[GPR[base] + offset] <« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pPAAdr < pAddrpgrze-1. 2 || (pAAdr; , xor ReverseEndian?)
bytesel ¢« vAddr; o xor BigEndianCPU?

dataword ¢ GPR[rtlsi_gspytesel..o || o8 bytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Conditional Word SC

31 26 25 21 20 16 15 0
SC
111000 base rt offset
6 5 5 16
Format: sc rt, offset (base) M1PS32

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding L L instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

e The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

e A, indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a0, indicating failure, is written into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC fails:

» A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the word. The size and alignment of the block isimplementation dependent, but itis
at least one word and at most the minimum page size.

« AnERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCis UNPREDICTABLE:
» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressis the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 221

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Conditional Word SC

222

|ocation:

* Uniprocessor atomicity: To provide atomic RMW on asingle processor, al accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

 MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

* |/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/0O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the /O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 03! || LLbit

Exceptions:
TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (T0) # load counter
ADDI T2, Tl, 1 # increment
SC T2, (TO0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Software Debug Breakpoint SDBBP
31 26 25 0
SPECIAL2 code - use svscall SDBBP
011100 ¥ 111111
6 20 6
Format: SDBBP code EJTAG

Purpose: Software Debug Breakpoint
To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpeyccode fi€ld to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word

containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

223

Store Doubleword from Floating Point SDC1

224

31 26 25 21 20 16 15 0
SDC1
111101 base ft offset
6 5 5 16
Format: sbpcl ft, offset (base) M1PS32

Purpose: Store Doubleword from Floating Point
To store a doubleword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoubleword;; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, datadoublewordgs 35, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Doubleword from Coprocessor 2 SDC2

31 26 25 21 20 16 15 0
SDC2
111110 base rt offset
6 5 5 16
Format: spc2 rt, offset(base) M1PS32

Purpose: Store Doubleword from Coprocessor 2
To store a doubleword from a Coprocessor 2 register to memory

Descﬁptknt memory [GPR [base] + offset] <« CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
lsw ¢« CPR[2,rt,O0]
msw < CPR[2,rt+1,0]
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 0?)
StoreMemory (CCA, WORD, lsw, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 225

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed from Floating Point SDXC1
31 26 25 21 20 16 15 11 10 6 0
COP1X base index fs 0 SDXC1
010011 00000 001001
6 5 5 5 5 6
Format: spxcl fs, index(base) M1 PS64

226

Purpose: Store Doubleword Indexed from Floating Point
To store adoubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ¢« FPR[fs]

MIPS32 Release 2

The 64-bit doubleword in FPR fsis stored in memory at the location specified by the aligned effective address. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr, , # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0bl00

StoreMemory (CCA, WORD, datadoublewordgs 35, pPAddr, vAddr+4, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Sign-Extend Byte SEB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd SEB BSHFL
011111 00000 10000 100000
6 5 5 5 5 6
Format: SsEB rd, rt MI1PS32 Release 2

Purpose: Sign-Extend Byte
To sign-extend the |east significant byte of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SignExtend(GPR[rtl,)

Theleast significant byte from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <« sign_extend(GPR[rtl;)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva
lent instructions aready in the instruction set. The following table shows the instructions providing the equivalent

functions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OxFFFF
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 227

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword SEH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd SEH BSHFL
011111 00000 11000 100000
6 5 5 5 5 6
Format: SsEH rd, rt MI1PS32 Release 2

Purpose: Sign-Extend Halfword
To sign-extend the least significant halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SignExtend(GPR[rtlis)

Theleast significant halfword from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <« sign_extend(GPR[rtlis _g)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */

seh tl, tO /* tl1l = lower halfword sign-extended to word */

sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva-
lent instructions aready in the instruction set. The following table shows the instructions providing the equivalent

functions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OXFFFF
228 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Halfword

SH

31 26 25 21 20 16 15 0
SH
101001 base rt offset
6 5 5 16

Format: SH rt, offset (base)

Purpose: Store Halfword
To store a halfword to memory

Description: memory[GPR[base] + offset] ¢« GPR[rt]

MIPS32

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-

tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

pAddr < pAddrpgrze-1..2 || (PAddr, xor (ReverseEndian || 0))
bytesel « vAddr; , xor (BigEndianCPU || 0)

dataword ¢ GPRITtlsi_gspyrese1..o || 0°7P¥Feset

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

229

Shift Word Left Logical SLL

230

26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 " rd @ SLL
000000 00000 000000
6 5 5 5 5 6
Format. sLL rd, rt, sa MIPS32

Purpose: Shift Word Left Logical
To left-shift aword by a fixed number of hits

Description: GPR[rd] <« GPR[rt] << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S & sa
temp ¢« GPRIrt] 3;_g)..0 || OF
GPR[rd] ¢« temp

Exceptions:
None

Programming Notes:
SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL rO, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical Variable SLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format:. sLLv rd, rt, rs MIPS32

Purpose: Shift Word Left Logical Variable
To left-shift aword by a variable number of bits

Description: GPR[rd] « GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied hits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ¢« GPRI[rsl, o
temp — GPR[rt] (31-s)..0 | | OS
GPR[rd] « temp

Exceptions:
None

Programming Notes:

None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 231

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Set on Less Than SLT
31 26 25 21 20 16 15 11 10 0
SPECIAL rs " rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format. sLT rd, rs, rt MIPS32

232

Purpose: Set on Less Than

To record the result of aless-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in

GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

1f GPR[rs] < GPR[rt]
GPR[rd] « OQCPRLEN-1 || 4

else

GPR[rd] ¢« OQCPRLEN

endif

Exceptions:
None

then

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI .]
001010 rs rt immediate
6 5 5 16
Format: SLTI rt, rs, immediate M1PS32

Purpose: Set on Less Than Immediate
To record the result of aless-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of

the comparison in GPR rt. If GPR rsislessthan immediate, theresultis 1 (true); otherwise, itis O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if GPR[rs] < sign_extend(immediate)

GPR[rt] « OCPRREN-1)) 1

else

GPR[rt] « OQCPRLEN

endif

Exceptions:
None

then

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

233

Set on Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
SLTIU . "
001011 rs rt immediate
6 5 5 16
Format: SLTIU rt, rs, immediate M1PS32

234

Purpose: Set on Less Than Immediate Unsigned
To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparison in GPR rt. If GPR rsisless than immediate, the result is 1 (true); otherwise, it is O (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,

max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

GPR[rt] ¢ OQCPREEN-1 || 7

else

GPR[rt]
endif

Exceptions:

None

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

«— OGPRLEN

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Set on Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6
Format. sSLTU rd, rs, rt MIPS32

Purpose: Set on Less Than Unsigned
To record the result of an unsigned less-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparisonin
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None
Operation:
if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] « OQCPREEN-1 || 4
else
GPR[rd] ¢« OQCFRLEN
endif
Exceptions:
None
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 235

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Square Root

236

SQRT.fmt

31 26 25 21 20 16 15 11 10 0
COoP1 0 SQRT
010001 fmt 00000 fs fd 000100
6 5 5 5 5 6

Format: SQRT. fmt

Purpose: Floating Point Square Root

SQRT.S fd, fs
SQORT.D fd, fs

To compute the square root of an FP value

Description: FPR[£d] <« SQRT (FPR[fs])

MIPS32
MIPS32

The sguare root of the value in FPR fsis calculated to infinite precision, rounded according to the current rounding

mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.
If the valuein FPR fs correspondsto — 0, the result is— 0.

Restrictions:

If the valuein FPR fsislessthan 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operatio

n:

StoreFPR(fd, fmt,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

SquareRoot (ValueFPR (fs,

Invalid Operation, Inexact, Unimplemented Operation

fmt)))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 " rd @ SRA
000000 00000 000011
6 5 5 5 5 6
Format. SRaA rd, rt, sa MIPS32

Purpose: Shift Word Right Arithmetic
To execute an arithmetic right-shift of aword by a fixed number of bits

Description: GPR[rd] <« GPR[rt] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S & sa
temp < (GPR[rtl;1)® || GPRIrtls; o
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 237

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic Variable SRAV

238

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format. SRAV rd, rt, rs MIPS32

Purpose: Shift Word Right Arithmetic Variable
To execute an arithmetic right-shift of aword by a variable number of bits

Description: GPR[rd] <« GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

None

Operation:

s < GPRI[rsl, g
temp < (GPR[rtl;1)® || GPRIrtls; o
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Shift Word Right Logical SRL
31 26 25 22 21 20 16 15 11 10 0
SPECIAL R SRL
000000 000 1 t rd 000010
6 4 1 5 5 6
Format. SRL rd, rt, sa MIPS32

Purpose: Shift Word Right Logical

To execute alogical right-shift of aword by afixed number of bits

Description: GPR[rd] ¢« GPR[rt] >> sa

(logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:
None

Operation:

S & sa

temp < 0° || GPR[rtls; o
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

239

Shift Word Right Logical Variable SRLV
31 26 25 21 20 16 15 11 10 6 0
SPECIAL R SRLV
000000 rs " rd 0 000110
6 5 5 5 4 1 6
Format. SRLvV rd, rt, rs MIPS32

240

Purpose: Shift Word Right Logical Variable

To execute alogical right-shift of aword by a variable number of bits

Description: GPR[rd] < GPR[rt] >> GPR[rs]

(logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s < GPRI[rsl, g
temp < 0° || GPR[rtls; o
«— temp

GPR[rd]

Exceptions:
None

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Superscalar No Operation SSNOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 00000 00001 000000
6 5 5 5 5 6
Format: ssnNop MIPS32

Purpose: Superscalar No Operation
Break superscalar issue on a superscalar processor.

Description:

SSNORP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardwareas SLL rO, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On asingle-issue processor, thisinstruction is a NOP that takes an issue slot.

Restrictions:
None

Operation:

None

Exceptions:
None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CPO hazards by converting instructions
into cyclesin a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X,y
ssnop
SsSnop
eret

Based on the normal issues rules of the processor, the MTCO issuesin cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finaly, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 241

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Subtract Word SUB

242

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SuB
000000 00000 100010
6 5 5 5 5 6
Format. suB rd, rs, rt MIPS32

Purpose: Subtract Word
To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rsto produce a 32-bit result. If the sub-
traction results in 32-bit 2's complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ¢ (GPR[rsls;||GPR[rsls;. o) — (GPR[rtlsq||GPR[rtlz;, o)
if tempsz, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temps; g
endif
Exceptions:

Integer Overflow

Programming Notes:
SUBU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Subtract

SUB.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 SuB
010001 fnt ft fs fd 000001
6 5 5 5 5 6
Format. suB.fmt
SUB.S fd, fs, MIPS32
SUB.D fd, fs, MIPS32
SUB.PS fd, fs, ft MIPS64, MIPS32 Release 2
Purpose: Floating Point Subtract
To subtract FP values
Description: FPR[fd] « FPR[fs] — FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fs and FPR ft independently, and ORs together any
generated exceptional conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of SUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) —fue ValueFPR(ft,

fmt))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

243

Subtract Unsigned Word SUBU

244

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SUBU
000000 00000 100011
6 5 5 5 5 6
Format. sSuBU rd, rs, rt MIPS32

Purpose: Subtract Unsigned Word
To subtract 32-bit integers

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[rs] — GPR[rt]
GPR[rd] « temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed Unaligned from Floating Point SUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index fs 0 SUXC1
010011 00000 001101
6 5 5 5 5 6
Format: suxcl fs, index(base) MIPS64, M| PS32 Release 2

Purpose: Store Doubleword Indexed Unaligned from Floating Point
To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])pgrze-1..3] < FPRI[fs]

The contents of the 64-bit doubleword in FPR fsis stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress, (are ignored.

Restrictions:
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr <« (GPR[base]+GPR[index])¢; 5 || 03

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 0%)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100

StoreMemory (CCA, WORD, datadoublewordgs 35, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 245
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

SW

Store Word
31 26 25 21 20 16 15 0
SW
101011 base rt offset
6 5 5 16

Format: sw rt, offset (base)

Purpose: Store Word
To store aword to memory

Description: memory[GPR[base] + offset] ¢« GPR[rt]

MIPS32

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective

address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

246 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word from Floating Point SWC1

31 26 25 21 20 16 15 0
SWC1
111001 base ft offset
6 5 5 16
SWCl ft, offset (base) MIPS32

Purpose: Store Word from Floating Point
To store aword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
dataword <« ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 247

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word from Coprocessor 2 SWC2

31 26 25 21 20 16 15 0
SWC2
111010 base rt offset
6 5 5 16
Format: swc2 rt, offset(base) M1PS32

Purpose: Store Word from Coprocessor 2
To store aword from a COP2 register to memory

Descﬁptknt memory [GPR [base] + offset] <« CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
dataword ¢« CPR[2,rt,0]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

248 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word Left SWL

31 26 25 21 20 16 15 0
SWL
101010 base rt offset
6 5 5 16
Format: swL rt, offset (base) M1PS32

Purpose: Store Word Left
To store the most-significant part of aword to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, isin the aligned word containing EffAddr. The same number of the
most-significant (Ieft) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytesin 2.5 form an unaligned word starting at location 2. A part of W, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytesin memory. Next, the complementary SWR stores the remainder of the unaligned
word.

Figure 3.9 Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

|0|1 2|3|4|5 6|7|8|...| Memory: Initial contents

lT'T E|F|4]5 leAftaa&utingSWL $24,2(%0)

| 0 | 1] E | F I G | H | 6 | |ThenafterSWR $24,5(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr; g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 249
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word Left SWL

Figure 3.10 Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«bhig-endian 64-bit register
|i|j k| | offset (vAddr; o) |A|B|C|D|E|F|G|H|
3 2 1 0 «littleendian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering vAddry o byte ordering
E F G H 0 i i k | E
i | E F G 1 i i | E F
i i | E F 2 i | E F G
i ik | E 3 E F G H

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr <« pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « 02478"Pvte || GPRIrtl31. 24-g+byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

250 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR
101110 base rt offset
6 5 5 16
Format: SwR rt, offset (base) M1PS32

Purpose: Store Word Right
To store the least-significant part of aword to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
least-significant (right) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the |east-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 3.11 Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

|o|1 2|3|4|5 6|7|8|...| Memory: Initial contents

| 0 | 1|2 | 3 I G | H | 6 | |AfterexecutingSWR $24,5($0)

O|1|E|FJG|H]| 6| . |Thenafter sSWL $24,2($0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr; g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 251

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word Right SWR

Figure 3.12 Bytes Stored by SWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«big-endian 64-bit register
|i|j|k||| offset (vAddry o) |A|B|C|D|E|F|G|H|
3 2 1 0 «littleendian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —
Memory contents after instruction (shaded is unchanged)
Big-endian Little-endian
byte ordering VAddry o byte ordering
H | i k | 0 E F G H
G HJ[Kk 1 1 F G HJ[I
F G H | I 2 G H | k|
E F G H 3 H | i ko

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

PAAAr <« pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « GPR[rtlsi_gipyte || o8 byte

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

252 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Store Word Indexed from Floating Point

SWXC1

31 26 25 21 20 16 15 11 10 0
COP1X base ndex s 0 SWXC1
010011 00000 001000

6 5 5 5 5 6

Format: swxcl fs, index(base)

Purpose: Store Word Indexed from Floating Point
To store aword from an FPR to memory (GPR+GPR addressing)

Descﬁptknr memory [GPR[base] + GPR[index]] <« FPR[fsg]

MIPS64

MIPS32 Release 2

The low 32-bit word from FPR fsis stored in memory at the location specified by the aligned effective address. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o+ 0 (nhot word-aligned).

Operation:

vAddr ¢« GPR[base] + GPR[index]
if vAddr; , # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword < ValueFPR(fs, UNINTERPRETED_WORD)
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Réefill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

253

254

SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 Stvpe SYNC
000000 00 0000 0000 0000 0 yp 001111
6 15 5 6
Format: sSyNC (stype = 0 implied) M1PS32
SYNC stype MIPS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SY NC instruction:

* Completion Barriers

* Ordering Barriers

Smple Description for Completion Barrier:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

L oads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

Every synchronizable specified memory instruction (loads or stores or both) that occursin the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are alowed to be performed, with respect to any other
processor or coherent 1/0 module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both |oads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less compl ete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementa-
tion with a lighter-weight barrier to work on another implementation which only implements the stype zero
completion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, acompletion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

SYNC

SYNC behavior when the stype field is zero:

» A completion barrier that affects preceding loads and stores and subsegquent |oads and stores.

Smple Description for Ordering Barrier:
» Thebarrier affects only uncached and cached coherent loads and stores.

» The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

* Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

» Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the |oad/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» If any memory instruction before the SY NC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

» Thebarrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as |oads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 255

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

SYNC

Table 3.32 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

field..
Table 3.32 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field
Younger
Olderinstructions instructions Olderinstructions
which must reach | which mustreach | which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNCO
0x4 SYNC_WMB Stores Stores Optional
or
SYNC4
0x10 SYNC_MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11| SYNC_ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12| SYNC_RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC_RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-OxF Implementation-Spe-
cific and Vendor
Specific Sync Types
0x14 - Ox1F RESERVED Reserved for MIPS
Technologies for
future extension of
the architecture.

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent 1/0 system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of aload on processor A has been determined with respect to processor or coherent I/O module B when a subsequent

256 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

SYNC

store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent 1/0 module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent 1/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/0O modules capable of |oading from the location.

Coherent 1/0 module: A coherent 1/0 module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with amemory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:
None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; thisis known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share datain parallel programs.

When al processors observe the effects of 1oads and storesin program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actionsin the programs. For such asystem, SYNC
has the same effect as a NOP. Executing SY NC on such a system is not necessary, but neither isit an error.

If amultiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at |east one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SY NC works on both types of systems. (System-specific documentation describes the actions needed to reliably

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 257

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

258

SYNC

share datain parallel programs for that system.)

The behavior of aload or store using one memory access type is UNPREDICTABLE if aload or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not ater this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LT R2, 1

SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LI R2, 1
1: Lw R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SY NC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared datais valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the
hardware does not perform the barrier behavior expected by the software, the system may fail.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective SYNCI

31 26 25 21 20 16 15 0
REGIMM SYNCI
000001 base 11111 offset
6 5 5 16
Format: SYNCI offset (base) M1PS32 Release 2

Purpose: Synchronize Cachesto Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

Thisinstruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of thisinstruc-
tion. Thisinstruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.

A Cache Error exception may occur as a byproduct of thisinstruction. For example, if awriteback operation detects a
cache or bus error during the processing of the operation, that error isreported viaa Cache Error exception. Similarly,
aBus Error Exception may occur if abus operation invoked by thisinstruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It isimplementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.In multiprocessor implementations where instruction caches are not coher-
ently maintained by hardware, the SYNCI instruction may optionally affect all coherent icaches within the system. If
the effective address uses a coherent Cacheability and Coherency Attribute (CCA), then the operation may be global-
ized, meaning it is broadcast to all of the coherent instruction caches within the system. If the effective address does
not use one of the coherent CCAs, there is no broadcast of the SYNCI operation. If multiple levels of caches are to be
affected by one SYNCI instruction, all of the affected cache levels must be processed in the same manner - either all
affected cache levels use the globalized behavior or al affected cache levels use the non-globalized behavior.

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.
Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of alocked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts on the current processor at a minimum. It is implementation specific whether it affects
the caches on other processors in a multi-processor system, except as required to perform the operation on the current

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 259

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective SYNCI

260

processor (as might be the case if multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
seguence is not followed.

Operation:

vaddr ¢« GPR[base] + sign_extend(offset)

SynchronizeCacheLines (vaddr) /* Operate on all caches */
Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after
the new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be
replaced with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and
that the JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC
instruction is required between the final SYNCI instruction in the loop and the instruction that clears instruction haz-

ards.
/ *
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.
* On return, the new instructions are effective.
*
* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
beqg al, zero, 20f /* If size==0, */
nop /* branch around */
addu al, a0, al /* Calculate end address + 1 */
rdhwr vO0, HW_SYNCI_Step /* Get step size for SYNCI from new */
/* Release 2 instruction */
beqg v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */
10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, vO /* Add step size in delay slot */
sltu wvl1, a0, al /* Compare current with end address */
bne vl, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */
20: jr.hb ra /* Return, clearing instruction hazards */
nop

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

System Call SYSCALL
31 26 25 0
SPECIAL code SYSCALL
000000 001100

6

Format. syscaLL

Purpose: System Call
To cause a System Call exception

Description:

20

6

MIPS32

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading

the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (SystemCall)

Exceptions:
System Call

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

261

Trap if Equal TEQ

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TEQ
000000 110100
6 5 5 10 6
Format: TEQ rs, rt MIPS32

Purpose: Trap if Equal
To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers, if GPR rsis equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif
Exceptions:
Trap
262 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Trap if Equal Immediate

TEQI

MIPS32

31 26 25 21 20 16 15 0
REGIMM TEQI -
000001 rs 01100 immediate
6 5 5 16
Format: TEQI rs, immediate

Purpose: Trap if Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis equal to immediate,
then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] =
endif

Exceptions:
Trap

sign_extend (immediate)
SignalException (Trap)

then

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

263

Trap if Greater or Equal TGE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TGE
000000 110000
6 5 5 10 6
Format: TGE rs, rt MIPS32

Purpose: Trap if Greater or Equal
To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:
None

Operation:

if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

264 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Immediate

TGEI

MIPS32

31 26 25 21 20 16 15 0
REGIMM TGEI -
000001 rs 01000 immediate
6 5 5 16
Format: TGEI rs, immediate

Purpose: Trap if Greater or Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

> immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis greater than or equal

to immediate, then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] = sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

265

Trap if Greater or Equal Immediate Unsigned TGEIU

266

31 26 25 21 20 16 15 0
REGIMM TGEIU o
000001 rs 01001 immediate
6 5 5 16
Format: TGEIU rs, immediate M1PS32

Purpose: Trap if Greater or Equal Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] > immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None
Operation:
if (0 || GPR[rs]) 2 (0 || sign_extend(immediate)) then
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Unsigned

TGEU

MIPS32

31 26 25 21 20 16 15 0
SPECIAL rs " code TGEU
000000 110001
6 5 5 10 6

Format: TGEU rs, rt

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rsis greater than or equal to GPR rt, then

take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPR[rs])
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

(0 || GPR[rt]) then

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

267

Probe TLB for Matching Entry TLBP

268

31 26 25 24 6 5 0
COPO CcO 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6
Format. TLBP MIPS32

Purpose: Probe TLB for Matching Entry
To find amatching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index « 1 || UNPREDICTABLE>!
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilysek)) =
(EntryHiypyy and not (TLB[1ilyaek))) and
((TLB[ilg = 1) or (TLB[ilagrp = EntryHiagip))then
Index « i
endif
endfor

Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format. TLBR MIPS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLol, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0O, and EntryLo1l registers may be different from that originally
written to the TLB viathese registersin that:

» Thevauereturned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bhitsin the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

» Thevaluereturned in the PFN field of the EntryLoO and EntrylL o1 registers may havethose bits set to zero cor-
responding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
after aTLB entry iswritten and then read.

» Thevaluereturned in the G bit in both the EntryLoO and EntryLo1l registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLo0 and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢« Index
if 1 > (TLBEntries - 1) then

UNDEFINED

endif

PageMaskyasx ¢ TLB[1]lyask

EntryHi <«
(TLB[ilypyy and not TLB[ilu.ex) || # Masking implementation dependent
0° || TLBlilasip

EntryLol « 02 ||
(TLB[1]ppy1 and not TLB[ily.,ex) || # Masking mplementation dependent
TLB[ileq || TLBI[ilpy || TLB[ilys || TLBIilg

EntryLo0 < 02 ||
(TLB[i]ppyo and not TLB[ily.ex) || # Masking mplementation dependent

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 269

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

TLB[ileo || TLBIilpg || TLBIilye || TLBIilg

Exceptions:
Coprocessor Unusable
Machine Check

270 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format:. TLBWI MIPS32

Purpose: Write Indexed TLB Entry
To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register iswritten from the contents of the EntryHi, EntryLoO, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLo1 registers, in that:

* Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

* Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢ Index

TLB[1ilyask ¢ PageMasky,qx

TLB[i]ypyy ¢ EntryHiypy, and not PageMasky,gr # Implementation dependent
TLB[i]agrp ¢ EntryHingrp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB[i]ppy1 ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]s; ¢« EntryLolg
TLB[i]lp; ¢ EntryLolp
TLB[il]y; ¢ EntryLoly

TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]lcp ¢ EntryLoO¢

TLB([i]py ¢« EntryLoOp

TLB[i]lyo ¢ EntryLoOy

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 271
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Exceptions:
Coprocessor Unusable
Machine Check

272 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry TLBWR
31 26 25 24 0
COPO CO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

MIPS32

The TLB entry pointed to by the Random register iswritten from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLo1 registers, in that:

* Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

* Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-

ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operatio

i«

n.

Random

TLB[i]yask ¢ PageMasky,qx
TLB[ilypyy ¢ EntryHiypy, and not PageMasky,q # Implementation dependent
TLB[i]agrp ¢ EntryHiagrp

TLB[i]g ¢ EntryLolg and EntryLoOg

TLB[i]lppy: ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]c; ¢« EntryLolg

TLB[i]lp; ¢ EntryLolp

TLB[i]y; ¢ EntryLoly

TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]cp ¢ EntryLoO¢

TLB([i]pg ¢« EntryLoOp

TLB([i]yg ¢ EntryLoOy

Exceptions:

Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

273

Trap if Less Than TLT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TLT
000000 110010
6 5 5 10 6
Format: TLT rs, rt MIPS32

Purpose: Trapif Less Than
To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsislessthan GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:
None

Operation:

if GPR[rs] < GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

274 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Trap if Less Than Immediate

TLTI

MIPS32

31 26 25 21 20 16 15 0
REGIMM LTI o
000001 rs 01010 immediate
6 5 5 16
Format: TLTI rs, immediate

Purpose: Trap if Less Than Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsislessthan immediate,
then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] < sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

275

Trap if Less Than Immediate Unsigned

276

31

26 25

21 20

16 15

TLTIU

REGIMM
000001

rs

TLTIU
01011

immediate

6

5

Format: TLTIU rs, immediate

Purpose: Trap if Less Than Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

16

MIPS32

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None
Operation:
if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException (Trap)
endif
Exceptions:
Trap

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Trap if Less Than Unsigned

31 26 25

21 20

16 15

TLTU

SPECIAL
000000

rs

rt

code

TLTU
110011

6

Format. TLTU rs, rt

Purpose: Trapif Less Than Unsigned
To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

10

MIPS32

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

277

Trap if Not Equal

278

31

26 25

21 20

16 15

TNE

SPECIAL
000000

rs

rt

code

TNE
110110

6

Format. TNE rs,

Purpose: Trapif Not Equal
To compare GPRs and do a conditional trap

rt

Description: if GPR[rs] # GPR[rt] then Trap

10

6

MIPS32

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rsis not equal to GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:
None

Operation:

if GPR[rs] # GPR[rt]

then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Trap if Not Equal Immediate TNEI
31 26 25 21 20 16 15 0
REGIMM TNEI . "
000001 rs 01110 mmediate
6 5 5 16
Format: TNEI rs, immediate M1PS32

Purpose: Trap if Not Equal Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] # immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis not equal to imme-
diate, then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] # sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

279

Floating Point Truncate to Long Fixed Point

280

31

26 25

21 20

16 15

11 10

TRUNC.L.fmt

COP1
010001

fmt

00000

fs

fd

TRUNC.L
001001

5

Format. TRUNC.L.fmt
TRUNC.L.S fd,
TRUNC.L.D fd,

Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-hit fixed point, rounding toward zero

Description: FPR[£d] <« convert_and_round (FPR[fs])

6

MI1PS64, M1 PS32 Release 2
MIPS64, M1 PS32 Release 2

Thevaluein FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward zero

(rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 2831, iswritten to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;

fmt) ,

Unimplemented Operation, Invalid Operation, Overflow, | nexact

fmt,

L))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Word Fixed Point

31

26 25

21 20

16 15

11 10

TRUNC.W.fmt

COP1
010001

fmt

00000

fs

fd

TRUNC.W
001101

Format. TRUNC.W.fmt
TRUNC.W.S fd,
TRUNC.W.D fd,

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-hit fixed point, rounding toward zero

Description: FPR[£d] <« convert_and_round (FPR[fs])

6

MIPS32
MIPS32

The value in FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). Theresult is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, iswritten to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Invalid Operation, Overflow, Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

fmt) ,

fmt, W))

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

281

Enter Standby Mode WAIT

282

31 26 25 24 6 5 0
COPO CO . WAIT
010000 1 I mplementati on-dependent code 100000
6 1 19 6
Format: warT MI1PS32

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usualy involving a lower power mode.
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the proces-
sor may use thisinformation as control for the lower power mode. A value of zero for bits 24:6 is the default and must
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It isimplementati on-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Write to GPR in Previous Shadow Set

WRPGPR

31 26 25 21 20 16 15 11 10 0
COPO WRPGPR rt d 0
0100 00 01 110 000 0000 0000
6 5 5 5 11
Format: WRPGPR rd, rt MI1PS32 Release2

Purpose: Writeto GPR in Previous Shadow Set
To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlpgg, rd] « GPR[rt]

The contents of the current GPR rt is moved to the shadow GPR register specified by SRSCtlpgg (Signifying the pre-

vious shadow set number) and rd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

SGPR[SRSCt1lpgg,

Exceptions:

Coprocessor Unusable

Reserved Instruction

rd] ¢« GPR[rt]

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

283

Word Swap Bytes Within Halfwords WSBH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd WSBH BSHFL
011111 00000 00010 100000
6 5 5 5 5 6
Format. wsBH rd, rt MI1PS32 Release2

Purpose: Word Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SwapBytesWithinHalfwords (GPR[rt])
Within each halfword of GPR rt the bytes are swapped, and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] < GPR[rl,; 1 || GPRIrlsy. a4 || GPRIrl; o || GPRIrlis. g

Exceptions:
Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of aword value can be converted using the following sequence:

1w t0, 0(al) /* Read word value */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
seh tl, tO /* tl = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.
284 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Exclusive OR

31 26 25

21 20

16 15

11

10

XOR

SPECIAL
000000

rs

rt

rd

00000

XOR
100110

6

Format. XOR rd,

rs,

Purpose: Exclusive OR
To do abitwise logical Exclusive OR

5

rt

Description: GPR[rd] <« GPR[rs] XOR GPR[rt]

6

MIPS32

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPR rd.

Restrictions:
None

Operation:

GPR[rd] ¢« GPR[rs] xor GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

285

Exclusive OR Immediate XORI
31 26 25 21 20 16 15 0
XORI .]
001110 rs rt immediate
6 5 5 16
Format: XORI rt, rs, immediate M1PS32

286

Purpose: Exclusive OR Immediate
To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] <« GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:
None

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

«— GPR[rs] xor zero_extend(immediate)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 3.02

Appendix A

Instruction Bit Encodings

A.l Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by valuesin other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32® |SA.

Figure A.1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcodefield arelisted in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost
rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the last
three bits designating the column.

Aninstruction’s encoding is found at the intersection of arow (bits 31..29) and column (bits 28..26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 287
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

Figure A.1 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode rs rt immediate
5 5 16

Binary encoding of
opcode (28..26)

Decimal encoding of

* opcode (28..26)
opcode bits 28..26 \
0 1 2 3 4 5 6 ~ 7 *
bits 31..29 000 001 010 011 100 101 110 11
0 | 000
1 | ool
2 | o10
3 | o11 EX1
_% 4 | 100
5 | 101
6 | 110 EX2
7 | 111

Binary encoding of

)) opcode (31..29)
Decimal encoding of

opcode (31..29)

Tables A.2 through A.20 describe the encoding used for the MIPS32 I SA. Table A.1 describes the meaning of the
symbols used in the tables.

Table A.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

o (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPSISA level or anew revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

\Y% Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

288 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

Table A.1 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol Meaning

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with M1PS Technol ogies when one of these encodingsis used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which accessis
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which accessis not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

(] Operation or field codes marked with this symbol are obsolete and will be removed from afuture
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

&) Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A.2 MIPS32 Encoding of the Opcode Field

’W bits 28..26

0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0] 000 | SPECIALS | REGIMM & J JAL BEQ BNE BLEZ BGTZ
1 | oo1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUl
2| 010 | copos COP1 & COP2 85 copixts BEQL ¢ BNEL ¢ BLEZL ¢ BGTZL ¢
3| on1 B B B B SPECIAL2 & JALX ¢ e SPECIAL3? 5@
4 | 100 LB LH LWL LW LBU LHU LWR B
5 | 101 SB SH SWL SwW B B SWR CACHE
6 | 110 LL LWC1 LWC2 6 PREF B LDC1 LDC2 6 B
7 | 1 sC SwcC1 SWC2 6 P B sbcl SDC2 6 B

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available
coprocessor. In Release 2 of the Architecture, afull 64-bit floating point unit is available with 32-bit CPUs, and the
COP1X opcode is reserved for that purpose on al Release 2 CPUs. 32-hit implementations of Release 1 of the
architecture are strongly discouraged from using this opcode for a user-available coprocessor as doing so will limit
the potential for an upgrade path to a 64-hit floating point unit.

2. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 289

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

290

Table A.3 MIPS32 SPECIAL Opcode Encoding of Function Field

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 sLLt MOVCI & SRL & SRA SLLV * SRLV & SRAV
1| o001 JR? JALR? MOovVZ MOVN SYSCALL BREAK * SYNC
2 | o10 MFHI MTHI MFLO MTLO B B
3 | o11 MULT MULTU DIV DIVU B B B
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 | 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ # TNE #
71111 B * B B B * B B

1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, EHB and
PAUSE functions.

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table A.4 MIPS32 REGIMM Encoding of rt Field

’f bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL ¢ BGEZL ¢ * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10 BLTZAL BGEZAL BLTZALL ¢ BGEZALL ¢ * * * *
3 11 ® ® * * * * * SYNCI &
Table A.5 MIPS32 SPECIAL2 Encoding of Function Field
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 MADD MADDU MUL 0 MSUB MSUBU 0 0
1 001 0 0 0 0 0 0 0 0
2 010 0 0 0 0 0 0 0 0
3 011 0 0 0 0 0 0 0 0
4 | 100 CcLZ CcLO 0 0 B B] 0
5 101 [} 0 0 [} 0 0 0 0
6 110 0 0 0 0 0 0 0 0
7 111 0 0 0 [} 0 0 0 SDBBP ¢

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Table A.6 MIPS32 SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

A.2 Instruction Bit Encoding Tables

function | bits2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0|oo0| ExTe B B B INS® B B B
1| 001 % % * * % * * %
21 010 % % * * * * * *
3| 011 * % * * * * *
4 | 100 | BSHFL @5 * * x " " :
51 101 * * % % % % % #
6 | 110 * * * * * * * *
7 (111 * * * RDHWR @ * * * *

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved I nstruction Exception for this opcode and all function field values shown above.

Table A.7 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1
MOVF MOVT

Table A.8 MIPS321 SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

1. Release 2 of the Architecture
added the ROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as an
SRL

Table A.9 MIPS32! SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

1. Release 2 of the Architecture
added the ROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as an
SRLV

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 291

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

Table A.10 MIPS32 BSHFL Encoding of sa Field?!

’T bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1| o1
2| 10 SEB
3| 1 SEH
1. The safield is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.
Table A.11 MIPS32 COPO Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFCO B * * MTCO B * *
1| 01 * * RDPGPR ® | MFMCO! 8@ * * WRPGPR @ *
2| 10
3| 1 cod

1. Release 2 of the Architecture added the MFM CO function, which is further decoded asthe DI (bit 5=0) and EI (bit
5=1) instructions.

Table A.12 MIPS32 COPO Encoding of Function Field When rs=CO

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * ® TLBWR *
1 001 TLBP * * % ® * * *
2 | o10 * * * * * * * *
3 | 011 ERET * # * * #* #* DERET o
4 | 100 WAIT * x ¥ N . - .
5 | 101 % * # % . - - .
6 | 110 * ® ® ® * * ® *
7 | 111 # s # # s # # *

292

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

A.2 Instruction Bit Encoding Tables

Table A.13 MIPS32 COP1 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits25..24{ 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 MFHC1® | MTC1 B CTC1 | MTHC1®
1] 01 BC13d BC1ANY2 | BC1ANY4 * # * * *
eV eV
2| 10 Sé Do * * W LS PS *
3 11 % % * % * * * *
Table A.14 MIPS32 COP1 Encoding of Function Field When rs=S
W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1 | 001 ROUND.L V TRUNC.LV CEILLV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOvz MOVN * RECIP V RSQRT V ®
3] 011 * * * #* RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 #* CVT.D #* #* CVT.W CVTLV CVTPSV *
5 101 * E * * * * ES #
C.F C.UN C.EQ C.UEQ C.oLT C.uLtT C.OLE C.ULE
6 | 110 CABS.F eV CABS.UN &V CABS.EQeV | CABS.UEQ¢eV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE eV
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 | 111 CABS.SF eV | CABS.NGLE €V | CABS.SEQ €V | CABS.NGLeV | CABS.LTeV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV
Table A.15 MIPS32 COP1 Encoding of Function Field When rs=D
’m bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1 | 001 ROUND.L V TRUNC.LV CEIL.LV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOvz MOVN #* RECIP V RSQRT V #*
3 [011 # * #* #* RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 CVTS * # #* CVT.W CVTLV #* #*
5 | 101 * * * ® * * * *
C.F C.UN C.EQ C.UEQ Cc.oLT C.ULT C.OLE C.ULE
6 [110 CABS.F eV CABS.UN eV CABS.EQ&eV | CABS.UEQ eV | CABS.OLT eV | CABS.ULT eV | CABS.OLE ¢V | CABS.ULE eV
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7] 111 CABS.SF eV | CABS.NGLE ¢V | CABS.SEQ €V | CABS.NGL &V CABS.LT eV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

293

Instruction Bit Encodings

Table A.16 MIPS32 COP1 Encoding of Function Field When rs=W or L1

’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | ooo * ® ® ® ® * ® ®
1| o001 * * * * * * * *
2 010 # * % % ® ® * %
3 011 * * * % % % % %
4 | 100 CVTS CVT.D ® ® *® # CVT.PS.PW eV ®
5 | 101 ® * * * * * * *
6 | 110 * * ® ® ® * ® ®
7 | 112 * * * ® ® * ® ®
1. Format type L islegal only if 64-bit floating point operations are enabled.
Table A.17 MIPS64 COP1 Encoding of Function Field When rs=pPS?
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD V SUBV MUL V # # ABS V MOV V NEG V
1 001 * * * * * * * *
2 | o010 * MOVCF 8V MOVZ V MOVN V # # # #
3 | o11 ADDR gV # MULR &V # RECIP2 eV RECIP1 eV RSQRT1eV | RSQRT2 &V
4 | 100 | CVT.SPUV # # * CVT.PW.PS eV * * *
5| 101 | CVT.SPLV # # # PLLPSV PLU.PS V PUL.PS V PUU.PS V
CFV CUNV CEQV C.UEQV COLTV CuLTv COLEV CULEV
6 | 110 | CABS.FeV | CABS.UNeV | CABS.EQeV | CABS.UEQeV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE eV
CSFV C.NGLE V C.SEQV C.NGLV CLTV C.NGE V CLEV CNGTV
7 | 111 | CABS.SFeV |CABS.NGLEeV | CABS.SEQeV | CABS.NGLeV | CABS.LTeV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

1. Format type PSislegal only if 64-bit floating point operations are enabled.

Table A.18 MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

294

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

tf bit 16
0 1
MOVFE.fmt MOVT.fmt

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.3 Floating Point Unit Instruction Format Encodings

Table A.19 MIPS32 COP2 Encoding of rs Field

’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFC2 0 B CFC26 MFHC2 6® MTC2 6 B CTC26 MTHC2 6®
1| o1 BC26 * % * * % . *
2 10
3| 11 c2 65

Table A.20 MIPS64 COP1X Encoding of Function Field!

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000 LWXC1V LDXC1 V ® # * LUXC1V * *
1| 001 SWXC1V SDXC1V # #* * SUXC1V * PREFX V
2 | o10 * * * * * #* * *
3 011 3 s * % * * ALNV.PS V *
4 100 MADD.S V MADD.D V ® # * ® MADD.PS V *
5 101 MSUB.S V MSUB.D V ® # * ® MSUB.PS V *
6 110 | NMADD.SV | NMADD.D V ® # * ® NMADD.PS V *
7 111 | NMSUB.SV | NMSUB.D V * * * * NMSUB.PS V *

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.
A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular pre-
sentation of the encodings described in tables Table A.13 and Table A.20 above.

Table A.21 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of COP1X
COP1 opcode) opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating
Point
17 11 1 1 D Double 64 Floating
Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 w Word 32 Fixed Point
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02 295

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

Table A.21 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field

(bits 25..21 of (bits 2..0 of COP1X

COP1 opcode) opcode)

Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
21 15 5 5 L Long 64 Fixed Point
22 16 6 6 PS Paired Sin- 2x 32 Floating
gle Point

23 17 7 7 Reserved for future use by the architecture.

24.31 18..1F — — Reserved for future use by the architecture. Not available for

fmt3 encoding.
296 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision

History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.
0.91 November 15, 2000 Internal review copy of reorganized and updated architecture documentation.
0.92 December 15, 2000 Changesin thisrevision:
* Correct sign in description of MSUBU.
» Update JR and JALR instructions to reflect the changes required by
MIPS16.
0.95 March 12, 2001 Update for second external review release
1.00 August 29, 2002 Update based on all review feedback:

Add missing optional select field syntax in mtcO/mfcO instruction descrip-
tions.

Correct the PREF instruction description to acknowledge that the Prepare-
ForStore function does, in fact, modify architectural state.

To provide additional flexibility for Coprocessor 2 implementations, extend
the sel field for DMFCO, DMTCO, MFCO, and MTCO to be 8 bits.

Update the PREF instruction to note that it may not update the state of a
locked cacheline.

Remove obviously incorrect documentation in DIV and DIVU with regard
to putting smaller numbersin register rt.

Fix the description for MFC2 to refl ect data movement from the coprocessor
2 register to the GPR, rather than the other way around.

Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for aMIPS32
implementation to show the required word swapping.

Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

Indicate that an Index Load Tag or Index Store Tag operation of the CACHE
instruction must not cause a cache error exception.

Make the entireright half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.
Clean up the definitions of LL, SC, LLD, and SCD.

Add awarning that software should not use non-zero values of the stype
field of the SYNC instruction.

Update the compatibility and subsetting rules to capture the current require-
ments.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

297

Revision History

Revision Date

Description

1.90 September 1, 2002 Merge the MIPS Architecture Release 2 changesin for thefirst release of a
Release 2 processor. Changes in this revision include:

All new Release 2 instructions have been included: DI, EHB, El, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRV, SEB, SEH, SYNCI, WRPGPR, WSBH.

The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV

With support for 64-bit FPUs on 32-bit CPUsin Release 2, all floating point
instructions that were previously implemented by M1PS64 processors have
been modified to reflect support on either MIPS32 or M1PS64 processorsin
Release 2.

All pseudo-code functions have been updated, and the
Are64bitFPOperationsEnabled function was added.

Update the instruction encoding tables for Release 2.

2.00 June 9, 2003 Continue with updates to merge Release 2 changes into the document.
Changesin thisrevision include:

Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

Correct CPR number, and missing data movement in the pseudocode for the
MTCO instruction.

Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLV, DROTRYV,
DSRL32, and DROTR32 instructions to reflect a 1-bit, rather than a 4-bit
decode of shift vs. rotate function.

Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used aone to create a bzero-like operation.

Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although thisistypically lim-
ited to systems with high-reliability requirements.

Update the SYNCI instruction to indicate that it should not modify the state
of alocked cacheline.

Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

250 July 1, 2005 Changesin thisrevision:

298 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Correct figure label in LWR instruction (it was incorrectly specified as
LWL).

Update al filesto FrameMaker 7.1.

Include support for implementation-dependent hardware registers via
RDHWR.

Indicate that it isimplementation-dependent whether prefetch instructions
cause EJTAG data breakpoint exceptions on an address match, and suggest
that the preferred implementation is not to cause an exception.

Correct the MIPS32 pseudocode for the LDC1, LDXC1, LUXC1, SDC1,
SDXC1, and SUXC1 instructions to reflect the Release 2 ability to have a
64-bit FPU on a 32-bit CPU. The correction simplifies the code by using the
ValueFPR and StoreFPR functions, which correctly implement the Release
2 access to the FPRs.

Add an explicit recommendation that all cache operations that require an
index be done by converting the index to a kseg0 address before performing
the cache operation.

Expand on restrictions on the PREF instruction in cases where the effective
address has an uncached coherency attribute.

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Revision

Date

Description

2.60

June 25, 2008

Changesin thisrevision:

Applied the new B0.01 template.

Update RDHWR description with the UserLocal register.
added PAUSE instruction

Ordering SYNCs

CMP behavior of CACHE, PREF*, SYNCI

CVT.S.PL, CVT.S.PU are non-arithmetic (no exceptions)
*MADD.fmt & *MSUB.fmt are non-fused.

various typos fixed

2.61

July 10, 2008

Revision History file was incorrectly copied from VolumellI1.
Removed index conditional text from PAUSE instruction description.
SYNC instruction - added additional format “SYNC stype”

2.62

January 2, 2009

LWC1, LWXCL - added statement that upper word in 64bit registers are
UNDEFINED.

CVT.S.PL and CVT.S.PU descriptions were still incorrectly listing |EEE
exceptions.

Typo in CFC1 Description.

CCResis accessed through $3 for RDHWR, not $4.

3.00

March 25, 2010

JALX instruction description added.
Sub-setting rules updated for JALX.

3.01

June 01, 2010

Copyright page updated.
User mode instructions not allowed to produce UNDEFINED results, only
UNPREDICTABLE results.

3.02

March 21, 2011

RECIP, RSQRT instructions do not require 64-bit FPU.
MADD/MSUB/NMADD/NMSUB psuedo-code was incorrect for PS for-
mat check.

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

299

Revision History

300 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 3.02

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

	MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS32® Instruction Set
	3.1 Compliance and Subsetting
	3.2 Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DERET
	DI
	DIV
	DIV.fmt
	DIVU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JALX
	JR
	JR.HB
	LB
	LBU
	LDC1
	LDC2
	LDXC1
	LH
	LHU
	LL
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PAUSE
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1 Instruction Encodings and Instruction Classes
	A.2 Instruction Bit Encoding Tables
	A.3 Floating Point Unit Instruction Format Encodings

	Revision History

