MIIFPS

MIPS® Architecture For Programmers
Volume lll: The MIPS32® and
microMIPS32™ Privileged Resource
Architecture

Document Number: M D0O0090
Revision 3.12
April 28, 2011

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2001-2003,2005,2008-2011 M1 PS Technologies Inc. All rights reserved.

MIPS;Y

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4K Ec, 4KEm, 4KEp, 4K S, 4K Sc, 4K Sd, M4K, M14K, 5K, 5K ¢, 5Kf, 24K, 24Kc,
24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the
user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Mata, MDM X, MED, MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD,
SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and
other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B ARCH MIPS32

MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About ThiS BOOK .o, 11
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas 11
R | =1 o I ST PP TR PPPPPRPRR 11

IO 2 =T o B) T PP RPRUPPTP 12
G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR 12
1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiie ittt ettt et e e snne e e s neeeanes 12
1.2.1: UNPREDICTABLE ...ttt ettt ekttt e bttt e ekt e e ekt e e e e nb e e e anb e e e enbe e e anneas 12
1.2.2: UNDEFRINEDceiiiiitit ittt ettt ettt ekttt e ettt skt e e ket e 4k bt e e eb b e e ekt e e emb e e e anbe e e enbneeanteas 13
L.2.3: UNSTABLE ..tttk bttt e e a bt o4kt e e kb e e ok bt e e eh bt e ekt e e e emb e e e anb e e e anbneeanneas 13
1.3: Special Symbols in PSeudoCode NOTATIONuuuiiiiiiiieee ettt e e e e e e e eeeaeaaeas 13
1.4: FOIr MOTE INFOIMALION ...ttt e et e et e e e ekt e e et e e e e e e s e e e e e e 16
Chapter 2: The MIPS32 and microMIPS32 Privileged Resource Architecturecccccvvvvviiinnnnenn. 17
2200 I 1o o VT 1 o P 17
2.2: The MIPS COProCeSSOr MOUEuveiiiiiiiiiii ettt e et e e e et e e e e abbreee e 17
2.2.1: CPO - TNE SYSIEIM COPIOCESSON .eeeiiitieeieeiittieee sttt e et astee e e e e atea et e e s asbb et e e s asbb et aesabbs e e e e s anbbeeeesannneeas 17
2.2.2: CPO REQISIEIS ..ttt ettt e o4 h ettt e ookttt e 4o a b bttt e oo Rttt e e bt e et s 17
Chapter 3: MIPS32 and microMIPS32 Operating MOUEScooiiiiiiiiiiieeeieiiieeee e 19
G 0 I B 7= o 18 o 1, o Yo [P PPR 19
K (=T 1o [T I T Lo L= PP PPRPTUPRPPPRRPPIN 19
G TR TS T U o 1T Y/ 1Yo 1 1Yo o = SRS 19
K S Uy T 1V (o To [PP PP PP TUPRPPPRRPPRN 20
ST @] o T=T 1Y oo [T P TR PP PP TUPRPPPRRPPRN 20
3.5.1: 64-hit Floating Point Operations ENADIEcuiiiiiiiiiiiieee e 20
3.5.2: B4-Dit FPR ENADIEcoiiiiiiei et 20
3.5.3: CoProcesSOr O ENADIE..........uuiiiiiiiiie et e e e e e e e s e a e e e e e e e e araaaas 21
BL514I ISA MOAE ...ttt 21
Chapter 4: Virtual MEemMOTY ..o, 23
4.1: Differences between Releases Of the ArChItECIUIE.c.uiiiii i 23
o I VT (V=LY =T 03T YT PUTRP TR 23
4.1.2: Protection of Virtual MEMOIY PAOES.ccoaiiiiiiiiiiieiiie ettt e e e e et e e e e e e e e e e anneeeees 23
4.0.3: CONEXE REGISTEN ... eeeeieieee ettt e e e e e e e e oo bbbt ettt e e e e e e e e e s e nbsbbebeeeeaaaeaeeaesannnnsnenes 23
A =T 0111 o] (oo YT EURT TR 24
A Vo [0 £ ST TS o = Tt TSP RRPP TR 24
4.2.2: SegMeNt and SEOMENT SIZEuuuiiiiiiiiiaae ettt e e e e ettt e e e e e e e e e s e saabbeeeeeeaaaaaeaseaannnreeeees 24
4.2.3: Physical AAress Size (PABITS) ...ttt e e e e e e e et e e e e e e e e e e e e aannbeeeees 24
4.3 VIFTUAI ACQUIESS SPACES ...eeeeeeiiiieeeaeei ittt e e e e e et e ettt ettt e e e e e e s e e s s et bebee et e e eaaeeaeaaaanssbbsbeeeeeaaaaaeaaaannrnnenes 25
@] 1 01 o] = Vg (o] TP PEURT TR 27
4.5: Access Control as a Function of Address and Operating MOGEc..uuiiiiiiiiiiaaii e 28
4.6: Address Translation and Cacheability & Coherency Attributes for the kseg0 and ksegl Segments 28
4.7: Address Translation for the kuseg Segment When STatUSER] = 1..cooiciveeieiiiiiiiie e 29
4.8: Special Behavior for the kseg3 Segment when Debugpp) = L..cuveveeiiiiiiieiie e 29
4.9: TLB-Based Virtual AddreSs TranSIAtiONoooiiiiiiiiiiiiie et e annenneees 29
4.9.1: Address Space 1dentifierS (ASID)oiiii oottt e e e e et e e e e e e e e e nneeae e 30

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 3

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.9.2: TLB OFQaniZAtiONceiiiiiiieiiieiiiittie s e s s et e e e e e e e e e e e aeeeeeeeeeeeeaeasbetaaaaa e e e s e aaaeaaeaeaaeaeaesesesesessssssssnrnnns 30
4.9.3: TLB INIHAIZATION ...ttt ettt e oottt et e e e e e e e e s e bbb bbbt e e et e e e e e e e aaannnnbebee e 31
4.9.4: ADAreSS TrANSIALIONccoiiiiiiiite ettt e e e oottt e e e e e e e e e s e bbbt ettt e e e e e e e e e aeaannnbebeees 32
Chapter 5: Common Device Memory Map ..o, 39
5.1 CDMMBEASE REGISTEIeeeiieiiitiie ettt e o4t ee e ook bt et e e e 1kt e e e e et bt e e e e s bbbt e e e e aabe e e e e e abbeeeeeaas 39
5.2: CDMM - Access Control and Device RegiSter BIOCKSoouiiiiiiiiiiiicciii e 40
5.2.1: Access Control and StatUS REGISTEIS.cuiiuiiiiiiiiiiiiie ettt 41
Chapter 6: INterrupts and EXCEPTIONS . ..coiiiiiiieii et e e e e e e e e e aannes 43
L0t I 1= (0 0 £ 43
0 I I [(=Y (T 1 1Y o o =SS 44
6.1.2: Generation of Exception Vector Offsets for Vectored INterrupts..........coovveivviiiiieieee e 53
LT o7 =T 1[0 1P 55
L I (o=) [T I = o 1 /2SS 55
SO =y (ol=T o) [gAY A= Tox (o gl o Tor= 4o] o 1SS 57
6.2.3: General EXCEPLION PrOCESSINGuiiiieiiiiiiiitiiiieet e e ee e e e e e s st e e e e eee e e s e s st ereraeaeeessssnnnsnanneneeeees 59
oI S o I R B 1= o T8 o =t (o =T o] (oo P 61
O S =TS (ot =7 o) 1o o SR 62
O S 1o == (=Y o] 1o o PP 63
6.2.7: Non Maskable Interrupt (NIMI) EXCEPLIONuvuiiiiiiiiiee ettt e e e e e e e e e s e reeeeee s 64
LI S B V= Tod o Lo @ 1= o [(o =T o o] o S 65
OIS Ao [0 [=TSR = g o] gl (=T o] 1o o P 65

L O I LY 1| I o=) 1o o PP 66
L R =T od W (= T T oL o =Y o1 T S 67

LS 7 === o B T a1 oL o =T o1 o] o 67

L7 o I I = 17T I o= [o PP 68
L 0 S I = Y/ o Yo L1 =T I =t (o =Y o] (oo S 69
O R = Tod 1= I = o | Gl o =T o1] PP 69

L G = T TS = o = CoT= o) o) o PP 70
6.2.17: Integer OVEIflOW EXCEPLIONviiiiiee ettt e e e e e e s e s r e e e e e e e e e s e e snsrnaaeareeeees 70
L S I = Vo TN (ot = o) 1o) o S 71
O e S V1 (=10 J O 1 (=T o] 1o PP 71
oI O = T == Uq o Lo A (=T oo o PR 71
6.2.21: Reserved INStrUCtioN EXCEPLIONcceii ittt e e ee e e e e e s ettt e e e e e e e e e e s st e e e e e e e e e e s s e snnbnannaeeeaeeas 72
6.2.22: Coprocessor UNUSable EXCEPLION........iiiiiiiiiieiei e e e e e cesse e e e e e e e e e st r e e e e e e e e e e e snnrnannaeeeaeens 72
6.2.23: FIoating POINt EXCEPLIONvviiiiiiiiiiee ettt e e e s e e e e e e e e e s e s st r e e e e e e e e e s s e nnnsrnanneneeeees 73
6.2.24: COPIrOCESSOr 2 EXCEPLION ...utitiiiiiiiee e et e iie ettt et e e e e s e s et e et e e e e e e e s e s s bae e e eeaeaeeessessnsrnannaneeaeens 73
OIS T VAV L (o g T o=) 1) PP 74
oI G [a1 (=] (0]) =T (o =T o] (o o P 74
Chapter 7: GPR ShadOW REQISTEIS ..cciiiiiiiiiiiiie ittt e e et e e e e e e e annnes 77
7.1 INtrodUCHION t0 SNATOW SEIES.. ...ttt e e e e e e ettt e e e e e e e e e aab bbb e eeeeeaeas 77
A 10T o] o T [51 10 T 1o KT PP U TP TR PPRTPPPP 78
Chapter 8: CPO HAZAIAS ..o 79
S0 I [oo T [V Tt 1o o USRS 79
8.2: TYPES OF HAZAIUS ..ottt e ket e ekt e e e e bt e e e e bb et e e e asbe e e e e e abbreee e 79
8.2.1: POSSIDlE EXECULION HAZAIISeeiiiiieeiiiieiiiiee ettt et e e e e e e e e e e et eeeaeeeas 79
8.2.2: POSSIDIE INSLIUCHION HAZAITS. .. .eeiiiieeeeie ittt e e e e e e e e e e e e e et eeeeeeeas 81
8.3: Hazard Clearing INStruCtionNS @nd EVENLScoiuiiiiiiiiiiiiie ittt e e 82
8.3.1: MIPS32 INSLrUCtION ENCOUINGeeiiiiiiiiiieiiiiiii ettt ettt e e e s 82

4AMIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

8.3.2: MiCroMIPS32 INStruCtioN ENCOING ...vvvuveiiiiiie it eeeeeaeenanranns 83

Chapter 9: Coprocessor 0 REQISTEIS ..o 85
9.1: CoprocesSOr O REJISIET SUIMIMEAIYeiiiiitriiieeiiitie ettt et e ettt e ekt e e e st bt e e e e bbbt e e e e anbbe e e e s abbreeeeaas 85
LS [] 7= 11 o] [T OO P T PP O TP PPPPPPPPPTOPPPPPN 90
9.3 WIILING CPU REQISTEISceieiiitiiiee ettt ettt e e ettt e e o4k b et e e e 1kt e e e e ekt b et e e e ekt et e e e e aabb et e e e abbreeeenas 91
9.4: Index Register (CPO RegiSter 0, SEIECE 0).....cciiiriiiiiiiiiii etttk e e ee e 92
9.5: Random Register (CPO RegiSter 1, SEIECE 0)uiiiiiiiiiiieiiiiiii ettt 93
9.6: EntryLo0, EntryLol (CPO Registers 2 and 3, SEIECT 0)ouiiiuiiiiiiiiiiiiiieiiiieie et 94
9.7: Context Register (CPO RegiSter 4, SEIECT 0)ouuiiiiiiiiiiiie ettt e e 99
9.8: ContextConfig Register (CPO RegiSter 4, SEIECT 1).......uuuiiiiiiiiiiieiiiiiee ettt 103
9.9: UserLocal Register (CPO RegiSter 4, SEIECT 2)uiiiiiiiiiii ittt 105
9.10: PageMask Register (CPO RegiSter 5, SEIECTE 0)cciiuiiiiiiiiiiiiiei ettt 106
9.11: PageGrain Register (CPO RegiSter 5, SEIECT 1)iiiiiuiiiiiiiiiiiiiie ittt 108
9.12: Wired Register (CPO RegiSter 6, SEIECT 0)ouuiriiiiiiiiiie ittt 111
9.13: HWREnNa Register (CPO RegiSter 7, SEIECE 0)ciiiuiiiiiiiiiiiiieiiiii ettt 113
9.14: BadVAddr Register (CPO RegiSter 8, SEIECE 0)cciiuuiiiiiiiiiiiie ittt 115
9.15: Count Register (CPO RegiSter 9, SEIECT 0)ciiuririieiiiiiieei ittt 116
9.16: Reserved for Implementations (CPO Register 9, SelectS 6 and 7)occuevveiiiiiiiieiiiiiiie e 116
9.17: EntryHi Register (CPO Register 10, SEIECT 0)......uuiiiiiiiiieiiiiiiii ettt 117
9.18: Compare Register (CPO Register 11, SEIECE 0)....uiiiiiuiiiiiiiiiiiieeiiiiie ettt 119
9.19: Reserved for Implementations (CPO Register 11, SelectsS 6 and 7)ccuvvveiiiiiiiieiiiiiieeiiieee s 119
9.20: Status Register (CP Register 12, SEIECE 0)ouurriiiiiiiiiiei ittt 120
9.21: IntCtl Register (CPO ReQiISter 12, SEIECT 1) ...coiuuiiiiiiiiiiee ettt 127
9.22: SRSCtl Register (CPO RegiSter 12, SEIECT 2)......uuiiiiiiiiiii ittt 130
9.23: SRSMap Register (CPO Register 12, SEIECE 3)iiiiiiiiiiiiiiiiiiiei ittt 133
9.24: Cause Register (CPO Register 13, SEIECT 0)uuuiiiiiiiiiieeiiiiieee ettt 134
9.25: Exception Program Counter (CPO Register 14, SEIECt 0)uvviiiiiiiiiiiiiiiiiie ettt 140

9.25.1: Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE or the
MICTOMIPS32 BaSE AICHITECIUIESttt e e e s 140
9.26: Processor Identification (CPO Register 15, SEleCt 0)ccoiiiiiiiiiiiiiiiieiiieee et 142
9.27: EBase Register (CPO RegiSter 15, SEIECE 1)uuuiiiiiiiiiieiiiiiiee ettt 144
9.28: CDMMBase Register (CPO Register 15, SEIECT 2)uuiiiiiiiiiiiiei ittt 146
9.29: CMGCRBase Register (CPO Register 15, SEIECT 3).....uuiiiiiiiiiiieiiiiiiie ettt 148
9.30: Configuration Register (CPO Register 16, SEIECT 0)uviiiiuiiiiieiiiiiiie ettt 149
9.31: Configuration Register 1 (CPO RegiSter 16, SEIECE 1)coiiuiiiieiiiiiiieeiiiieee et 152
9.32: Configuration Register 2 (CPO RegiSter 16, SEIECE 2)ooiuiiiiiiiiiiiiie ettt 156
9.33: Configuration Register 3 (CPO Register 16, SEIECE 3)ccoiiuiiiiieiiiiiiieeiiiee ettt 159
9.34: Configuration Register 4 (CPO RegiSter 16, SEIECE 4)coiuiiiiiiiiiiiii ittt 165
9.35: Reserved for Implementations (CPO Register 16, SelectsS 6 and 7)ccvvveiiiiiiiieiiiiiiiee e 169
9.36: Load Linked Address (CPO Register 17, SEIECT 0)uuvriiiiiiiiiieiiiiieee ettt 170
9.37: WatchLo Register (CPO REQISTEN 18)uuiiiieiiiiiiieeiiiiiiie ettt ettt et e et e e as 171
9.38: WatchHi Register (CPO REGISIEN 19)uuiiiieiiiiiiieeiiiiee ettt et e e s 173
9.39: Reserved for Implementations (CPO Register 22, all Select values) ... 175
9.40: Debug Register (CPO Register 23, SEIECE 0)uuiiiiiiiiiieeiiiee ettt 176
9.41: Debug2 Register (CPO RegiISter 23, SEIECE B)cciiiuiiiiiiiiiiiiie ittt 178
9.42: DEPC RegiSter (CPO REQISIEN 24)oii ittt ettt e s s 179
9.42.1: Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE or
MICTOMIPS32 BaSE AICIITECIUIE ...ttt e e s 179
9.43: Performance Counter Register (CPO REJISIEI 25)uuiiiiiiiiiiiiei ettt 180
9.44: ErrCtl Register (CPO RegiSter 26, SEIECE 0)uveiiiiiiiiiiie ittt 184
9.45: CacheErr Register (CPO Register 27, SEIECT 0) ...vviiiiuuiiiieiiiiiiiee ittt 185
9.46: TagLo Register (CPO Register 28, SEIECE 0, 2)coiiiiiiiiiiiiiiiiie ettt 186

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 5

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.47: DatalLo Register (CPO Register 28, SEIECE 1, 3)...ciiiriiiiiiiiiiiiiiiiis e e e e 187

9.48: TagHi Register (CPO Register 29, SEIECt 0, 2) ...ciiiiiieieiiiiiiiiiiiiies e et 188
9.49: DataHi Register (CPO Register 29, SEIECT 1, 3) ..iiiiiiiiiiiiiiiiiiiiiies et 189
9.50: ErrorEPC (CPO Register 30, SEIECE 0)ccoiiiiiiiiieeeeeee s e e e e e e e e 190
9.50.1: Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE or
MICTOMIPS32 BaSE AICHITECTUIE ...ttt 190
9.51: DESAVE Register (CPO REQISIEN 31)ccciiiiiiiiiiiiiieeeeee s e e e e e e e e e e e et e et as 192
9.52: KScratchn Registers (CPO Register 31, SEIECIS 210 7) wuvvrruruiiiiiii i 194
Appendix A: Alternative MMU OrganiZatiOnNsSueuueeeuurerrsererissssssserereseesserrsesrseesere—————————. 195
A.L: FiXxed MapPiNg MMU ..ottt e et e e et e e 195
A.L.L: Fixed AdAreSs TranSIationooiiiiiiiieiieie ettt e e e et e e e e e e e e e e s aanbsb e e e aeeaaeaesaeannns 195
A.1.2: Cacheability ATIDULIESueiiiie et e e 198
A.1.3: Changes to the CPO RegiSter INTEITACEcoiiiiiiiiiiiie e 199
A.2: BlOCK AAAreSSs TIaNSIALIONeeiiiiieieiei ittt e e e e e e e e s sttt e e e aeeeeeeaaaannnbbseeeeeaaaeeeaaeanns 199
AL2. 1 BAT OFQANIZATION ..oietiieeeeitt ettt e e ekttt e e e skttt e o4 a b et e e e sk b e e e e e e aab b et e e e s abbe e e e e s anbbeeeeeaa 199
A.2.2: AAArESS TIANSIALIONeeeeeiiee ettt ettt et e e e e e e s e e bttt eeeeeaaeaaaeaaanbntanaeeaeaaaeaesaaannns 200
A.2.3: Changes to the CPO RegiSter INTEITACEc.iiuiiiiiiiiiee e 201
A.3: Dual Variable-Page-Size and Fixed-Page-Size TLBS..........ccoiiiiiiiiiiiiice et 202
A3 LI MMU OFQANIZATION ...ttt e e ettt e e e e bt e e e ettt e e e aab b e e e e e s abba e e e e s anbneeeeeans 202
A.3.2: Programming INTEITACEuviiiiiiiiii ettt e et e et e e e abae e e e 203
A.3.3: Changes t0 the TLB INSIUCHIONSciiiiiiiiieiiiiii et e e e b e e 205
A.3.4: Changes t0 the COPO REQISTEIScceiiiiiiiieeiiiiiii ettt e et e et e e e e e e abbeeee e 206
A.3.5: Software COMPALIDIIILYveiiiiiii e e e e b e e 208
ApPpPeNndiX B: REVISION HISTOTIY ..ottt e e e e e e e e s 209

6MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Figures

FIgure 4-1: ViIrtUal AQOAIrESS SPACE ... ccoiiiieiiiitie ettt ettt oo oottt et e e e e e e e e e o e b b bbbttt e e e e e e e e e e aanbbbbeeeeeeeaeas 25
Figure 4-2: References as a Function of Operating MOoooiiiiiiiiiiii s 27
Figure 4.3: Contents Of @ TLB ENIIY ...ccoiii e s e e e e e e e e e e e e e e e e et s e e e e e e e e aaeaaeaeaeeeees 30
Figure 5.1: Example Organization Of the CDIMMooiiiiiiiiiiii et 41
Figure 5.2: Access Control and StatUS REQISIETvuvuuiuiiiiiiiees et s e e e e e e e e e aeaaaaaaaaaeeee 41
Figure 6-1: Interrupt Generation for Vectored INterrupt MOE.........cooiiiiiiiiiiii e 49
Figure 6-2: Interrupt Generation for External Interrupt Controller Interrupt Mode............cccoviiiiiiiiiiiiieeen 52
Figure 9-1: INdeX ReQISIEr FOIMMALc.coe i s e e e e e e e e e et e et e e e e e et e e et s e s e e e e s e aeaaeaaeaeaeeeees 92
Figure 9-2: Random REQISIEr FOIMALccooiiiiiiiieeeee et e e e e e e e e et et e e s e e e e e e e e e e aaaaaaaeaeaeees 93
Figure 9-3: EntryLo0O, EntryLol Register Format in Release 1 of the Architecture..........cccoceeeeiiiiiiiiiiiiiie, 94
Figure 9-4: EntryLoO, EntryLol Register Format in Release 2 of the Architecture...........ccoeeeeeieiiiiiiiiieee, 95
Figure 9-5: EntryLoO, EntryLol Register Format in Release 3 of the Architecture..........ccccceeeveeieiiiiieiee, 96
Figure 9-6: Context Register Format when Config3CTXTC=0 and Config3SM=0...........ccceeeeeeieiiiiiiiieeeeeeieieieiieenas 99
Figure 9-7: Context Register Format when Config3CTXTC=1 or Config3SM=1cvvrriiiiiiiiiiiiiieieeeeeeeeeeeee, 100
Figure 9.8: ContextConfig ReQISIEr FOIMMALooviiiiieiiiiiee e e e e e e e e e e aaaaeaeees 103
Figure 9-9: UserLocal RegIStEr FOIMAL............ooiiiiiiiiiieee e e e e e ettt a e e e e e e e e aaaaaaaeaeees 105
Figure 9-10: PageMask RegISIEr FOIMMALooiiiiiiiiieiiii s e e e e e e e e e et e s e e e e e e e e aaeaaaaeaeees 106
Figure 9-11: PageGrain ReQIStEr FOIMAL............ooiiiiiiiiiii s e e e e e e e e e e e ettt s e e e e e e e e e aaaaeaaeaeees 108
Figure 9-12: Wired And Random ENtries IN The TLBuvuiiiiiiiii e 111
Figure 9-13: Wired RegISIEr FOIMMIAL..........cco e e e e e e e e e e e e e et et e et e e e e et et a s e e e e e e aeaeaaaaaeaeees 111
Figure 9-14: HWRENA REQISIEr FOIMIAL.......ccoiiiiiiiieiieiee s e e e e e e e e e e et e e e e et e e s e e e e e e e e aaeaaaaeaeees 113
Figure 9-15: BadVAdAr RegISIEr FOMMAL............oiiiiiieeeeiei s s e e e e e e e et e e a e e e e e aaaaaeaeaeees 115
Figure 9-16: Count REQISIEr FOIMALccoiiiiiiiie e e e e e e e e e e et e ettt e e et a s e e e e e e e eaaeaaaaeaeees 116
Figure 9-17: EntryHi ReQISTEr FOIMALccooiiiiiiiieeeeeee s e e e e e e e e et et e et s s e e e e e e e aaaaaaaeaeees 117
Figure 9-18: Compare REQISTEI FOIMMALuuuiiiiiiiieeei ittt e e e e e et r e et e e e e e e s e annbbeeeees 119
Figure 9-19: Status ReQISter FOIMAL...........cooiiiiiiiieeee e e e e e e e e et ettt s e e e e e e e e aaeaaaaaaeees 120
Figure 9-20: INtCtl REQISIEr FOIMIAL.........ccci e r e e e e e e e e e e e e et e et et e e et e e et a e e e e e e aeaaeaaaaeaeees 127
Figure 9-21: SRSCHl ReQIStEr FOIMALccoiiiiiiiiieeeeeee e e e e e e e e et et e e s e e e e e e e eaeaaaaaeaeees 130
Figure 9-22: SRSMap REQISTEI FOIMAL.........uuiiiiiiiiiiei ettt e e e e e ettt e e e e e e e e e s s anebbeeeees 133
Figure 9-23: Cause ReQISIEr FOIMMIAL...........cooiiiiiiiiieeeeeeee e e e e e e e e e e et e et et e e e e e et a e e e e e e e eaeeaaaaeaeees 134
Figure 9-24: EPC ReEQISIEr FOIMIAL........cci i e eiieiie e e e e e s e e e e e e e e e e e e et e et et e e e et et e e e e e e e e e e eaeeaeaaeaeees 140
Figure 9-25: PRI REQISIEr FOIMMAL........ccci i e e e e e e e e e e et et et e e e e et s e e e e e e e eaeaaeaaeaeees 142
Figure 9-26: EBase REQISIEr FOIMALcccoiiiiiiiiieee s e e e e e e et ettt e s a e e e e e e e aaeaaaaeaeees 144
Figure 9.27: CDMMBASE REQISIENcciii i i e e e e e e e e e e e e e e e e e e et e ettt e e e et et et a s e e e e e e aeaaeaaaaeaeees 146
Figure 9.28: CMGCRBASE REQISIETcci i i e e e e e e e e e et et ettt e et et e e a e s e e e e e e aeaaeaaaaeaeees 148
Figure 9-29: Config REQISIEr FOMMIAL..........ccooiiiiiiiieeee e e e e e e e e e e e et e et e e e e e e e e e e e e e aeaeeaaaaeaeees 149
Figure 9-1: Configl ReQISIEr FOIMMIAL..........ccooiiiiiiieie e e e e e e e e e e e e et e et e e e e et e et a e e e e e e e eaeaaaaaeeeees 152
Figure 9-30: Config2 ReQISIEr FOMMIAL..........ccoiiiiiiiieee e e e e e e e e e e e e e e e e et et e e e e e e e e e e e e e eaeeaaaaeaeees 156
Figure 9-31: Config3 ReQISIEr FOIMMIAL.........cccoiiiiiiiie e e e e e e e e e e e e et e et e e e e e e e et a e e e e e e aeaaeaaaaeaeees 159
Figure 9-32: Configd ReQISIEr FOIMMIAL.........cccoiiiiiiiieeeeeeee e e e e e e e e e e e e e e et e et e e e e e et a e e e e e e aeaaaaaeaeaeees 165
Figure 9-33: LLAAAr ReQISIEr FOIMALccooiiiiiiiieee e e e e e e e e e e et e ettt e s e e e e e e e e aaeaaaaeaeees 170
Figure 9-34: WatChLO ReQIStEr FOIMAL...........ciiiiii e e e e e et s s e e e e e e e e aaeaaaaeaeees 171
Figure 9-35: WatChHi RegIStEr FOIMALccoiiiiiiiieeeeee et s e e e e e e e e aaeaaeaeaeees 173
Figure 9-36: Performance Counter Control Register FOIMat.........ccooiiiiiiiiiiiiiiicceeee e 180
Figure 9-37: Performance Counter Counter Register FOrMaAL..........ccoooiii i 183
Figure 9-38: ErrorEPC ReQISIEr FOIMMAL..........coiiiiiii et s e e e e e e e e e e e e e e e e et e s e e e e e e eaaeaaaaeaeees 190
Figure 9-39: KScratchn RegIStEr FOIMMALooiiiiiieeiieee st e e e e e e e e e e e e aaeaaeaeaeees 194

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

7

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Figure A-1: Memory Mapping When ERL = O.....ooooiiiieeeiie ettt e e e e e e e e e e e e e aaaeees 197

Figure A-2: Memory Mapping When ERL = L.t a e e e e e e e e e e aeae e 198
Figure A-3: Config RegiSter AQQItIONScooiiiiiii e e e e e e e e et e e e e e e e e aaeaaaaeaeees 199
Figure A-4: Contents Of @ BAT ENLIY ..o e e e e e e e e e e e e e e et e e e e e e s e e e e e e e e aeeaaaaeaeees 200

8MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 5.1:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:
Table 6.9:
Table 6.10
Table 6.11
Table 7.1:
Table 8.1:
Table 8.2:
Table 8.3:
Table 9.1:
Table 9.2:
Table 9.3:
Table 9.4:
Table 9.5:
Table 9.6:
Table 9.7:
Table 9.8:
Table 9.9:

Table 9.10:
Table 9.11:
Table 9.13:
Table 9.12:
Table 9.14:
Table 9.15:
Table 9.16:
Table 9.17:
Table 9.18:
Table 9.19:
Table 9.20:
Table 9.21:
Table 9.22:
Table 9.23:
Table 9.24:
Table 9.25:
Table 9.26:

Symbols Used in Instruction Operation State@mMENTS........coooiiiiiiiiiiiiii e 13
Virtual MemOry AGAIESS SPACESuuuiiiiiiiiiieee ettt e e e e e et e bbbttt e e e e e e e e s s e bbb b e s e e eeeaeaeeaaaannrane 26
Address Space Access as a Function of Operating MOde............oooiiiiiiiiiiiiiiie e 28
Address Translation and Cacheability and Coherency Attributes for the kseg0 and ksegl Segments . 29
Physical AdAreSS GENEIALION........ciiii i e e e e e e e e e e e e e e e e e e e ae et a bt a e e e e e eaeaas 36
Access Control and Status Register Field DeSCHPHONSiiaiiiiiiiiiieie e 41
INEEITUDPE IMOOES ...ttt oot e oo oo ettt ettt e e e e e e e e e bbbttt e e e e e e e e e aeaannnnaneees 44
Request for Interrupt Service in Interrupt Compatibility MOGEccooiiiiiiiiiiiiiii e 45
Relative Interrupt Priority for Vectored INterrupt MOGE.eueiiiiiiiiiiiiiiie et 48
Exception Vector Offsets for Vectored INTEITUPLSo.oi it 53
Interrupt State Changes Made Visible DY EHB ... 54
PrIOFLY OF EXCEPLIONS ...ttt e e e e e e e ettt e e e e e e s e e b bbbt e e e e e e eaeeeaaaann 55

EXCeption TYPE CharaCteriSHICS.coiiiiiiiitiiie ettt e e e e e e e e e e e e e e as 57
EXCEePLioN VECIOr BASE AGUIESSES. .. .ottt ettt e e e e e bbbttt e e e e e e e e e s e bbb e e e e e e aeeeaaan 58
EXCEPLION VECION OFfSELS ...ttt e ettt e e e e e e e e bbbt e e e e eaeeeaeaaan 58
=y Cot=T o i o] g YL =Tox (o] £ TP PURT TP 59
: Value Stored in EPC, ErrorEPC, or DEPC 0n an EXCEPLiON........cccuiiiiiiiiiiiieeee i 60

INStructions SUPPOItiNG SNAUOW SELSeiiiiiiiiieiiiite et e e e e e e e e e e e anaeaees 78
POSSIDIE EXECULION HAZAISceiiiiiieiiii ettt e e e e e e e e e e e e e e e aan 79
POSSIDIE INSTIUCTION HAZAITS.eeiiiieieiii ettt e e e et e e e e e e e e e e as 81
Hazard Clearing INSITUCTIONS e e e e e e e e e e e e e e e e eeee e e e e s et e a e e e e eaeaas 82
Coprocessor 0 Registers in NUMEFCAl OTAEreuiiiiiiiiiiiiiiie e 85
Read/Write Bit FI I NOTATIONcciiiiii ittt ettt e e e e e e e e e e bbbt eeeaeaeeeaaan 90
Index Register Field DESCIIPLIONSuiiiiiiiiiiiee ettt ettt e e e e e e e e e s bbb e e e e e e e e e e e e e e annnanes 92
Random Register Field DESCIIPIIONS.uuiiiiiiiiiiee ettt e e e e e e e e e e e e e e as 93

EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architectureccccccceeeeeennn. 94
EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecturecccccceeeeeennn. 95
EntryLo Field Widths as a FUNCHION Of PABITS.......ooviiiiieee e 96
EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecturecccccceeeeeeennn. 97
Cacheability and ConerenCy AttHDULESvveiiiii i e e e e e e e e e e e aaaaaaaaaees 98
Context Register Field Descriptions when Config3CTXTC=0 and Config3SM=0..............ceecurrrrrrrrrn. 99
Context Register Field Descriptions when Config3CTXTC=1 or Config3SM=1.........cc.cccccerrrrurrrrnen. 100
Recommended ConteXtConfig ValUESoooiiiiiiiie e s 104
ContextConfig Register Field DESCIPLIONSuutiiiiiiiieieiiiieit et e e 104
UserLocal Register Field DeSCIPLIONSuiiiiiiiiieeee ettt e e e e e e eeeeeeas 105
PageMask Register Field DEeSCHIPLIONSuuuiiiiiiiieeieii ittt e e e e et eeeaeeees 106
Values for the Mask and MaskX1 Fields of the PageMask Registercccccoeeeiiiiiiiiiiiiiieceiiiiiis 107
PageGrain Register Field DeSCIPLIONSutiiiiiiieeee ittt e e e e e e e eeeeeee s 108
Wired Register Field DeSCIIPLIONSttt ettt et e e e e e e st e e e e e e e aeeeeaaanns 112
HWRENa Register Field DeSCIIPIIONSuuiiiiiiiiieeee ettt e e e e e e e e e e e e e 113
LR o LAY =T o T (=T ol N 0T] 1= 114
BadVAddr Register Field DeSCIPLIONS.........uiiiiiiiiieeeeeeiee ittt e e e e e e eeeeeeas 115
Count Register Field DESCIIPLIONS.ui ittt e e e e e e e e e e e s e aaeeeebee s 116
EntryHi Register Field DeSCIPLIONSoiiiiiiiiiiiie ettt e e e e e e eeeeae s 117
Compare Register Field DESCHPLIONScooiiiiiiiiiiiie it e e e e e e e s 119
Status Register Field DEeSCIIPLIONSciii i ittt e e e e e e e e e s aebee s 120
INtCtl Register Field DESCIIPLIONS ittt e e e e e e e e e e e e e e e e e e e aaas 127

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

9

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.27: SRSCtl Register Field DESCIPLIONSuuuiiiiiiiiieeei ittt e aaas 130

Table 9.28: Sources for new SRSCtlgg on an Exception or INterrupt...........cccceiiiiiiiiiiic 131
Table 9.29: SRSMap Register Field DESCHIPLIONSuuiiiiiiieei ittt e e e e e e e e e e e e e e e e 133
Table 9.30: Cause Register Field DeSCIIPLIONSuutiiiiiiiieiee ittt e aaas 134
Table 9.31: Cause Register EXCCOAE FIeIU.......cccooi it e et 138
Table 9.32: EPC Register Field DeSCIIPLIONSuuiiiiiiiiiiee ettt ettt e e e e e e e e s bbb e b e e e e e e eeeeaaaaans 140
Table 9.33: PRI Register Field DeSCIIPUIONSuutiiiiiiiieeeee ittt ettt e e e e e e e e e bbb e e e e e e e e e e e e e aaas 142
Table 9.34: EBase Register Field DESCHPIIONS.uuu ittt e 144
Table 9.35: Conditions Under Which EBaSe15..12 MUSE BE ZEI0ueeeiiiiiieiiiiiiiiiiiiieiee e 145
Table 9.36: CDMMBase Register Field DESCHPIIONS.........ui ittt e e e e e e e e s 146
Table 9.37: CMGCRBase Register Field DESCHPIONScooiiiiiiiiiiiiii ettt e e e e e 148
Table 9.38: Config Register Field DeSCIIPLIONSttt e e e e e e e e s r e e e e e e e e e e e e e 149
Table 9-1: Configl Register Field DESCHPIIONS.ttt ettt e e e e e e e e bbb e e e e e e e e e e e e e 152
Table 9.39: Config2 Register Field DeSCIIPIIONSuu ittt e aaas 156
Table 9.40: Config3 Register Field DeSCIIPIIONSuuitiiiiiiieee ittt a e e e e e e e e e e e e e e e 159
Table 9.41: Configd Register Field DeSCIIPIIONSuuuiiiiiiieee ittt ettt et e e e e e e e e e e e e e e e e 165
Table 9.42: LLAddr Register Field DESCHPIONS.ttt ettt e e e e e e b e e e e e e e e e e e e 170
Table 9.43: WatchLo Register Field DESCIPLIONSuiiiiiiiieei ittt e e e e e e e e e e e e e e e e 171
Table 9.44: WatchHi Register Field DeSCIPLIONS.uuu ittt e e e e e e e e e e e e e e e e e e 173
Table 9.45: Example Performance Counter Usage of the PerfCnt CPO ReQISIEr.........ccoiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 180
Table 9.46: Performance Counter Control Register Field DeSCrPLioNSoooiiiiiiiiiiiiiiieiee e 181
Table 9.47: Performance Counter Counter Register Field DeSCrPONSoooiuiiiiiiiiiiiieeeee e 183
Table 9.48: ErrorEPC Register Field DESCIIPIIONS........uiiiiiiieiiiiiiiiiie ettt e e e e e e e e e e e 190
Table 9.49: KScratchn Register Field DESCIIPLIONS.ci ittt e e e e e e e e e e e 194
Table A.1: Physical Address Generation from Virtual AQOrESSESuuvuuuuuiiiiiiiiiieie e e eeeee ettt 195
Table A.2: Config Register Field DESCIIPLIONSuiiiiiiiiiee ettt e aaas 199
Table A.3: BAT ENIIY ASSIGNIMENTSuuiiiitiiiiiieesie st e e e e e e e e et et et et e e aeeeae e a s e s e e e e aaaeaaeaeaeaeeeeeaeseaesaseaensnnn e eas 200

10MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter

Abo

1

ut This Book

The MIPS® Architecture For Programmers Volume I11: The MIPS32® and microMIPS32™ Privileged Resource
Architecture comes as part of a multi-volume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volumel-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

e Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* VolumeIV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning

with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture and
microM1PS64™. It is not applicable to the MIPS32® document set nor the microM1PS32™ document set

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture and the

microMIPS32™ Architecture
* Volume IV-e describes the MIPS® DSP Application-Specific Extension to the MIPS® Architecture
* Volume IV-f describes the MIPS® MT Application-Specific Extension to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 ltalic Text

* isused for emphasis

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

11

About This Book

» isusedfor bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S D,
and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructions
inaprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABL E results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

« UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

« UNPREDICTABLE operations must not halt or hang the processor

12 MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

1.2

1.3 Special Symbols in Pseudocode Notation

.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operationa state

1.2.3 UNSTABLE

13 S

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

pecial Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

Xy. 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless
than z, this expression is an empty (zero length) bit string.

+,— 2's complement or floating point arithmetic: addition, subtraction

* X 2's complement or floating point multiplication (both used for either)

div 2's complement integer division

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

13
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison

> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[SRSCltlcgs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR{X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCRI[x] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[X] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Satus register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

14 MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
(I This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a

timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
|abeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-
erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36
physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pyteg,

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

MI1PS64 implementations have a compatibility mode in which the processor referencesthe FPRs asif it were
aMIPS32 implementation. In such acase FP32Register M ode is computed from the FR hit in the Satus reg-
ister. If thisbit isa0, the processor operates as if it had 32 32-bit FPRs. If thisbit isa 1, the processor oper-
ateswith 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jJump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 15

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

16 MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

The MIPS32 and microMIPS32 Privileged Resource
Architecture

2.1 Introduction

The MIPS32 and microM I PS32 Privileged Resource Architecture (PRA) isaset of environments and capabilities on
which the Instruction Set Architectures operate. The effects of some components of the PRA are user-visible, for
instance, the virtual memory layout. Many other components are visible only to the operating system kernel and to
systems programmers. The PRA provides the mechanisms necessary to manage the resources of the CPU: virtual
memory, caches, exceptions and user contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA providesfor up to 4 coprocessors. A coprocessor extends the functionality of the MIPS I1SA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system copro-
cessor and the floating point unit are standard parts of the ISA, and are specified as such in the architecture docu-
ments. Coprocessors are generally optional, with one exception: CPO, the system coprocessor, isrequired. CPO isthe
I SA interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CPO - The System Coprocessor

CPO provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CPO is through various instructions
encoded with the COPO opcode, including the ability to move data to and from the CPO registers, and specific func-
tions that modify CPO state. The CPO registers and the interaction with them make up much of the Privileged
Resource Architecture.

2.2.2 CPO Registers

The CPO registers provide the interface between the ISA and the PRA. The CPO registers are described in Chapter 9.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 17

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

The MIPS32 and microMIPS32 Privileged Resource Architecture

18 MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS32 and microMIPS32 Operating Modes

The MIPS32 and microMIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in
User Mode, the programmer has access to the CPU and FPU registers that are provided by the ISA and to aflat, uni-
form virtual memory address space. When operating in Kernel Mode, the system programmer has access to the full
capabilities of the processor, including the ability to change virtual memory mapping, control the system environ-
ment, and context switch between processes.

In addition, the MIPS PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

In Release 2 of the MIPS32 Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit float-
ing point units) with 32-bit CPUs. As such, certain floating point instructions which were previously enabled by
64-bit operations on a M1PS64 processor are now enabled by a new 64-bit floating point operations enabled. Release

3 (e.0. MIPSr3) introduced the microMIPS instruction set, so all microMIPS processors may implement a 64-bit
floating point unit.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CPO Debug
register isaone. If the processor is running in Debug Mode, it has full accessto all resourcesthat are available to Ker-
nel Mode operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is azero (if the processor imple-
ments Debug Mode), and any of the following three conditionsistrue:

» TheKSU field in the CPO Status register contains 0b00

* TheEXL bitinthe Status register is one

* TheERL bit in the Status register isone

The processor enters Kernel Mode at power-up, or asthe result of an interrupt, exception, or error. The processor

leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are fal se,
usually asthe result of an ERET instruction.

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode isimplemented by the processor) when all of
the following conditions are true:

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 19

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS32 and microMIPS32 Operating Modes

* TheDM bhit in the Debug register isazero (if the processor implements Debug Mode)
e TheKSU field in the Status register contains ObO1

 TheEXL and ERL bitsin the Status register are both zero
3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:
» The DM bhit in the Debug register isazero (if the processor implements Debug Mode)
 TheKSU field in the Status register contains 0b10

 TheEXL and ERL bitsin the Status register are both zero

3.5 Other Modes

3.5.1 64-bit Floating Point Operations Enable

Instructions that are implemented by a 64-bit floating point unit are legal under any of the following conditions:

* Inanimplementation of Release 1 of the Architecture, 64-bit floating point operations are never enabled in a
MIPS32 processor.

* Inanimplementation of Release 2 (and subsequent releases) of the Architecture, 64-bit floating point operations
are enabled if the F64 hit in the FIR register is a one. The processor must also implement the floating point data
type. Release 3 (e.g. MIPSr3) introduced the microMIPS instruction set. So on al microMIPS processors, 64-bit
floating point operations are enabled if the F64 bit in the FIR register isaone.

3.5.2 64-bhit FPR Enable

Accessto 64-bit FPRs s controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted as
32 64-hit registers that may contain any datatype. If the FR bit is zero, the FPRs are interpreted as 32 32-bit registers,
any of which may contain a 32-bit datatype (W, S). In this case, 64-bit data types are contained in even-odd pairs of

registers.

64-bit FPRs are supported in a M1PS64 processor in Release 1 of the Architecture, or in a 64-bit floating point unit,
for both MIPS32 and MIPS64 processors, in Release 2 of the Architecture. 64-bit FPRs are supported for all proces-
sors using Architecture rel eases subsequent to Release 2, including all microMIPS processors.

The operation of the processor is UNPREDICTABL E under the following conditions:

 TheFR bitisazero, 64-bit operations are enabled, and a floating point instruction is executed whose datatypeis
L or PS.

 TheFR hitisazero and an odd register is referenced by an instruction whose datatype is 64-bits

20 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

3.5 Other Modes

3.5.3 Coprocessor 0 Enable

Access to Coprocessor 0 registers are enabled under any of the following conditions:
» Theprocessor isrunning in Kernel Mode or Debug Maode, as defined above
e The CUO hit in the Status register is one.

3.5.4 ISA Mode

Release 3 of the Architecture (e.g. MIPSr3™) introduced a second branch of the instruction set family,
microM1PS32. Devices can implement both | SA branches (MIPS32 and microMIPS32) or only one branch.

The ISA Mode bit is used to denote which | SA branch to use when decoding instructions. This bit isnormally not vis-
ible to software. It's value is saved to any GPR that would be used as a jump target address, such as GPR31 when
written by aJAL instruction or the source register for a JR instruction.

For processors that implement the MIPS32 | SA, the ISA Mode bit value of zero selects MIPS32. For processors that
implement the microMI1PS32 I SA, the ISA Mode bit value of one selects microM1PS32. For processors that imple-

ment the MIPS16e™ ASE, the ISA Mode bit value of one selects MIPS16e. A processor isnot allowed to implement
both MI1PS16e and microMIPS,

Please read Volume |1-B: Introduction to the microM1PS32 Instruction Set, Section 5.3, “1SA Mode Switch” for a
more in-depth description of ISA mode switching between the |SA branches and the ISA Mode bit.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 21

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

MIPS32 and microMIPS32 Operating Modes

22 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 4

Virtual Memory

4.1 Differences between Releases of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4K B, with optional support for pages as large as
256MB. In Release 2 of the Architecture (and subsequent releases), optional support for 1KB pages was added for
use in specific embedded applications that require access to pages smaller than 4KB. Such usage is expected to bein
conjunction with adefault page size of 4KB and is not intended or suggested to replace the default 4KB page size but,
rather, to augment it.

Support for 1KB pages involves the following changes:

» Addition of the PageGrain register. Thisregister is also used by the SmartMIPS™ A SE specification, but bits
used by Release 2 of the Architecture and the SmartMIPS A SE specification do not overlap.

* Moaodification of the EntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).
* Moaodification of the PageMask register to enable writes to, and use of, bits 12..11 (MaskX).

* Maodification of the EntryLoO and EntryLo1 registers to shift the PFN field to the |eft by 2 bits, when 1KB page
support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3gp bit and enabled by the PageGrainggp bit.
4.1.2 Protection of Virtual Memory Pages

In Release 3 of the Architecture, e.g. MIPSr3, two optional control bits are added to each TLB entry. These bits, RI
(Read Inhibit) and XI (Execute Inhibit), allows more types of protection to be used for virtual pages - including
write-only pages, non-executable pages.

Thisfeature originated in the SmartM1PS A SE but has been modified from the original SmartM1PS definition. For the
Release 3 version of thisfeature, each of the Rl and X1 bits can be separately implemented. For the Release 3 version
of thisfeature, new exception codes are used when a TLB access does not obey the RI/XI bits.

4.1.3 Context Register

In Release 3 of the Architecture, e.g. MIPSr3, the Context register is aread/write register containing a address pointer
that can point to an arbitrary power-of-two aligned data structure in memory, such as an entry in the page table entry
(PTE) array. In Releases 1 & 2, this pointer was defined to reference a fixed-sized 16-byte structure in memory within
alinear array containing an entry for each even/odd virtual page pair. The Release 3 version of the Context register
can be used far more generally.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 23

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

This feature originated in the SmartMIPS ASE. This featureis optional in the Release 3 version of the base architec-
ture.

4.2 Terminology

4.2.1 Address Space

An Address Space is the range of all possible addresses that can be generated. There is one 32-bit Address Spacein
the MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. Segments
are either 229 or 231 bytesin size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2ABITS = 236 pytes, The format of the

EntryLoO and EntryLo1 registersimplicitly limits the physical address sizeto 2%6 bytes. Software may determine the
value of PABITS by writing all onesto the EntryLoO or EntryLol registers and reading the value back. Bitsread as
“1” from the PFN field allow software to determine the boundary between the PFN and O fields to calcul ate the value
of PABITS.

24 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.3 Virtual Address Spaces

4.3 Virtual Address Spaces

The MIPS32/microMIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

Figure 4-1 Virtual Address Space

OxXFFFF FFFF

kseg3 Kernel Mapped

0xE00O0 0000
OxDFFF FFFF

ksseg Supervisor Mapped

0xCO000 0000
OxBFFF FFFF

ksegl Kernel Unmapped Uncached

0xA000 0000
Ox9FFF FFFF

kseg0 Kernel Unmapped

0x8000 0000
Ox7FFF FFFF

useg User Mapped

0x0000 0000

Each Segment of an Address Space is classified as“Mapped” or “Unmapped”. A “Mapped” addressis onethat is
translated through the TLB or other address trandation unit. An “Unmapped” addressis one which is not translated
through the TLB and which provides awindow into the lowest portion of the physical address space, starting at phys-
ical address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the ksegl Segment is classified as “Uncached”. References to this Segment bypass al levels of the
cache hierarchy and allow direct access to memory without any interference from the caches.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 25

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

Table 4.1 liststhe same information in tabular form. Each Segment of an Address Space is associated with one of the

Table 4.1 Virtual Memory Address Spaces

Reference Actual
Segment Associated Legal from Segment
VA31. 29 Name(s) Address Range | with Mode Mode(s) Size
Ob111 kseg3 0xFFFF FFFF Kernel Kernel 229 bytes
through
0xE000 0000
0b110 sseg OxXDFFF FFFF Supervisor Supervisor 229 pytes
ksseg through Kernel
0xC000 0000
Ob101 ksegl 0xBFFF FFFF Kernel Kernel 229 bytes
through
0xA000 0000
0b100 kseg0 0x9FFF FFFF Kernel Kernel 229 bytes
through
0x8000 0000
Ob0Oxx useg 0x7FFF FFFF User User 231 bytes
suseg through Supervisor
kuseg 0x0000 0000 Kernel

three processor operating modes (User, Supervisor, or Kernel). A Segment that is associated with a particular modeis
accessibleif the processor isrunning in that or amore privileged mode. For example, a Segment associated with User
Mode is accessible when the processor is running in User, Supervisor, or Kernel Modes. A Segment is not accessible
if the processor isrunning in aless privileged mode than that associated with the Segment. For example, a Segment
associated with Supervisor Mode is not accessible when the processor is running in User Mode and such a reference
resultsin an Address Error Exception. The “Reference Legal from Mode(s)” column in Table 4-2 lists the modes
from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam-
ple, the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refer-
ence to the same Segment from kernel mode.

26 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.4 Compliance

Figure 4-6 shows the Address Space as seen when the processor is operating in each of the operating modes.

Figure 4-2 References as a Function of Operating Mode

User Mode References

Supervisor Mode References

Kernel Mode References

O0XFFFF FFFF OXFFFF FFFF OXFFFF FFFF
Address Error kseg3 Kernel Mapped
0xE000 0000 0xE000 0000
O0XDFFF FFFF 0xDFFF FFFF
Supervisor . Supervisor
sseg Mapped sseg Mapped
Address Error 0xC000 0000 0xC000 0000
0xBFFF FFFF 0xBFFF FFFF
Kernel
ksegl Unmapped
0xA000 0000 Uncached
X
Address Error 0%X9FFF FFFF
i 0 Kernel
seg Unmapped
0x8000 0000 0x8000 0000 0x8000 0000
0x7FFF FFFF 0x7FFF FFFF 0x7FFF FFFF
suseg User Mapped suseg User Mapped kuseg User Mapped
0x0000 0000 0x0000 0000 0x0000 0000

4.4 Compliance

A MIPS32/microMIPS32 compliant processor must implement the following Segments:

e useg/kuseg
* ksegO
* ksegl

In addition, a M1PS32/microM1PS32 compliant processor using the TL B-based address translation mechanism must
also implement the kseg3 Segment.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 27

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

4.5 Access Control as a Function of Address and Operating Mode

Table 4.2 enumerates the action taken by the processor for each section of the 32-bit Address Space as afunction of
the operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior isalso listed

for each reference.

Table 4.2 Address Space Access as a Function of Operating Mode

Action when Referenced from Operating Mode
Segment Supervisor
Virtual Address Range | Name(s) User Mode Mode Kernel Mode
OxFFFF FFFF kseg3 Address Error Address Error Mapped
through See Section 4.8 for specia
behavior when Debugpy = 1
0xE000 0000
0xDFFF FFFF sseg Address Error Mapped Mapped
ksseg
through
0xC000 0000
0xBFFF FFFF ksegl Address Error Address Error Unmapped, Uncached
through See Section 4.6
0xA000 0000
0x9FFF FFFF kseg0 Address Error Address Error Unmapped
through See Section 4.6
0x8000 0000
0x7FFF FFFF useg Mapped Mapped Unmapped if Statusgg =1
suseg
through kuseg See Section 4.7
0x0000 0000 Mapped if Statusggr, =0

4.6 Address Translation and Cacheability & Coherency Attributes for the
kseg0 and ksegl Segments

The kseg0 and ksegl Unmapped Segments provide awindow into the least significant 229 bytes of physical memory,
and, as such, are not transated using the TLB or other address translation unit. The cacheability and coherency
attribute of the kseg0 Segment is supplied by the KO field of the CPO Config register. The cacheability and coherency

28 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.7 Address Translation for the kuseg Segment when Statusgg, =1

attribute for the ksegl Segment is aways Uncached. Table 4.3 describes how this transformation is done, and the
source of the cacheability and coherency attributes for each Segment.

Table 4.3 Address Translation and Cacheability and Coherency Attributes for the kseg0 and
ksegl Segments

Generates Physical
Segment Name Virtual Address Range Address Cache Attribute
ksegl 0xBFFF FFFF 0x1FFF FFFF Uncached
through through
0xA000 0000 0x0000 0000
ksegO 0x9FFF FFFF 0x1FFF FFFF From KO field of Config
Register
through through
0x8000 0000 0x0000 0000

4.7 Address Translation for the kuseg Segment when Statusgg =1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar
to the ksegl Segment, if the ERL bit is set in the Status register. This allows the cache error exception code to oper-
ate uncached using GPR RO as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when Debugpy =1

If EJTAG isimplemented on the processor, the EJTAG block must treat the virtual addressrange 0xFF20 0000
through 0xFF3F FFFF, inclusive, asaspecial memory-mapped region in Debug Mode. A MIPS32/microM1PS32
compliant implementation that also implements EJTAG must:

» explicitly range check the address range as given and not assume that the entire region between 0xFF20 0000
and OxFFFF FFFF isincluded in the special memory-mapped region.

* not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for detailson
this mapping.

4.9 TLB-Based Virtual Address Translation?!

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

1 RefertoA.1 “Fixed Mapping MMU” on page 195 and A.2 “Block Address Translation” on page 199 for descriptions of
alternative MMU organizations

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 29

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

4.9.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space | dentifiers to uniquely identify the same virtua
address across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
the ASID when doing address translation. In certain circumstances, the operating system may wish to associate the
same virtual address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the
ASID comparison during translation.

4.9.2 TLB Organization

The TLB isafully-associative structure which is used to trandlate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the virtual
page number (VPN2 and, in Release 2 and subsequent releases, VPN X) (actually, the virtual page number/2 since
each entry maps two physical pages) of the entry, the ASID, the G(lobal) bit and a recommended mask field which
provides the ability to map different page sizes with asingle entry. The physical translation section contains a pair of
entries, each of which contains the physical page frame number (PFN), avalid (V) bit, adirty (D) bit, optionally
read-inhibit and execute-inhibit (Rl & XI) bits and a cache coherency field (C), whose valid encodings are given in
Table 9.9. There are two entriesin the translation section for each TLB entry because each TLB entry maps an
aligned pair of virtual pages and the pair of physical tranglation entries corresponds to the even and odd pages of the
pair.

In Revision 3 of the architecture, the Rl and X1 bits were added to the TLB to enable more secure access of memory
pages. These hits (along with the Dirty bit) allow the implementation of read-only, write-only, no-execute access pol-
icies for mapped pages.

Figure 4.3 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1KB page sizes. Light grey fields denote extensions to the right that are required to support 1KB
page sizes. This extension is not present in an implementation of Release 1 of the Architecture.

Figure 4.3 Contents of a TLB Entry

Mask M askx

R VPN2 VPN2X G ASID

5% PFNO co (RN Do Vo
0 PAN1 c1 UYL D1 V1

Fields marked with this color are optional Release 2 features required to support 1KB pages

w Fields marked with this color are optional Release 3 features added for additional security.

% Fields marked with this color are optional Release 2 features required to support larger physical addresses

Thefields of the TLB entry correspond exactly to the fields in the CPO PageMask, EntryHi, EntryLo0O and
EntryLol registers. The even page entriesin the TLB (e.g., PFNO) come from EntryLo0. Similarly, odd page entries
come from EntryLo1l.

30MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches and signal this via a machine check assumption, software must be prepared to handle
such an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or aTLB read (TLB accessor TLBR or TLBP instructions). In Release
2 of the Architecture (and subsequent releases), processor implentations are limited to reporting multiple TLB
matches only on TLB write, and thisis also true of most implementations of Release 1 of the Architecture.

The following code example shows a TLB initialization routine which, on implementations of Release 2 of the Archi-
tecture (and subsequent releases), eliminates the possibility of reporting a machine check during TLB initialization.
This example has equivalent effect on implementations of Release 1 of the Architecture which report multiple TLB
exceptions only on a TLB write, and minimizes the probability of such an exception occuring on other implementa
tions.

/
InitTLB

Initialize the TLB to a power-up state, guaranteeing that all entries
are unique and invalid.

Arguments:
a0 = Maximum TLB index (from MMUSize field of CO_Configl)

Returns:
No wvalue

Restrictions:
This routine must be called in unmapped space

Algorithm:
va = kseg0O_base;
for (entry = max_TLB_index; entry >= 0, entry--) {

while (TLB_Probe_ Hit (va)) {
va += Page_Size;

}

TLB_Write(entry, va, 0, 0, 0);

R S T S S S S S S S S S T S S S S S S T S T T T

Notes:

- The Hazard macros used in the code below expand to the appropriate
number of SSNOPs in an implementation of Release 1 of the
Architecture, and to an ehb in an implementation of Release 2 of
the Architecture. See , “CPO Hazards,” on page 79 for
more additional information.

/
InitTLB:

/*

* Clear PageMask, EntryLoO and EntryLol so that valid bits are off, PFN values
* are zero, and the default page size is used.

*/

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 31

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

mtcO zero, CO_EntryLo0 /* Clear out PFN and valid bits */
mtcO zero, CO_EntryLol
mtcO zero, CO_PageMask /* Clear out mask register *

/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A_KOBASE /* A_KOBASE == 0x8000.0000 */

/*

* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine

* check, so just increment the VA candidate by one page and try again.

*/

10:
mtcO t0, CO_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfcO tl, CO_Index /* Read back flag to check for match */
bgez tl, 10b /* Branch if about to duplicate an entry */
addiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*

* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)

*/
mtcO a0, CO_Index /* Use this as next TLB index */
TLBW _Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index
/*

* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtcO zero, CO_Index

mtc0 zero, CO_EntryHi

jr ra /* Return to caller */

nop

4.9.4 Address Translation

Release 2 of the Architecture introduced support for 1KB pages. For clarity in the discussion below, the following
terms should be taken in the general sense to include the new Release 2 features:

Term Used Below Release 2 Substitution Comment

VPN2 VPN2 || VPN2X Release 2 (and subseguent releases) implementa-
tions that support 1KB pages concatenate the
VPN2 and VPN2X fields to form the virtua page
number for a 1KB page

Mask Mask || MaskX Release 2 (and subsequent releases) implementa-
tions that support 1KB pages concatenate the
Mask and MaskX fieldsto form the don’t care
mask for 1KB pages

32MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

When an address trandlation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

* Thecurrent process ASID (as obtained from the EntryHi register) matchesthe ASID field in the TLB entry, or
the G bit isset in the TLB entry.

» Theappropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bitsis determined by the Mask fields in each entry by ignoring each bit
in the virtual page number and the TLB VPNZ2 field corresponding to those bits that are set in the Mask fields.
This allows each entry of the TLB to support a different page size, as determined by the PageMask register at
the time that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB
operation is as if the PageMask register was written with the encoding for a 4KB page.

If aTLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits (and optionally RI
and XI bits) are read from the trandlation section of the TLB entry. Which of the two PFN entriesisread isafunction
of the virtual address bit immediately to the right of the section masked with the Mask entry.

Thevalid and dirty bits (and optionally Rl and XI bits) determine the final success of the trangdlation. If the valid bit is
off, the entry isnot valid and a TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a
TLB Modified exception israised. If thereis an address match with avalid entry and no dirty exception, the PFN and
the cache coherency bits are appended to the offset-within-page bits of the address to form the final physical address
with attributes. If the RI bit isimplemented and is set and the reference was aload, a TLB Invalid (or TLBRI) excep-
tionisraised. If the X1 bit isimplemented and is set and the reference was an instruction fetch, a TLB invalid (or
TLBXI) exception is raised.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. Oneused by animplementation of Release 1 of the Architecture, or an implementation of Release 2 (and subse-
quent releases) of the Architecture which does not include 1KB page support (as denoted by Config3gp). This

instanceis called the “4KB TLB Lookup”.

2. Oneused by an implementation of Release 2 (and subsequent releases) of the Architecture which does include
1K B page support. Thisinstanceis caled the “1KB TLB Lookup”.

The 4KB TLB Lookup pseudo code is as follows:

found < 0
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilyagk)) = (vaszq 13 and not (TLB[ilysek))) and
(TLB[ilg or (TLBI[ilagrp = EntryHi,grp)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’'t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i]yssk
0b0000 0000 0000 0000: EvenOddBit
0b0000 0000 0000 0011: EvenOddBit
0b0000 0000 0000 1llxx: EvenOddBit
0b0000 0000 0011 xxxx: EvenOddBit
0b0000 0000 1lxx xxxx: EvenOddBit
0b0000 0011 xxxx xxxx: EvenOddBit
0b0000 11lxx xxxX XXXX: EvenOddBit
0b0011 xxxx XXXX XXXX: EvenOddBit

12 /* 4KB page */
14 /* 16KB page */
16 /* 64KB page */
18 /* 256KB page */
20 /* 1MB page */
22 /* 4MB page */
24 /* 16MB page */
26 /* 64MB page */

TTTTTTTY

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 33

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

0bllxx xXxXxXX XXXX XXXX: EvenOddBit <« 28 /* 256MB page */

otherwise: UNDEFINED
endcase
if VagyenoddBit =~ 0 then

pfn < TLB[1]pyg
v < TLB[ilyg
c « TLBI[il¢g
d <« TLB[ilpg
if (Config3gyy or Config3gy) then
ri « TLB[ilgrg
xi ¢ TLB[ilxrg
endif
else
pfn < TLB[i]pmm
v ¢ TLB[ily
c « TLB[ilg
d « TLB[ilp;
if (Config3gyy or Config3gy) then
ri ¢ TLB[ilgry
xi ¢« TLB[ilxr1
endif
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (Config3gyy or Config3gy) then
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))
PC relative loads are allowed where execute is allowed
else
if (PageGrainige = 0)
SignalException (TLBInvalid, reftype)

else
SignalException (TLBRI, reftype)
endif
endif
endif
if (xi = 1) and (reftype = fetch) then
if (PageGrainigc = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBXI, reftype)
endif
endif
endif

if (d = 0) and (reftype = store) then
SignalException (TLBModified)
endif
pfnpaprrs-1-12..0 corresponds to Papaprrs-1..12
pa < PiNpaprng-1-12. Evenodasit-12 || Vamvenoddmit-1..0
found « 1
break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

34 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

The 1KB TLB Lookup pseudo codeis as follows:

found « 0
for i in 0...TLBEntries-1

if ((TLB[ilypyy and not (TLB[ilyask)) = (vazp, 13 and not (TLB[ilysgk))) and
(TLB[i]lg or (TLB[ilagrp = EntryHingqrp)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[1ilyask

#
#
#
#
#
#

0b0000 0000 0000 0000 00: EvenOddBit « 10 /* 1KB page */
0b0000 0000 0000 0000 11: EvenOddBit « 12 /* 4KB page */
0b0000 0000 0000 0011 xx: EvenOddBit « 14 /* 16KB page */
0b0000 0000 0000 1lxx xx: EvenOddBit « 16 /* 64KB page */
0b0000 0000 0011 xxxx xX: EvenOddBit ¢« 18 /* 256KB page */
0b0000 0000 1lxx xxxx XX: EvenOddBit ¢« 20 /* 1MB page */
0b0000 0011 xxxx XXXX XX: EvenOddBit ¢« 22 /* 4MB page */
0b0000 1lxx xxxx XXxX Xxx: EvenOddBit « 24 /* 16MB page */
0b0011 xxxx XXXX XXXX xx: EvenOddBit « 26 /* 64MB page */
0bllxx XXXX XXXX XXXX xx: EvenOddBit « 28 /* 256MB page */
otherwise: UNDEFINED

endcase

if Vagyenoaasit = 0 then

pfn <« TLBI[i]pmyo
v « TLB[ilyg
c « TLB[ilgg
d < TLB[ilpg
if (Config3gyxy or Config3gy) then
ri « TLB[ilgrg
xi « TLB[ilg
endif
else
pfn < TLB[i]pgy1
v « TLB[ilyy
c ¢« TLB[ilq
d « TLB[ilp;
if (Config3gyy or Config3gy) then
ri « TLB[ilgqy
xi « TLB[ilyq;
endif
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (Config3gyy or Config3gy) then
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))
PC relative loads are allowed where execute is allowed

else
if (PageGrainigc = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBRI, reftype)
endif
endif

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 35

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Virtual Memory

endif
if (xi = 1) and (reftype = fetch) then
if (PageGrainig. = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBXI, reftype)
endif
endif
endif

if (d = 0) and (reftype = store) then
SignalException (TLBModified)
endif
pPfnpaprrs-1-10..0 corresponds to Papaprrs-1..10
pa < PiNpaprns-1-10. . Evenodasit-10 || Vagvenoddsit-1..0
found « 1
break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

Table 4.4 demonstrates how the physical addressis generated as a function of the page size of the TLB entry that
matches the virtual address. The“Even/Odd Select” column of Table 4.4 indicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryL o) entry in the matching TLB entry. The “PApag Ts.1)..0 Gener-
ated From” columns specify how the physical addressis generated from the selected PFN and the offset-in-page bits
in the virtual address. In this column, PFN isthe physical page number asloaded into the TLB from the EntryLoO or
EntryLol registers, and has one of two bit ranges:

PFN Range PA Range Comment
PFN(PABITS 1)-12.0 PApaRITS 1..12 Release 1 implementation, or Release 2 (and sub-
sequent rel eases) implementation without support
for 1KB pages
PFN(PAB|TS-1)—10..O PApABITS1..10 Release 2 (and subsequent rel eases) implementa-

tion with support for 1KB pages enabled

Table 4.4 Physical Address Generation

PA(PABITS-1).0 Generated From:
1KB Page Support Unavailable
(Release 1) or
Even/Odd Disabled (Release 2 & Release 2 (and subsequent)

Page Size Select subsequent) with 1KB Page Support Enabled
1K Bytes VAo Not Applicable PFN(pAB”Sl)_lO“O || VAg o

4K Bytes VA PFNPaBITS 1)-12.0 | VA11.0 PFNPaBITS 1)-10.2 || VA11.0
16K Bytes VA4 PFNPaBITS 1)-12.2 || VA13.0 PFN(PaBITS 1)-10.4 || VA13.0
64K Bytes VAss PFNPaBITS 1)-12.4 || VA15.0 PFN(PaBITS 1)-10.6 || VA15.0

36 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

Table 4.4 Physical Address Generation

PA(paBITS-1)..0 Generated From:

1KB Page Support Unavailable

(Release 1) or

Even/Odd Disabled (Release 2 & Release 2 (and subsequent)
Page Size Select subsequent) with 1KB Page Support Enabled
256K Bytes VA1g PFN(pagITS 1)-12.6 || VA17.0 PFN(paBITS 1)-10.8 || VA17.0
1M Bytes VA2 PFNPaBITS 1)-12.8 || VA19.0 PEN(PaBITS 1)-10.10 | VA19.0
4M Bytes VA2 PFNPaBITS 1)-12.10 | VA21.0 PFN(PaBITS 1)-10.12 | VA21.0
16M Bytes VA24 PFN(pagITS 1)-12.12 || VA23.0 PFN(paBITS 1)-10.14 || VA23.0
64MBytes VAzs PFN(paBITS 1)-12.14 || VA25.0 PFN(paBITS 1)-10.16 || VA25.0
256MBytes VAg PFNPaITS 1)-12.16 || VA27.0 PFN(PaBITS 1)-10.18 [| VA27.0

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

37

Virtual Memory

38 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 5

Common Device Memory Map

MIPS processors may include memory-mapped 10 devices that are packaged as part of the CPU. An exampleisthe
Fast Debug Channel, which isa UART-like communication device that uses the EJTAG probe pinsto move datato the
external world.

The Common Device Memory Map (CDMM) isaregion of physical address space that is reserved for mapping 1O
device configuration registers within a MIPS processor. The CDMM helps aggregate various device mappings into
one area, preventing fragmentation of the memory address space. It also enables the use of access control and mem-
ory address translation mechanisms for these device registers. The CDMM occupies a maximum of 32KB in the
physical address map.

The CMDMM is an optional feature of the architecture. Software detectsif CDMM isimplemented by reading the
Config3cpmm register field (bit 3).

Two blocks are defined for the CDMM -
« CDMMBase - A new Coprocessor 0 register that sets the base physical address of the CDMM

« CDMM Access Control and Device Register Block - The 32KB CDMM region is divided into smaller 64-byte
aligned blocks called ‘ Device Register Blocks' (DRBS). Each block has access control and status information in
access control and status registers (ACSRs), followed by 1O device registers.

For implementations that have multiple V PEs, the 10 devices and their ACSRs are instantiated once per VPE, but the
CDMMBase register is shared among the VPEs.

Implementations are not required to maintain cache coherence for the CDMM region. For that reason, the memory
mapped registers located within this region must be accessed only using uncached memory transactions. Accessing
these register using a cacheable CCA may result in UNPREDICTABLE behavior.

Each of these blocks are now described in detail .
5.1 CDMMBase Register

The physical base address for the CDMM facility is defined by a coprocessor O register called CDMMBase, (CPO
register 15, select 2). This address must be aligned to a 32KB boundary.

On a 32-hit core with a TLB-based MMU, this region would most likely be mapped to the lower 512MB of physical
memory, alowing kernel-mode unmapped, uncached access via ksegl. User-mode access could be allowed through a
TLB mapping using an uncached coherency.

On coresthat usea FMT MMU, the region would most likely be mapped to the lower 512MB and made accessible
viakernel mode. Alternatively, if user-mode accessis alowed, this region could be mapped to correspond to the
kuseg physical address segment.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 39

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Common Device Memory Map

On coresthat use a BAT MMU, if only kernel mode accessis alowed, the region would be mapped to a physical
address region reachable through ksegl or kseg2/3 (using uncached coherency). If user mode accessis allowed, the
useg BAT entry must use an uncached coherency.

Please refer to Section 9.28 on page 146 for the description of the CDMMBase register.
5.2 CDMM - Access Control and Device Register Blocks

The CDMM isdivided into 64-byte aligned segments named ‘ Device Register Blocks' (DRBSs), Each device occupies
at least one DRB. If adevice needs additional address space, it can occupy multiple contiguous 64-byte blocks, eg.
multiple DRBs which are adjacent in the physical address map. For each device, device type identification and access
control information islocated in the DRB allocated for the device with the lowest physical address.

Access control information is specified via ‘Access Control and Status Registers (ACSRs) that are found at the start

of the DRB allocated for the device with the lowest physical address. The ACSR for a device holds the size of the |O

device, and hence also act as a pointer to the start of the next deviceand its' ACSR. ACSRs are only accessiblein ker-
nel mode. The ACSR isfollowed by the data/control registers for the 10 device. Figure 5.1 shows the organization of

the CDMM.

Reading any of the 10 device registersin either usermode or supervisor mode when such accesses are not allowed,
resultsin all zeros being returned. Writing any of the O device registersin either usermode or supervisor mode when
such accesses are not allowed, results in the write being ignored and the register not being modified. Reading any of
the ACSR registers while not in kernel mode resultsin all zeros being returned. Writing any of the ACSR registers
while not in kernel mode results in the write being ignored and the ACSR not being modified.

Since the ACSR act as apointer that can only increment, the devices must be allocated in the memory space in a spe-
cific manner. The first device must be located at the address pointed by the CDMM Base register and any subsequent
deviceis allocated in the next available adjacent DRB.

If the Cl bit is set in the COMMBASE register, the first DRB of the CDMM (at offset 0x0 from the CDMMBase) is
reserved for implementation specific use.

40 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

5.2 CDMM - Access Control and Device Register Blocks

Figure 5.1 Example Organization of the CDMM

r—— - - — — — .
Device 4 Regist
1 DRB= 64 Bytas{ eiced RIS |

ACSR for Device 4

. 1 DRB= 64 Bytes Device 3 Registers
Increasing
ess

Physical Addr

1 DRB= 64 Bytes

Device 3 Registers
1 DRB= 64 Bytes

ACSR for Device 3

Device 2 Registers
1 DRB= 64 Bytes

ACSR for Device 2

1 DRB= 64 Bytes | Device 1 Registers

/_/\ﬁ/_/\ﬁ
|
|
|
|
|
|
|

Device 1 Registers
1 DRB= 64 Bytes

ACSR for Device 1

Device O Registers
1 DRB= 64 Bytes

CDMMBase/

5.2.1 Access Control and Status Registers

ACSR for Device 0

Thefirst DRB of adevice has 8 bytes of access control address space allocated to it. These 8 bytes can be considered
to be two 32-bit registers (on a 32-hit or 64-bit core), or asingle 64-bit register (on a 64-bit core). In revision 1.00 of
the CDMM, only the lower 32-bits hold access control and status information. The control/status register can be
accessed in kernel mode only. Reading this register while not in kernel mode resultsin all zeros being returned. Writ-
ing this register while not in kernel mode results in the write being ignored and the register not being modified.

Figure 5.2 has the format of an Access Control and Status register (shown as a 64-bit register), and Table 5.1
describes the register fields.

Figure 5.2 Access Control and Status Register

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0
0 DevType | 0 | DevSize DevRev 0 | Uw | ur | S/v| Sr |

Table 5.1 Access Control and Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
DevType 31:24 Thisfield specifies the type of device. A non-zero value R Preset Required

indicates the type of device. A zero value indicates the
absence of adevice.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 11

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Common Device Memory Map

Table 5.1 Access Control and Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
DevSize 21:16 Thisfield specifies the number of extra 64-byte blocks R Preset Required

allocated to this device. A value of 0 indicates that only
one 64-byte block is allocated. This also determines the
location of the next device block. A deviceislimited to
4KB of memory.

DevRev 15:12 Thisfield specifies the revision of device. Thisfieldis R Preset Required
combined with the DevType field to denote the specific
device revision.

Uw 3 Thisbit indicates if user-mode write access to this device R/W 0 Required
isenabled. A value of 1 indicatesthat accessisenabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled isignored.

Ur 2 Thisbit indicatesif user-mode read accessto thisdeviceis R/W 0 Required
enabled. A value of 1 indicates that accessis enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled isignored.

Sw 1 Thisbit indicates if supervisor-mode write access to this R/W 0 Required
deviceisenabled. A value of 1 indicates that accessis
enabled. A value of O indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled isignored.

Sr 0 This bit indicates if supervisor-mode read accessto this R/W 0 Required
device is enabled. A value of 1 indicates that accessis
enabled. A value of 0 indicates that accessis disabled. An
attempt to read from the device while in supervisor mode
with access disabled isignored.

0 63:32, 11:4 | Reserved for future use. Ignored on write; returns zero on R 0 Required
read.

42 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 6

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and I nterrupts:

» The addition of the Coprocessor 0 EBase register, which allows the exception vector base address to be modi-
fied for exceptions that occur when Statusgg,, equals 0. The EBase register is required.

» Theextension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

» Vectored Interrupt (V1) mode, in which the various sources of interrupts are prioritized by the processor and
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers, intro-
duced in the next chapter, this mode significantly reduces the number of cycles required to process an inter-
rupt.

» Externa Interrupt Controller (EIC) mode, in which the definition of the coprocessor O register fields associ-
ated with interrupts changes to support an external interrupt controller. This can support many more priori-
tized interrupts, while still providing the ability to vector an interrupt directly to adedicated handler and take
advantage of the GPR shadow registers.

» Theahility to stop the Count register for highly power-sensitive applications in which the Count register is not
used, or for reduced power mode. This changeis required.

e Theaddition of the DI and El instructions which provide the ability to atomically disable or enable interrupts.
Both instructions are required.

» Theaddition of the Tl and PCI bitsin the Cause register to denote pending timer and performance counter inter-
rupts. This change isrequired.

» Theaddition of an execution hazard sequence which can be used to clear hazards introduced when software
writes to a coprocessor O register which affects the interrupt system state.

6.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two spe-
cial-purpose interrupts: timer and performance counter. The timer and performance counter interrupts were combined
with hardware interrupt 5 in an implementation-dependent manner. I nterrupts were handled either through the general
exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of Causg,y,. Software was

required to prioritize interrupts as a function of the Causep bitsin the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that sup-
ports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external inter-
rupt controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NM1) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor isit controlled by the processor interrupt system.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 43

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Aninterrupt is only taken when all of the following are true:

* A specific request for interrupt service is made, as afunction of the interrupt mode, described bel ow.

e ThelE bitinthe Status register isaone.

* TheDM bitinthe Debug register is a zero (for processors implementing EJTAG)

e TheEXL and ERL bitsin the Status register are both zero.

Logically, the request for interrupt serviceis ANDed with the | E bit of the Status register. The final interrupt request
isthen asserted only if both the EXL and ERL bitsin the Status register are zero, and the DM bit in the Debug regis-
ter is zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

6.1.1 Interrupt Modes
An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

* Interrupt compatibility mode, which actsidentically to that in an implementation of Release 1 of the Architec-
ture. Thismode is required.

» Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. This modeis optional and its

presence is denoted by the Vint bit in the Config3 register.

» External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. Thismode is
optional and its presence is denoted by the VEIC bit in the Config3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and
may optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selec-
tively in the implementation of the processor, or they may always be implemented and be dynamically enabled based
on coprocessor O control bits. The reset state of the processor isto interrupt compatibility mode such that an imple-
mentation of Release 2 of the Architectureis fully compatible with implementations of Release 1 of the Architecture.

Table 6.1 shows the current interrupt mode of the processor as a function of the coprocessor O register fields that can
affect the mode.

Table 6.1 Interrupt Modes

IntCtlyg
Config3ynT
Config3ygic

StatUSBEV
Causepy

Interrupt Mode

Compatibility

=
x
x
x
x

x| 0| x | x| x | Compatibility

X | x | =0 | x [x | Compatibility

0|1]|+0]| 1| 0| Vectored Interrupt

44 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.1 Interrupts

Table 6.1 Interrupt Modes

StatUSBEV
Causepy
IntCtlyg

Interrupt Mode

Config3ynT
Config3ygic

Externa Interrupt Controller

o

=

&
<
=

Not Allowed - IntCtly, g is zero if neither Vectored Inter-
rupt nor External Interrupt Controller mode are imple-
mented.

o
=
&
o
o

“X" denotes don’t care

6.1.1.1 Interrupt Compatibility Mode

Thisisthe only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor.
Thismode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though
exception vector offset 0x180 (if Cause;y, = 0) or vector offset 0x200 (if Causey, = 1). Thismodeisin effect if any of

the following conditions are true:
» Causgy =0

* Statusgpy =1

IntCtly,5 = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible viathe IP field in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler
must be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt

service is generated as shown in Table 6.2.

Table 6.2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Interrupt Request
Interrupt Type Source Calculated From
Hardware I nterrupt, Timer Interrupt, or Perfor- HWS5 Cause p; and Status;y;7
mance Counter Interrupt
Hardware Interrupt HW4 Causepg and Status)yg
HW3 Causg ps and Status)y 5
HW2 Cause pg and Status;pa
HW1 Causg pz and Status)y 3
HWO Causep, and Status;p 2
Software Interrupt SW1i Cause p; and Status;p g
SWO0 Causg pg and Status;y o

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12 45
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

A typical software handler for interrupt compatibility mode might look as follows:

/*

* Assumptions:

* - Causeqy = 1 (if it were zero, the interrupt exception would have to

* be isolated from the general exception vector before getting
* here)

* - GPRs k0 and kl are available (no shadow register switches invoked in

* compatibility mode)

* - The software priority is IP7..IP0 (HW5..HWO, SwWl..SwO0)

* Location: Offset 0x200 from exception base

*/

IVexception:
mfcO k0, CO_Cause /* Read Cause register for IP bits */
mfcO k1, CO_Status /* and Status register for IM bits */
andi k0, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, kO, k1 /* and mask with IM bits */
beqg k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IP0; kO = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
sll k0, kO, Vs /* Shift to emulate software IntCtlyg */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, kO, k1 /* Compute target from base and offset */
jr kO /* Jump to specific exception routine */
nop

/*

*

Each interrupt processing routine processes a specific interrupt, analogous

to those reached in VI or EIC interrupt mode. Since each processing routine

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the
interrupt may be processed in one of two ways:

* % ok ok

*

*

*

* - Completely at interrupt level (e.g., a simply UART interrupt). The

* SimpleInterrupt routine below is an example of this type.

* - By saving sufficient state and re-enabling other interrupts. In this

* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single

* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/

SimpleInterrupt:

/*

* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor 0 state is such that an ERET
* will simply return to the interrupted code.
*/

eret /* Return to interrupted code */

NestedException:
/*

46 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.1 Interrupts

Nested exceptions typically require saving the EPC and Status registers,
any GPRs that may be modified by the nested exception routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/

* % %

*

/* Save GPRs here, and setup software context */

mfcO k0, CO_EPC /* Get restart address */

sw k0, EPCSave /* Save in memory */

mfc0 k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, kO, k1 /* Clear bits in copy of Status */

ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */

mtcO k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCsave /* and EPC */
mtc0 k0O, CO_Status /* Restore the original value */
mtc0 k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.1.1.2 Vectored Interrupt Mode
Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrupt
modeisin effect if all of the following conditions are true:

» Config3y =1

d Conﬁg3\/E|C =0

i |ntCtlvs?5 0

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 47

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

+ Causgy =1

i StatUSBEV =0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in an implementati on-dependent way with the hardware interrupts
(with the interrupt with which they are combined indicated by IntCtl,pr; and IntCtl| pp, respectively) to provide the
appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic
ANDs each of the Cause p bits with the corresponding Statusy, bits. If any of these valuesis 1, and if interrupts are

enabled (Statusg = 1, Statusgy = 0, and Statusgr = 0), an interrupt is signaled and a priority encoder scans the val-

ues in the order shown in Table 6.3.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority | Hardware HWS5 Causep; and Status;y;7 7
HW4 Cause pg and Status) g 6
HW3 Causg ps and Status) s 5
HW2 Cause pg and Status)pa 4
HW1 Cause pz and Status) 3 3
HWO Cause pp and Status;y» 2
Software Swi Causg p; and Status;yj, 1
Lowest Priority SWO0 Cause pg and Status;yio 0

The priority order places arelative priority on each hardware interrupt and places the software interrupts at a priority
lower than al hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. Thisis

shown pictorially in Figure 6-1.

48 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.1 Interrupts

Figure 6-1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate
p INtCtlippg
HWS5 »[1p7 v [AY Interrupt
HW4 . > 1P6|—{IMg—— >~ Bmgtjism——[)—amm’
HW3 é > 1P5—B=IMs— B & IntCtlys
Q
HW2 S »| P4 > Ma— 5 %
HW1 ——{IP3 p-{IM3 > Z Vector & | Exception
o) | 2 o Vector Offset
HWO |12 /M2 > I 3 s
IP1 1M1 > 5
PO MO L gl 6
Caser, | SRSMap |
Causepg Shadow Set
Number .

Note that an interrupt request may be deasserted between the time the processor detects the interrupt request and the
time that the software interrupt handler runs. The softwareinterrupt handler must be prepared to handle this condition
by simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the | Vexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look asfollows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,

* setting up the appropriate GPR shadow set for the routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/
/* Use the current GPR shadow set, and setup software context */
mfcO k0, CO_EPC /* Get restart address */
sw k0O, EPCSave /* Save in memory */
mfcO k0, CO_Status /* Get Status value */

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 49

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

sw k0, StatusSave /*

mfc0 k0, CO_SRscCtl /*

sw k0, SRSCtlSave

1i k1, ~IMbitsToClear /*
/*
/*
/*

and k0, kO, ki1

/* If switching shadow sets,

ins k0, =zero, S_StatusEXL,
mtcO k0, CO_Status
/*

* If switching shadow sets,
* address to EPC,
* shadow sets,
*/

/* Process interrupt here,

/*

* To complete interrupt processing,

clear only KSU above,
and do execute an eret to clear EXL,
and jump to routine

Save in memory */
Save SRSCtl if changing shadow sets */

Get Im bits to clear for this interrupt */
this must include at least the IM bit */
for the current interrupt, and may include */
others */

/* Clear bits in copy of Status */

write new value to SRSCtlpgg here */

(W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
/* Modify mask, switch to kernel mode,
/* re-enable interrupts */

*/

write target
switch

including clearing device interrupt */

the saved values must be restored

* and the original interrupted code restarted.

*/
di /*
1w k0, StatusSave /*
1w k1, EPCSave /*
mtc0 k0, CO_Status /*
1w k0, SRSCtlSave /*
mtc0 k1, CO_EPC /*
mtc0 k0O, CO_SRSCtl /*
ehb /*
eret /*

6.1.1.3 External Interrupt Controller Mode

Disable interrupts - may not be required */

Get saved Status (including EXL set) */
and EPC */

Restore the original value */

Get saved SRSCtl */

and EPC */

Restore shadow sets */

Clear hazard */

Dismiss the interrupt */

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. Theinterrupt controller isresponsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number (and optionally the priority level) of the highest priority interrupt. EIC interrupt mode isin effect if al of the

following conditions are true:

i Conﬁg3\/E|C =1

|ntCt|V3¢ 0
« Causgy =1

i StatUSBEV =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Cause p;_pg), the timer inter-
rupt request (Causer,), and the performance counter interrupt request (Causepc) to the external interrupt controller,
where it prioritizes these interruptsin a system-dependent way with other hardware interrupts. The interrupt control-

50 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.1 Interrupts

ler can be ahard-wired logic block, or it can be configurable based on control and status registers. This allows the
interrupt controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizesitsinterrupt requests and produces the priority level and the vector number
of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt
controller passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt
mode. There are several implementation options available for the vector offset:

1. Thefirst optionisto treat the RIPL value as the vector number for the processor.
2. The second option is to send a separate vector number along with the RIPL to the processor.
3. A third option isto send an entire vector offset along with the RIPL to the processor.

Status;p; (which overlays Status)yy7 m2) iSinterpreted as the Interrupt Priority Level (IPL) at which the processor is

currently operating (with avalue of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Statusp_ to determineif the requested

interrupt has higher priority than the current IPL. If RIPL is strictly greater than Statusp , and interrupts are enabled
(Statusig = 1, Statusgy = 0, and Statusgr, = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causeg,p_ (Which overlays Cause py 1pp) and signals the external
interrupt controller to notify it that the request is being serviced. Because Causeg,p,_ is only loaded by the processor
when an interrupt exception issignaled, it is available to software during interrupt processing. The vector number that
the EIC passes into the core is combined with the IntCtl\, 5 to determine where the interrupt service routinesis
located. The vector number is not stored in any software visible register. Some implementations may choose to use
the RIPL as the vector number, but thisis not a requirement.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
Causer,py , it also loads the GPR shadow set number into SRSCtl g, css, which is copied to SRSCtl -5 When the inter-

rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6-2.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 51

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Figure 6-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any
RIPL
g‘;ﬂg‘c' T > Request Interrupt
a R
Causeip, Z =g P2 Status‘EDijequ‘
Causeypg 2
Interrupt
Gt Exception
g
°
*g‘ Interrupt Service
> 8 garted
L & Load IntCtly/g Ty
8 Y Fields & Option1& 2-
£ |Requested E Optiond - RIPL as Vector o (E)?fcseaptionVeCtOf
I g 1= \'iJTber\\\\\\ \\‘ 8 =
| g | B > g ~ = N % I=] ;“\\\\\‘

Option3 - Explicit Vector Offset ;

Shadow Set

Nymber .-.»

Interrupt Sources

—

Shadow Set
Mapping

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the | Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causer,p to Statusp to prevent lower priority interrupts from interrupting the handler. Such aroutine might look as

follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.

*/
/* Use the current GPR shadow set, and setup software context */
mfcO k1, CO_Cause /* Read Cause to get RIPL value */
mfcO k0, CO_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfcO k0, CO_Status /* Get Status value */

52 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.1 Interrupts

sw k0, StatusSave /* Save in memory */

ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfcO k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave

/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO kO, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */

* The interrupt completion code is identical to that shown for VI mode above.

6.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode - options 1 & 2), avector number is produced by the inter-
rupt control logic. This number is combined with IntCtl, 5 to create the interrupt offset, which is added to 0x200 to
create the exception vector offset. For VI interrupt mode, the vector number isin the range 0..7, inclusive. For EIC
interrupt mode, the vector number isin the range 1..63, inclusive (0 being the encoding for “no interrupt”). The
IntCtly, 5 field specifies the spacing between vector locations. If this value is zero (the default reset state), the vector

spacing is zero and the processor revertsto Interrupt Compatibility Mode. A non-zero val ue enables vectored inter-

rupts, and Table 6.4 shows the exception vector offset for a representative subset of the vector numbers and values of

the IntCtly, s fild.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtly,g Field
Vector Number 0b00001 | Ob00010 | 0b00100 | Ob01000 | Ob10000
0 0x0200 0x0200 0x0200 0x0200 0x0200
1 0x0220 0x0240 0x0280 0x0300 0x0400
2 0x0240 0x0280 0x0300 0x0400 0x0600
3 0x0260 0x02C0 0x0380 0x0500 0x0800
4 0x0280 0x0300 0x0400 0x0600 0x0A00
5 0x02A0 0x0340 0x0480 0x0700 0x0C00
6 0x02C0 0x0380 0x0500 0x0800 0xO0E00
7 0x02E0 0x03C0 0x0580 0x0900 0x1000
.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

53

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtlyg Field
Vector Number 0b00001 | 0b00010 | Ob00100 | Ob01000 | Ob10000
61 0x09A0 0x1140 0x2080 0x3F00 0x7C00
62 0x09CO 0x1180 0x2100 0x4000 Ox7EQO
63 O0x09EOD 0x11CO 0x2180 0x4100 0x8000

The general eguation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 0x200 + (vectorNumber X (IntCtlyg || 0b00000))

6.1.2.1 Software Hazards and the Interrupt System

Software writes to certain coprocessor O register fields may change the conditions under which an interrupt is taken.
This creates a coprocessor 0 (CPO) hazard, as described in the chapter “ CPO Hazards” on page 79. In Release 1 of the
Architecture, there was no architecturally-defined method for bounding the number of instructions which would be
executed after the instruction which caused the interrupt state change and before the change to the interrupt state was
seen. In Release 2 of the Architecture, the EHB instruction was added, and this instruction can be used by softwareto
clear the hazard.

Table 6.5 lists the CPO register fields which can cause a change to the interrupt state (either enabling interrupts which
were previously disabled or disabling interrupts which were previously enabled).

Table 6.5 Interrupt State Changes Made Visible by EHB

CPO Register Field(s)
Instruction(s) CPO Register Written Modified
MTCO Status IM, IPL, ERL, EXL, IE
El, DI Status IE
MTCO Cause IP; o
MTCO PerfCnt Control IE
MTCO PerfCnt Counter Event Count

An EHB, executed after one of these fields is modified by the listed instruction, makes the change to the interrupt
state visible no later than the instruction following the EHB.

In the following example, a change to the Causeyy, field is made visible by an EHB:

mfcO k0O, CO_Status

ins k0O, =zero, S_StatusIM4, 1 /* Clear bit 4 of the IM field */
mtc0 k0O, CO_Status /* Re-write the register */

ehb /* Clear the hazard */

/* Change to the interrupt state is seen no later than this instruction */

Similarly, the effects of an DI instruction are made visible by an EHB:

di /* Disable interrupts */

54 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

6.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated asa
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruc-
tion stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the soft-
ware exception handler are afunction of both the type of exception, and the current state of the processor.

6.2.1 Exception Priority

Table 6.6 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 6.6 Priority of Exceptions

Exception Description Type
Reset The Cold Reset signal was asserted to the processor Asynchronous
Soft Reset The Reset signal was asserted to the processor Reset
Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep- Synchronous
tions, including asynchronous exceptions, so that one can sin- Debug

gle-step into interrupt (or other asynchronous) handlers.

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
Debug

Imprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NM1) The NMI signal was asserted to the processor. Asynchronous

Machine Check Aninternal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the
exception was detected, was asserted after EXL went to zero.

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized Synchronous
above instruction fetch exceptionsto allow break onillegal instruc- Debug
tion addresses.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 55

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Table 6.6 Priority of Exceptions

Exception Description Type
Watch - Instruction fetch A watch address match was detected on an instruction fetch. Prior- Synchronous
itized above instruction fetch exceptions to allow watch on illegal
instruction addresses.
Address Error - Instruction fetch A non-word-aligned address was loaded into PC.
TLB Réfill - Instruction fetch A TLB miss occurred on an instruction fetch.
TLB Invalid - Instruction fetch Thevalid bit was zero in the TLB entry mapping the address refer-
enced by an instruction fetch.
TLB Execute-Inhibit An instruction fetch matched avalid TLB entry which had the X1
bit set.
Cache Error - Instruction fetch A cache error occurred on an instruction fetch.
Bus Error - Instruction fetch A bus error occurred on an instruction fetch.
SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug
Instruction Validity Exceptions An instruction could not be completed because it was not allowed Synchronous
access to the required resources, or wasillegal: Coprocessor Unus-
able, Reserved Instruction. If both exceptions occur on the same
instruction, the Coprocessor Unusable Exception takes priority
over the Reserved Instruction Exception.
Execution Exception An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.
Precise Debug Data Break A precise EJTAG data break on |oad/store (address match only) or Synchronous
adata break on store (address+data match) condition was asserted. Debug
Prioritized above data fetch exceptionsto allow break on illegal
data addresses.
Weatch - Data access A watch address match was detected on the address referenced by Synchronous
aload or store. Prioritized above data fetch exceptionsto allow
watch on illegal data addresses.
Address error - Data access An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by aload or store instruc-
tion
TLB Réfill - Data access A TLB miss occurred on a data access
TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address refer-
enced by aload or store instruction
TLB Read-Inhibit A dataread access matched avalid TLB entry whose RI bit is set.
TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address refer-
enced by a storeinstruction
Cache Error - Data access A cache error occurred on aload or store data reference Synchronous
or
Bus Error - Data access A bus error occurred on aload or store data reference Asynchronous

56 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Table 6.6 Priority of Exceptions

Exception Description Type
Precise Debug Data Break A precise EJTAG data break on load (address+data match only) Synchronous
condition was asserted. Prioritized last because all aspects of the Debug
data fetch must complete in order to do data match.

The“Type” column of Table 6.7 describes the type of exception. Table 6.8 explains the characteristics of each excep-

tion type.
Table 6.7 Exception Type Characteristics
Exception Type Characteristics
Asynchronous Reset Denotes a reset-type exception that occurs asynchronoudly to instruction execution.

These exceptions always have the highest priority to guarantee that the processor can
always be placed in arunnable state.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way.

Synchronous Debug Denotes an EJTAG debug exception that occurs as aresult of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to alow entry to Debug
Mode, even in the presence of other exceptions.

Synchronous Denotes any other exception that occurs as aresult of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but thereisarelative
priority of synchronous exceptions with each other.

6.2.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0 . 0000. EJTAG Debug excep-
tions are vectored to location 0xBFCO0. 0480, or to location 0xFF20. 0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register.

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fixed. In Release 2 of the architecture (and subsequent releases), softwareis
allowed to specify the vector base address viathe EBase register for exceptions that occur when Statusgg,, equals 0.
Table 6.8 gives the vector base address as a function of the exception and whether the BEV hit is set in the Status reg-
ister. Table 6.9 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
For implementations of Release 2 of the Architecture (and subsequent releases), Table 6.4 gives the offset from the
base address in the case where Statusggy = 0 and Cause}y, = 1. For implementations of Release 1 of the architecture

in which Causgy = 1, the vector offset isasif IntCtly, g were 0.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 57

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Table 6.10 combines these two tablesinto one that contains all possible vector addresses as afunction of the state that
can affect the vector selection. To avoid complexity in the table, the vector address value assumes that the EBase reg-
ister, as implemented in Release 2 devices, is not changed from its reset state and that IntCtly,gis 0.

In Release 2 of the Architecture (and subsequent rel eases), software must guarantee that EBase;5_1, contains zerosin

all bit positionsless than or equal to the most significant bit in the vector offset. This situation can only occur when a
vector offset greater than OxFFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The
operation of the processor is UNDEFINED if this condition is not met.

Table 6.8 Exception Vector Base Addresses

Status BEV
Exception 0 1

Reset, Soft Reset, NM| 0xBFC0.0000

EJTAG Debug (with ProbTrap=0in 0xBFCO0.0480

the EJTAG_Control_register)

EJTAG Debug (with ProbTrap=1in 0xFF20.0200

the EJTAG_Control_register)

Cache Error For Release 1 of the architecture: 0xBFC0.0200

0xA000.0000
For Release 2 of the architecture:
EBases; 30| 1 || EBaseyg 12 ||
0x000
Note that EBases; 3y have the

fixed value 0b10

Other For Release 1 of the architecture: 0xBFC0.0200
0x8000.0000
For Release 2 of the architecture:
EB%e31”12 ” 0x000
Note that EBases; 3y have the
fixed value 0b10

Table 6.9 Exception Vector Offsets

Exception Vector Offset

TLB Réfill, EXL =0 0x000

Cache error 0x100

General Exception 0x180

Interrupt, Causeyy = 1 0x200 (In Release 2 implementa-
tions, thisisthe base of the vectored
interrupt table when Statusgg,, = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

58 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Table 6.10 Exception Vectors

Vector

For Release 2 Implementations,

EJTAG assumes that EBase retains its

Exception Statusggy Statusgy Causeyy ProbTrap reset state and that IntCtlyg =0
Reset, Soft Reset, X X X X 0xBFC0.0000

NMI
EJTAG Debug X X X 0 0xBFC0.0480
EJTAG Debug X X X 1 0xFF20.0200
TLB Réfill 0 0 X X 0x8000.0000
TLB Réfill 0 1 X X 0x8000.0180
TLB Réfill 1 0 X X 0xBFC0.0200
TLB Réfill 1 1 X X 0xBFC0.0380
Cache Error 0 X X X 0xA000.0100
Cache Error 1 X X X 0xBFC0.0300
Interrupt 0 0 0 X 0x8000.0180
Interrupt 0 0 1 X 0x8000.0200
Interrupt 1 0 0 X 0xBFC0.0380
Interrupt 1 0 1 X 0xBFC0.0400
All others 0 X X X 0x8000.0180
All others 1 X X X 0xBFC0.0380
‘X’ denotes don’t care

6.2.3 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

» |f the EXL hit in the Status register is zero, the EPC register isloaded with the PC at which execution will be
restarted and the BD hit is set appropriately in the Cause register (see Table 9.30 on page 134). The value loaded
into the EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the
instruction isin the delay slot of abranch or jump which has delay slots. Table 6.11 shows the value stored in
each of the CPO PC registers, including EPC. For implementations of Release 2 of the Architecture if Statusggy
=0, the CSSfield in the SRSCtl register is copied to the PSSfield, and the CSSvalue isloaded from the appro-
priate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCHl register is not changed.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 59

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Table 6.11 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of theinstruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the | SA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with the | SA Mode bit

* TheCE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field isloaded, but not defined, for any exception type other than a coprocessor unusable exception.

» TheEXL bit isset in the Status register.
* Theprocessor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unlessit wishesto
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. Thisis noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy;, is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepp nor SRSCtl are modified */
if Statusgy;, = 1 then
vectorOffset « 0x180
else
if InstructionInBranchDelaySlot then
EPC « restartPC/* PC of branch/jump */
Causepp « 1

else
EPC « restartPC /* PC of instruction */
Causepp < 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ¢« SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then
vectorOffset <« 0x000
elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset « 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset <« 0x200
else

60 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

if Config3ygre = 1 then
if (EIC_optionl)
VecNum < Causegypr,
elseif (EIC_option2)
VecNum ¢« EIC_VecNum_Signal
endif
NewShadowSet <« SRSCtlgrcgg
else
VecNum <« VIntPriorityEncoder ()
NewShadowSet < SRSMapiprXs:3..1p1.Xa
endif
if (EIC_option3)
vectorOffset « EIC_VectorOffset_Signal
else
vectorOffset <« 0x200 + (VecNum X (IntCtlyg || 0b00000))
endif
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Cause;y = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if (ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlpgg ¢ SRSCtlcgg
SRSCtlcgg ¢« NewShadowsSet

endif

endif /* if Statusgy, = 1 then */

Causeqy ¢ FaultingCoprocessorNumber
Causegyccoge < ExceptionType
Statusgy, < 1

/*

Calculate the vector base address */

if Statusggy = 1 then

vectorBase <« 0xBFC0.0200

else

if ArchitectureRevision = 2 then

/* The fixed value of EBase3; 39 forces the base to be in kseg0 or ksegl */
vectorBase ¢« EBase3; 15 || 0x000

else
vectorBase <« 0x8000.0000

endif
endif
/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > OxXFFF (vectored or EIC interrupts only), require */
/* that EBase;s 1, have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC < vectorBases; 3q | (vectorBase,q o + vectorOffset,qg o)

/* No carry between bits 29 and 30 */

6.2.4 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG

Specification for details of this exception.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

61
Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Entry Vector Used

0xBFCO 0480 if the ProbTrap bit is zero in the EJTAG_Control_register; 0xFF20 0200 if the ProbTrap bit is
one.

6.2.5 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable.
When a Reset Exception occurs, the processor performs afull reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

* TheRandom register isinitialized to the number of TLB entries- 1.

* TheWired register isinitialized to zero.

* TheConfig, Configl, Config2, and Config3 registers are initialized with their boot state.

« TheRP, BEV, TS SR, NMI, and ERL fields of the Status register are initialized to a specified state.
e Watch register enables and Performance Counter register interrupt enables are cleared.

» TheErrorEPC register isloaded with the restart PC, as described in Table 6.11. Note that this value may or may
not be predictable if the Reset Exception was taken as the result of power being applied to the processor because
PC may not have avalid valuein that case. In some implementations, the value loaded into ErrorEPC register
may not be predictable on either a Reset or Soft Reset Exception.

e PCisloaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation
Random ¢« TLBEntries - 1
PageMaskyasxx ¢ 0O # 1KB page support implemented
PageGrainggp < 0 # 1KB page support implemented

Wired « 0

HWREna <« 0

EntryHiyppx ¢ O # 1KB page support implemented
Statusgp < O

Statusppy < 1

Statuspg < 0

Statusgg ¢« 0

Statusyyr < 0

Statusggp < 1

IntCtlyg < O

SRSCtlygg ¢ HighestImplementedShadowSet

62 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

SRSCtlggg « 0
SRSCtlpgg < O
SRSCtlegg ¢ O
SRSMap <« 0
Causepe < 0
EBaseExceptionBase «~ 0
Config ¢« ConfigurationState
Configgg « 2 # Suggested - see Config register description
Configl ¢« ConfigurationState
Config2 <« ConfigurationState
Config3 « ConfigurationState
WatchLo[n]; < 0 # For all implemented Watch registers
WatchLo[n]g < 0 # For all implemented Watch registers
WatchLo[n]y < 0 # For all implemented Watch registers
PerfCnt.Control[n]l;z < O # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then
ErrorEPC ¢« restartPC # PC of branch/jump
else
ErrorEPC « restartPC # PC of instruction
endif
PC « O0xBFCO 0000

6.2.6 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable.
When a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft
Reset Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
the processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state may be incon-
sistent.

The primary difference between the Reset and Soft Reset Exceptionsisin actual use. The Reset Exceptionistypically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a
non-responsive (hung) processor. The semantic difference is provided to allow boot software to save critical copro-
cessor 0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same
state when either reset signal is asserted, but the interpretation of any state saved by software may be very different.
In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

« TheRP, BEV, TS SR, NMI, and ERL fields of the Status register are initialized to a specified state.

» Watch register enables and Performance Counter register interrupt enables are cleared.

The ErrorEPC register isloaded with the restart PC, as described in Table 6.11.

* PCisloaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 63

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Entry Vector Used
Reset (0xBFC0 0000)

Operation

1KB page support implemented
1KB page support implemented
1KB page support implemented
Suggested - see Config register description

PageMaskyacrx < O
PageGrainggp < 0
EntryHiypyyx ¢ O
Configgy « 2
Statusgp < O
Statuspgpy < 1
Statuspg < 0
Statusgg < 1
Statusyy < O
Statusggp < 1
WatchLo[n]; < O
WatchLo[n]g < O

HH FH H H*

For all implemented Watch registers
For all implemented Watch registers
WatchLo[n]y < 0 For all implemented Watch registers
PerfCnt.Control[n]ig ¢« O For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC « restartPC # PC of branch/jump
else

ErrorEPC « restartPC # PC of instruction
endif
PC « O0xBFCO 0000

#
#
#
#

6.2.7 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NM|
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

« TheBEV, TS SR, NMI, and ERL fields of the Status register areinitialized to a specified state.
» TheErrorEPC register isloaded with restart PC, as described in Table 6.11.

e PCisloaded with 0xBFC0O 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation

Statusppy < 1
Statuspg < O
Statusgg < O
Statusyyr < 1

64 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Statusgg, ¢« 1
if InstructionInBranchDelaySlot then
ErrorEPC « restartPC # PC of branch/jump
else
ErrorEPC ¢« restartPC # PC of instruction
endif
PC « O0xBFCO 0000

6.2.8 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.
The following conditions cause a machine check exception:

» Detection of multiple matching entriesin the TLB in a TLB-based MMU.

Cause Register ExcCode Value
MCheck (See Table 9.31 on page 138)

Additional State Saved
Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used
General exception vector (offset 0x180)

6.2.9 Address Error Exception

An address error exception occurs under the following circumstances:

» Aninstruction is fetched from an address that is not aligned on aword boundary.

» Aload or store word instruction is executed in which the address is not aligned on aword boundary.

* Aload or store halfword instruction is executed in which the address is not aligned on a halfword boundary.
» A referenceis made to akernel address space from User Mode or Supervisor Mode.

» A referenceis made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on aword boundary, the PC is updated before the con-
dition is detected. Therefore, both EPC and BadVVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was aload or an instruction fetch

AdES: Reference was a store

See Table 9.31 on page 138.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 65

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Additional State Saved

Register State Value
BadVAddr failing address
Contexty py UNPREDICTABLE
EntryHiy pyp UNPREDICTABLE
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.10 TLB Refill Exception

A TLB Réfill exception occursin a TLB-based MMU when no TLB entry matches a reference to a mapped address
space and the EXL hit is zero in the Status register. Note that thisis distinct from the case in which an entry matches
but has the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was aload or an instruction fetch

TLBS: Reference was a store

See Table 9.31 on page 138.

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3crxTc bitis set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field of
the ContextConfig register are loaded with the high-order
bits of the virtual address that missed.

If Config3crxTc bitis clear, then the BadVPN2 field con-
tains VA3, 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 0f thefailing address; the
ASID field contains the ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used

* TLB Réfill vector (offset 0x000) if Statusgy, = O at the time of exception.

* General exception vector (offset 0x180) if Statusgy, = 1 at the time of exception

66 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

6.2.11 Execute-Inhibit Exception

An Execute-Inhibit exception occurs when the virtual address of an instruction fetch matches a TLB entry whose XI
bit is set. This exception type can only occur if the X1 bit isimplemented within the TLB and is enabled, thisis
denoted by the PageGrainy g bit.

Cause Register ExcCode Value
if PageGraingc == 0 TLBL

if PageGrain;gc == 1 TLBXI
See Table 9.31 on page 138.

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3crxTc bitisset, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field of
the ContextConfig register are loaded with the high-order
bits of the virtual address that missed.

If Config3crxTc bitis clear, then the BadVPN2 field con-
tains VA3, 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 0f thefailing address; the
ASID field contains the ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.12 Read-Inhibit Exception

An Read-Inhibit exception occurs when the virtual address of a memory load reference matchesa TLB entry whose
RI bit is set. This exception type can only occur if the RI bit isimplemented within the TLB and is enabled, thisis
denoted by the PageGraing,g bit. MIPS16 PC-relative loads are a special case and are not affected by the RI bit.

Cause Register ExcCode Value
if PageGrain;gc == 0 TLBL

if PageGraingc == 1 TLBRI
See Table 9.31 on page 138.

Additional State Saved

Register State Value

BadVAddr Failing address

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 67

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Register State Value

Context If Config3crxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field of
the ContextConfig register are loaded with the high-order
bits of the virtual address that missed.

If Config3crxTc bit is clear, then the BadVPN2 field con-
tains VA3, 13 of thefailing address

EntryHi The VPN2 field contains VA3; 13 0f thefailing address; the
ASID field contains the ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.13 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched
entry hasthe valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit isone
in the Status register isindistinguishable from a TLB Invalid Exception, in the sense that both use the general excep-
tion vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two casesis by prob-
ing the TLB for amatching entry (using TLBP).

If the RI and XI bits areimplemented within the TLB and the PageGrain,gc bit is clear, then this exception also
occursif avalid, matching TLB entry is found with the RI bit set on a memory load reference, or with the X1 bit set

on an instruction fetch memory reference. MIPS16 PC-relative loads are a special case and are not affected by the RI
bit.

Cause Register ExcCode Value

TLBL: Reference was aload or an instruction fetch

TLBS: Reference was astore

See Table 9.30 on page 134.

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3crxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field of
the ContextConfig register are loaded with the high-order
bits of the virtual address that missed.

If Config3crxTc bit is clear, then the BadVPN2 field con-
tains VA3, 13 of thefailing address

68 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Register State Value
EntryHi The VPN2 field contains VA3; 13 0f thefailing address; the
ASID field contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.14 TLB Modified Exception

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry isvalid,
but the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value
Mod (See Table 9.30 on page 134)

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3crxTc bitisset, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field of
the ContextConfig register are loaded with the high-order
bits of the virtual address that missed.

If Config3crxTc bitis clear, then the BadVPN2 field con-
tains VA3, 13 Of the failing address

EntryHi The VPN2 field contains VA3, 13 0f thefailing address; the
ASID field contains the ASID of the reference that missed.

EntryL o0 UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.15 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error
was in a cache, the exception vector isto an unmapped, uncached address.

Cause Register ExcCode Value
N/A

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 69

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Additional State Saved

Register State Value

Cachekrr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 0x100)

Operation

CacheErr « ErrorState
Statusggp ¢« 1
if InstructionInBranchDelaySlot then
ErrorEPC « restartPC # PC of branch/jump
else
ErrorEPC <« restartPC # PC of instruction
endif
if Statusggy = 1 then
PC « OxBFCO 0200 + 0x100
else
if ArchitectureRevision 2= 2 then
/* The fixed value of EBase3; 37 and bit 29 forced to a 1 puts the */
/* vector in ksegl */
PC < EBases; .3q ||1||EBasejzg. .15 || 0x100
else
PC « 0xA000 0000 + 0x100
endif
endif

6.2.16 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus transac-
tions are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference
DBE: Error on adatareference

See Table 9.31 on page 138.

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

6.2.17 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a2’s complement overflow.

70MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Cause Register ExcCode Value
Ov (See Table 9.31 on page 138)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

6.2.18 Trap Exception

A trap exception occurs when atrap instruction resultsin a TRUE value.

Cause Register ExcCode Value
Tr (See Table 9.31 on page 138)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

6.2.19 System Call Exception

A system call exception occurs when a SY SCALL instruction is executed.

Cause Register ExcCode Value
Sys (See Table 9.30 on page 134)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

6.2.20 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value
Bp (See Table 9.31 on page 138)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 71

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

6.2.21 Reserved Instruction Exception

A Reserved Instruction Exception occursif any of the following conditionsistrue:

An instruction was executed that specifies an encoding of the opcode field that is flagged with “=” (reserved),
“B" (higher-order 1SA), or an unimplemented “&” (ASE).

An instruction was executed that specifies a SPECIAL opcode encoding of the function field that is flagged with
“x" (reserved), or “B” (higher-order ISA).

An instruction was executed that specifies a REGIMM opcode encoding of thert field that is flagged with “ ="
(reserved).

An instruction was executed that specifies an unimplemented SPECIAL?2 opcode encoding of the function field
that is flagged with an unimplemented “6” (partner available), or an unimplemented “c” (EJTAG).

An instruction was executed that specifies a COPz opcode encoding of the rsfield that is flagged with “*”
(reserved), “B” (higher-order ISA), or an unimplemented “&” (ASE), assuming that access to the coprocessor is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For the
COP1 opcode, some implementations of previous | SAs reported this case as a Floating Point Exception, setting
the Unimplemented Operation bit in the Cause field of the FCSR register.

An instruction was executed that specifies an unimplemented COPO opcode encoding of the function field when
rsis CO that is flagged with “*" (reserved), or an unimplemented “c” (EJTAG), assuming that access to copro-
cessor O is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs
instead.

An instruction was executed that specifies a COP1 opcode encoding of the function field that is flagged with “=”
(reserved), “B” (higher-order ISA), or an unimplemented “e” (ASE), assuming that accessto coprocessor 1is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some
implementations of previous |SAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of the FCSR register.

Cause Register ExcCode Value
RI (See Table 9.31 on page 138)

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

6.2.22 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditionsis true;

A COPQ or Cache instruction was executed while the processor was running in a mode other than Debug Mode
or Kernel Mode, and the CUO hit in the Status register was a zero

A COP1, COP1X,LWC1, SWC1, LDC1, SDC1 or MOVCI (Specia opcode function field encoding) instruction
was executed and the CU1 bit in the Status register was a zero.

72MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

e A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register wasa
zero. COP2 instructions include MFC2, DMFC2, CFC2, MFHC2, MTC2, DMTC2, CTC2, MTHC2.

NOTE: In Release 2 of the MIPS32 Architecture, the use of COP3 as a user-defined coprocessor has been removed.
The use of COP3 isreserved for the future extension of the architecture.

Cause Register ExcCode Value
CpU (See Table 9.30 on page 134)

Additional State Saved

Register State Value

Causecg unit number of the coprocessor being referenced

Entry Vector Used
General exception vector (offset 0x180)

6.2.23 Floating Point Exception

A floating point exception isinitiated by the floating point coprocessor to signal afloating point exception.

Register ExcCode Value
FPE (See Table 9.30 on page 134)

Additional State Saved

Register State Value

FCSR indicates the cause of the floating point exception

Entry Vector Used
General exception vector (offset 0x180)

6.2.24 Coprocessor 2 Exception

A coprocessor 2 exception isinitiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value
C2E (See Table 9.30 on page 134)

Additional State Saved
Defined by the coprocessor

Entry Vector Used
General exception vector (offset 0x180)

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 73

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

6.2.25 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception istaken
immediately if the EXL and ERL bits of the Status register are both zero. If either bit isa one at the time that awatch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both
the EXL and ERL bitsin the Status register are zero. Software may use the WP bit in the Cause register to determine
if the EPC register points at the instruction that caused the watch exception, or if the exception actually occurred
while in kernel mode.

If the EXL or ERL bits are onein the Status register and a single instruction generates both awatch exception (which
is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while
the processor isin Debug Mode, the exception is inhibited and the WP bit is not changed.

It isimplementation dependent whether a data watch exception istriggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so even if
the store would not compl ete because the LL bit is zero.

Register ExcCode Value
WATCH (See Table 9.30 on page 134)

Additional State Saved

Register State Value

Cause\yp indicates that the watch exception was deferred until after
both Statusgy| and Statusgg, were zero. This bit directly

causes awatch exception, so software must clear this bit as
part of the exception handler to prevent awatch exception
loop at the end of the current handler execution.

Entry Vector Used
General exception vector (offset 0x180)

6.2.26 Interrupt Exception

Theinterrupt exception occurs when an enabled request for interrupt serviceis made. See Section 6.1 on page 43 for
more information.

Register ExcCode Value
Int (See Table 9.31 on page 138)

Additional State Saved

Register State Value

Cause p indicates the interrupts that are pending.

74MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

6.2 Exceptions

Entry Vector Used
General exception vector (offset 0x180) if the IV bit in the Cause register is zero.
Interrupt vector (offset 0x200) if the IV bit in the Cause register isone.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 75

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

76 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 7

GPR Shadow Registers

The capability in this chapter istargeted at removing the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set
zero.

The number of GPR shadow sets is implementation dependent and may range from one (the normal GPRS) to an
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtl g field, and all

shadow sets between 0 and SRSCtl g, inclusive must beimplemented. If thisfield is zero, only the normal GPRs are
implemented.

7.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode viaan
interrupt or exception. Once a shadow set isbound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRsin the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSSfield of the SRSCtl register provides
the number of the current shadow register set, and the PSS field of the SRSCil register provides the number of the
previous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor isoperating in VI interrupt mode, binding of avectored interrupt to ashadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCHI
register. When an exception or interrupt occurs, the value of SRSCtl~gg is copied to SRSCtlpgg, and SRSCtl g is set

to the value taken from the appropriate source. On an ERET, the value of SRSCtlpggis copied back into SRSCtl -gg to

restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCltl register on an interrupt or exception are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditions are true. In this case, steps2 and 3
are skipped.

* Theexception isonethat sets Statusgr : NMI or cache error.
e The exception causes entry into EJTAG Debug Mode

* Statusgpy =1

* Statusgy =1

2. SRSCtICSS is COpied to SRSCil PSS

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 77

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

GPR Shadow Registers

3. SRSCtlcggis updated from one of the following sources:

» Theappropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Cause)y, = 1,
IntCtly,sg # 0, Config3y g c = 0, and Config3y; = 1. These are the conditions for a vectored interrupt.

* TheEICSSfield of the SRSCtl register if the exception is an interrupt, Causey, = 1, IntCtly,gg= 0, and
Config3y g c = 1. These are the conditions for a vectored EIC interrupt.

» TheESSfield of the SRSCtl register in any other case. Thisisthe condition for anon-interrupt exception, or
anon-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCt! register at the end of an exception or interrupt are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditionsistrue. In thiscase, step 2 is
skipped.

» A DERET isexecuted

* AnERET is executed with Statusgg, = 1 or Statusggy = 1
2. SRSCtlpggiscopied to SRSCtlgg

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlpsg, 10ading EPC with a
target address, and doing an ERET.

7.2 Support Instructions

Table 7.1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?
RDPGPR Read GPR From Previous Shadow Set No
WRPGPR | Write GPR to Shadow Set No

78 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 8

CPO Hazards

8.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a
MIPS32/microMIPS32 processor, manipulation of these resources may produce results that are not detectable by sub-
seguent instructions for some number of execution cycles. When no hardware interlock exists between one instruc-
tion that causes an effect that is visible to a second instruction, a CPO hazard exists.

In Release 1 of the MIPS32® Architecture, CPO hazards were rel egated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that thisis an insufficient
and error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such away that they are back-
ward-compatible with existing MIPS processors.

8.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

Implementations using Release 1 of the architecture should refer to their |mplementation documentation for the
required instruction “spacing” that is required to eliminate these hazards.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than
one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It isfor this
reason that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar
design.

8.2.1 Possible Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 8.1 lists the possible execution hazards that might exist when there are no hardware interlocks.

Table 8.1 Possible Execution Hazards

Producer — Consumer Hazard On
Hazards Related to the TLB
MTCO - TLBR, EntryHi
TLBWI,
TLBWR

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 79

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

CPO Hazards

Table 8.1 Possible Execution Hazards

Producer - Consumer Hazard On
MTCO - TLBWI, EntryL o0,
TLBWR EntryLol,
Index,
PageMask,
PageGrain
MTCO - TLBWR Wired
MTCO - TLBP, EntryHiagp
Load or Store Instruction
MTCO - Load/store affected by EntryHiagps
new state WatchHi,
WatchLo,
Config
TLBP - MFCO, TLBWI Index
TLBR — MFCO EntryHi,
EntryL o0,
EntryLol,
PageMask
TLBWI, - TLBP, TLB entry
TLBWR TLBR,
Load/storeusingnew TLB
entry

Hazards Related to Exceptions or Interrupts

MTCO - Coprocessor instruction Statuscy
execution depends on the
new value of Statuscy

MTCO - ERET DEPC,
EPC,
ErrorEPC,
Status

MTCO - Interrupted Instruction Causep

Causeyy
Compare,
Count,
PerfCnt Control,g,
PerfCnt Counter,
Statusg,
Status;
EBase
SRSCitl
SRSMap

80 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 8.1 Possible Execution Hazards

8.2 Types of Hazards

Producer - Consumer Hazard On

El, DI — Interrupted Instruction Statusig,
Status;

Other Hazards
LL - MFCO LLAddr
MTCO - CACHE PageGrain
CACHE - MFCO TegLo
MTCO - MFCO any CoProcessor O register

8.2.2 Possible Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 8.2 lists the possible instruction hazards when there are no hardware interlocks.

Table 8.2 Possible Instruction Hazards

Producer - Consumer Hazard On
Hazards Related to the TLB
MTCO — Instruction fetch seeing the new value EntryHiagp,
WatchHi,
WatchLo
Config
MTCO — Instruction fetch seeing the new value Status
(including a change to ERL followed
by an instruction fetch from the useg
segment)
TLBWI, — Instruction fetch using new TLB entry TLB entry
TLBWR
Hazards Related to Writing the Instruction Stream or Modifying an Instruction Cache
Entry
Instruction — Instruction fetch seeing the new Cache entries
stream writes instruction stream
CACHE — Instruction fetch seeing the new Cache entries
instruction stream
Other Hazards
MTCO — RDPGPR SRSCﬂpssl
WRPGPR

1. Thisis not precisely a hazard on the instruction fetch. Rather it is a hazard on a modifi-
cation to the previous GPR context field, followed by a previous-context reference to
the GPRs. It is considered an instruction hazard rather than an execution hazard because
some implementation may require that the previous GPR context be established early in

the pipeline, and execution hazards are not meant to cover this case.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

81

CPO Hazards

8.3 Hazard Clearing Instructions and Events

Table 8.3 lists the instructions designed to eliminate hazards.

Table 8.3 Hazard Clearing Instructions

Supported
Mnemonic Function Architecture
DERET Clear both execution and instruction hazards EJTAG
EHB Clear execution hazard Release 2
onwards
ERET Clear both execution and instruction hazards All
IRET Clear both execution and instruction hazards when not MCU ASE
chaining to another interrupt.
JALR.HB Clear both execution and instruction hazards Release 2
onwards
JR.HB Clear both execution and instruction hazards Release 2
onwards
SSNOP Superscalar No Operation Release 1
onwards
sYNCIt Synchronize caches after instruction stream write Release 2
onwards

1. SYNCI synchronizes caches after an instruction stream write, and before execution of that
instruction stream. As such, it is not precisely a coprocessor 0 hazard, but isincluded here
for completeness.

DERET, ERET, and SSNOP are available in Release 1 of the Architecture; EHB, JALR.HB, JR.HB, and SYNCI
were added in Release 2 of the Architecture. In both Release 1 and Release 2 of the Architecture, DERET and ERET
clear both execution and instruction hazards and they are the only timing-independent instructions which will do this
in both releases of the architecture.

Even though DERET and ERET clear hazards between the execution of the instruction and the target instruction
stream, an execution hazard may still be created between awrite of the DEPC, EPC, ErrorEPC, or Status registers
and the DERET or ERET instruction.

In addition, an exception or interrupt also clears both execution and instruction hazards between the instruction that
created the hazard and the first instruction of the exception or interrupt handler. Said another way, no hazards remain
visible by the first instruction of an exception or interrupt handler.

8.3.1 MIPS32 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing M1PS implementations, including many which pre-date

82MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

8.3 Hazard Clearing Instructions and Events

the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

8.3.2 microMIPS32 Instruction Encoding

The EHB and SSNOP instructions are encoded using a variant of the NOP encoding. See the EHB and SSNOP
instruction description for additional information.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 83

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

CPO Hazards

84 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Chapter 9

Coprocessor 0 Registers

The Coprocessor 0 (CPO) registers provide the interface between the ISA and the PRA. Each register is discussed
below, with the registers presented in numerical order, first by register number, then by select field number.

9.1 Coprocessor 0 Register Summary

Table 9.1 lists the CPO registers in numerical order. The individual registers are described later in this document. If
the compliance level is qualified (e.g., “Required (TLB MMU)"), it applies only if the qualifying condition is true.
The Sel column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level
0 0 Index Index into the TLB array Section 9.4 on page Required (TLB
92 MMU); Optional
(Cthers)
0 1 MV PControl Per-processor register containing global MIPS®MT ASE Required (MIPSMT
MIPS® MT configuration data Specification ASE); Optional (Oth-
ers)
0 2 MV PConfO Per-processor multi-V PE dynamic con- MIPS®MT ASE Required (MIPSMT
figuration information Specification ASE); Optiona (Oth-
ers)
0 3 MV PConfl Per-processor multi-V PE dynamic con- MIPS®BMT ASE Optional
figuration information Specification
1 0 Random Randomly generated index into the TLB Section 9.5 on page Required (TLB
array 93 MMU); Optional
(Cthers)
1 1 VPEControl Per-V PE register containing relatively MIPS®MT ASE Required (MIPSMT
volatile thread configuration data Specification ASE); Optiona (Oth-
ers)
1 2 VPEConf0 Per-V PE multi-thread configuration MIPS®MT ASE Required (MIPSMT
information Specification ASE); Optiona (Oth-
ers)
1 3 VPEConfl Per-V PE multi-thread configuration MIPS®MT ASE Optional
information Specification
1 4 Y QMask Per-VPE register defining which YIELD | MIPS®MT ASE Required (MIPSMT
qualifier bits may be used without gener- | Specification ASE); Optiona (Oth-
ating an exception ers)

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 85

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level

1 5 VPESchedule Per-V PE register to manage scheduling MIPS®BMT ASE Optional
of a VPE within a processor Specification

1 6 VPEScheFBack | Per-VPE register to provide scheduling MIPS®MT ASE Optional
feedback to software Specification

1 7 VPEOpt Per-V PE register to provide control over MIPS®MT ASE Optional
optional features, such as cache partition- | Specification
ing control

2 0 EntryLoO Low-order portion of the TLB entry for Section 9.6 on page Required (TLB
even-numbered virtual pages 94 MMU); Optional

(Others)

2 1 TCStatus Per-TC status information, including cop- | MIPS®MT ASE Required (MIPSMT
ies of thread-specific bits of Status and Specification ASE); Optional (Oth-
EntryHi registers. ers)

2 2 TCBind Per-TC information about TC ID and MIPS®MT ASE Required (MIPSMT
VPE hinding Specification ASE); Optiona (Oth-

ers)

2 3 TCRestart Per-TC value of restart instruction MIPS®MT ASE Required (MIPSMT
address for the associated thread of exe- Specification ASE); Optional (Oth-
cution ers)

2 4 TCHalt Per-TC register controlling Halt state of MIPS®MT ASE Required (MIPSMT
TC Specification ASE); Optional (Oth-

ers)

2 5 TCContext Per-TC read/write storage for operating MIPS®BMT ASE Required (MIPSMT
system use Specification ASE); Optiona (Oth-

ers)

2 6 TCSchedule Per-TC register to manage scheduling of MIPS®BMT ASE Optional
aTC Specification

2 7 TCScheFBack Per-TC register to provide scheduling MIPS®BMT ASE Optional
feedback to software Specification

3 0 EntryLol Low-order portion of the TLB entry for Section 9.6 on page Required (TLB
odd-numbered virtual pages 94 MMU); Optional

(Others)

3 7 TCOpt Per-TC register to provide control over MIPS®BMT ASE Optional
optional features, such as cache partition- | Specification
ing control

4 0 Context Pointer to page table entry in memory Section 9.7 on page Required (TLB

99 MMU); Optional
(Cthers)
4 1 ContextConfig Context register configuration SmartMIPS ASE Required (Smart-
Specification and MIPS ASE);
Section 9.8 on page Optiona (Others)
103

86 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.1 Coprocessor 0 Register Summary

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level

4 2 UserLocd User information that can be written by Section 9.9 on page Recommended
privileged software and read via 105 (Release 2)
RDHWR register 29. If the processor
implements the MIPS® MT ASE, thisis
aper-TC register.

4 3 XContext register configuration in 64-bit Reserved
implementations

5 0 PageMask Control for variable page sizein TLB Section 9.10 on Required (TLB
entries page 106 MMU); Optional

(Cthers)
5 1 PageGrain Control for small page support Section 9.11 on Required (Smart-
page 108 and Smart- MIPS ASE);
MIPS ASE Specifi- Optional (Release 2)
cation

6 0 Wired Controls the number of fixed (“wired”) Section 9.12 on Required (TLB

TLB entries page 111 MMU); Optional
(Cthers)

6 1 SRSConf0 Per-V PE register indicating and option- MIPS®BMT ASE Required (MIPSMT
aly controlling shadow register set con- Specification ASE); Optiona (Oth-
figuration ers)

6 2 SRSConf1 Per-V PE register indicating and option- MIPS®MT ASE Optional
aly controlling shadow register set con- Specification
figuration

6 3 SRSConf2 Per-V PE register indicating and option- MIPS®MT ASE Optional
aly controlling shadow register set con- Specification
figuration

6 4 SRSConf3 Per-V PE register indicating and option- MIPS®MT ASE Optional
ally controlling shadow register set con- Specification
figuration

6 5 SRSConf4 Per-V PE register indicating and option- MIPS®MT ASE Optional
aly controlling shadow register set con- Specification
figuration

7 0 HWREna Enables access viathe RDHWR instruc- Section 9.13 on Required (Release 2)
tion to selected hardware registers page 113

7 1-7 Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent Section 9.14 on Required
address-related exception page 115

9 0 Count Processor cycle count Section 9.15 on Required

page 116

9 6-7 Available for implementation dependent Section 9.16 on Implementation

user page 116 Dependent

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

87

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level
10 0 EntryHi High-order portion of the TLB entry Section 9.17 on Required (TLB
page 117 MMU); Optional
(Cthers)
11 0 Compare Timer interrupt control Section 9.18 on Required
page 119
11 6-7 Available for implementation dependent Section 9.19 on Implementation
user page 119 Dependent
12 0 Status Processor status and control Section 9.20 on Required
page 120
12 1 IntCtl Interrupt system status and control Section 9.21 on Required (Release 2)
page 127
12 2 SRSCtl Shadow register set status and control Section 9.22 on Required (Release 2)
page 130
12 3 SRSMap Shadow set |PL mapping Section 9.23 on Required (Release 2
page 133 and shadow sets
implemented)
12 4 View_IPL Contiguous view of IM and IPL fields. MIPS® MCU ASE Required (MIPS
Specification MCU ASE);
Optiona (Others)
12 5 SRSMap2 Shadow set |PL mapping MIPS® MCU ASE Required (MIPS
Specification MCU ASE);
Optiona (Others)
13 0 Cause Cause of last general exception Section 9.24 on Required
page 134
13 4 View_RIPL Contiguous view of 1P and RIPL fields. MIPS® MCU ASE Required (MIPS
Specification MCU ASE);
Optiona (Others)
14 0 EPC Program counter at last exception Section 9.25 on Required
page 140
15 0 PRId Processor identification and revision Section 9.26 on Required
page 142
15 1 EBase Exception vector base register Section 9.27 on Required (Release 2)
page 144
15 2 CDMMBase Common Device Memory Map Base Section 9.28 on Optional
register page 146
15 3 CMGCRBase Coherency Manager Global Control Reg- | Section 9.29 on Optional
ister Base register page 148
16 0 Config Configuration register Section 9.30 on Required
page 149

88 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.1 Coprocessor 0 Register Summary

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level
16 1 Configl Configuration register 1 Section 9.31 on Required
page 152
16 2 Config2 Configuration register 2 Section 9.32 on Optional
page 156
16 3 Config3 Configuration register 3 Section 9.33 on Optional
page 159
16 3 Configd Configuration register 4 Section 9.34 on Optional
page 165
16 6-7 Available for implementation dependent Section 9.35 on Implementation
user page 169 Dependent
17 0 LLAddr Load linked address Section 9.36 on Optional
page 170
18 0-n WatchLo Watchpoint address Section 9.37 on Optional
page 171
19 0-n WatchHi Watchpoint control Section 9.38 on Optional
page 173
20 0 XContext in 64-bit implementations Reserved
21 all Reserved for future extensions Reserved
22 all Available for implementation dependent Section 9.39 on Implementation
use page 175 Dependent
23 0 Debug EJTAG Debug register EJTAG Specification Optional
23 1 TraceControl PDtrace control register PDtrace Specifica Optional
tion
23 2 TraceControl 2 PDtrace control register PDtrace Specifica Optional
tion
23 3 UserTraceDatal | PDtrace control register PDtrace Specifica Optional
tion
23 4 TracelBPC PDtrace control register PDtrace Specifica Optional
tion
23 5 TraceDBPC PDtrace control register PDtrace Specifica Optional
tion
23 6 Debug?2 EJTAG Debug?2 register EJTAG Specification Optional
24 0 DEPC Program counter at last EJTAG debug EJTAG Specification Optional
exception
24 2 TraceContol3 PDtrace control register PDtrace Specifica Optional
tion
24 3 UserTraceData?2 | PDtrace control register PDtrace Specifica Optional
tion

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

89

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register Register
Number Sell Name Function Reference Compliance Level
25 0-n PerfCnt Performance counter interface Section 9.43 on Recommended
page 180
26 0 ErrCtl Parity/ECC error control and status Section 9.44 on Optional
page 184
27 0-3 CacheErr Cache parity error control and status Section 9.45 on Optional
page 185
28 even | TagLo Low-order portion of cachetag interface | Section 9.46 on Required (Cache)
selects page 186
28 odd Datalo Low-order portion of cache datainterface | Section 9.47 on Optional
selects page 187
29 even TagHi High-order portion of cachetag interface | Section 9.48 on Required (Cache)
selects page 188
29 odd DataHi High-order portion of cache datainter- Section 9.49 on Optional
selects face page 189
30 0 ErrorEPC Program counter at last error Section 9.50 on Required
page 190
31 0 DESAVE EJTAG debug exception save register EJTAG Specification Optional
31 2-7 K Scratchn Scratch Registers for Kernel Mode Section 9.52 on Optional; KScratchl
page 194 at select 2 and
KScratch2 at select 3
are recommended.

1. Any select (Sel) value not explicitly noted as available for implementati on-dependent use is reserved for future use by the Architec-

ture.

9.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of thefield. For the read/write properties of the field, the following notation is used:

Table 9.2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of thisfield are visible by software read. Software updates of thisfield are vis-
ible by hardware read.
If the Reset State of thisfield is“Undefined”, either software or hardware must initialize the

value before the first read will return a predictable value. This should not be confused with the
formal definition of UNDEFINED behavior.

90 MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.3 Writing CPU Registers

Table 9.2 Read/Write Bit Field Notation

Read/Write
Notation

Hardware Interpretation

Software Interpretation

R

A field whichiseither static or is updated only
by hardware.

If the Reset State of thisfield is either “0”,
“Preset”, or “Externally Set”, hardware initial-
izesthisfield to zero or to the appropriate
state, respectively, on powerup. The term “Pre-
set” is used to suggest that the processor estab-
lishes the appropriate state, whereas the term
“Externally Set” is used to suggest that the
state is established viaan external source (e.g.,
personality pins or initialization bit stream).
These terms are suggestions only, and are not
intended to act as arequirement on the imple-
mentation.

If the Reset State of thisfield is“Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
isignored by hardware. Software may write
any valueto thisfield without affecting hard-
ware behavior. Software reads of thisfield
return the last value updated by hardware.

If the Reset State of thisfield is“Undefined”,
software reads of thisfield result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

A field which hardware does not update, and
for which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero val-
ues to thisfield may result in UNDEFINED
behavior of the hardware. Software reads of
thisfield return zero aslong as al previous
software writes are zero.

If the Reset State of thisfield is“Undefined”,
software must write this field with zero before
it is guaranteed to read as zero.

9.3 Writing CPU Registers

With certain restrictions, software may assume that it can validly write the value read from a coprocessor O register
back to that register without having unintended side effects. This rule means that software can read a register, modify
one field, and write the value back to the register without having to consider the impact of writes to other fields. Pro-

cessor designers should take thisinto consideration when using coprocessor O register fields that are reserved for

implementations and make sure that the use of these bitsis consistent with software assumptions.

The most significant exception to this rule is a situation in which the processor modifies the register between the soft-

ware read and write, such as might occur if an exception or interrupt occurs between the read and write. Software

must guarantee that such an event does not occur.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

91

9.4 Index Register (CPO Register 0, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Index register is a 32-bit read/write register which contains the index used to accessthe TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of
TLB entries that are implemented. The minimum value for TLB-based MMUs s Ceiling(Log2(TLBEntries)). For
example, six bits are required for a TLB with 48 entries).

The operation of the processor is UNDEFINED if avalue greater than or equal to the number of TLB entriesis writ-
ten to the Index register.

Figure 9-1 shows the format of the Index register; Table 9.3 describes the Index register fields.

Figure 9-1 Index Register Format
31 n n-1 0

P 0 Index

Table 9.3 Index Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance

P 31 Probe Failure. Hardware writes this bit during execu- R Undefined Required
tion of the TLBP instruction to indicate whether aTLB
match occurred:

Encoding Meaning

0 A match occurred, and the Index field
contains the index of the matching
entry

1 No match occurred and the Index field
isUNPREDICTABLE

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

Index n-1..0 TLB index. Software writes thisfield to provide the R/W Undefined Required
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Hardware writes this field with the index of the match-
ing TLB entry during execution of the TLBP instruc-
tion. If the TLBP fails to find a match, the contents of
thisfield are UNPREDICTABLE.

92 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.5 Random Register (CPO Register 1, Select 0)

9.5 Random Register (CPO Register 1, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Random register isaread-only register whose value is used to index the TLB during aTLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

* Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register isthe first entry available to be written by a
TLB Write Random operation.

* Anupper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for
the Random register isimplementation-dependent.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register
iswritten.

Figure 9-2 shows the format of the Random register; Table 9.4 describes the Random register fields.

31

Figure 9-2 Random Register Format

Random

Table 9.4 Random Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State Compliance
0 31.n Must be written as zero; returns zero on read. 0 0 Reserved
Random n-1..0 TLB Random Index R TLB Entries- 1 Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

93

9.6 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Compliance Level: EntryLoO is Required for a TLB-based MMU; Optional otherwise.
Compliance Level: EntryLo1l is Required for a TLB-based MMU; Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBW!I, and TLBWR
instructions. EntryLoO holds the entries for even pages and EntryLo1 holds the entries for odd pages.

Software may determine the value of PABITS by writing all onesto the EntryLoO or EntryLol registers and reading
the value back. Bitsread as“1” from the PFN field allow software to determine the boundary between the PFNand
Fill fields to calculate the value of PABITS

The contents of the EntryLo0 and EntryLol registers are not defined after an address error exception and some fields
may be modified by hardware during the address error exception sequence. Software writes of the EntryHi register
(viaMTCO) do not cause the implicit update of address-related fields in the BadVVAddr or Context registers.

For Release 1 of the Architecture, Figure 9-3 shows the format of the EntryLoO and EntryLol registers; Table 9.5
describes the EntryLoO and EntryLo1l register fields.

For Release 2 of the Architecture, Figure 9-4 shows the format of the EntryLoO and EntryLol registers; Table 9.6
describes the EntryLoO and EntryLo1l register fields.

For Release 3 of the Architecture, Figure 9-5 shows the format of the EntryLoO and EntryLol registers; Figure 9.8
describes the EntryLoO and EntryLo1l register fields.

Figure 9-3 EntryLoO, EntryLol Register Format in Release 1 of the Architecture
31 30 29 6 5 3 2 1 0

Fill PFN C DIV|G

Table 9.5 EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance

Fill 31..30 | Thesebitsareignored on write and return zero on read. R 0 Required
The boundaries of thisfield change as a function of the
value of PABITS See Table 9.7 for more information.

PFN 29.6 Page Frame Number. Corresponds to bits PABITS-1..12 R/W Undefined Required
of the physical address, where PABITSisthewidth of the
physical addressin bits. The boundaries of thisfield
change as afunction of the value of PABITS. See Table
9.7 for more information.

C 5.3 Cacheability and Coherency Attribute of the page. See R/W Undefined Required

Table 9.9 below.

94 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.6 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.5 EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architecture

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

D

2

“Dirty” bit, indicating that the pageiswritable. If this bit
isaone, stores to the page are permitted. If thisbitisa
zero, stores to the page cause a TLB Modified exception.
Kernel software may use this bit to implement paging
algorithms that require knowing which pages have been
written. If this bit is always zero when a page isinitialy
mapped, the TLB Modified exception that results on any
store to the page can be used to update kernel data struc-
tures that indicate that the page was actually written.

R/W

Undefined

Required

Valid hit, indicating that the TLB entry, and thus the vir-
tual page mapping are valid. If thisbit is a one, accesses
to the page are permitted. If thisbit is a zero, accessesto
the page cause a TLB Invalid exception.

RIW

Undefined

Required

Global bit. Ona TLB write, the logical AND of the G
bits from both EntryLoO and EntryLol becomesthe G
bitinthe TLB entry. If the TLB entry G bitisaone,
ASID comparisons areignored during TLB matches. On
aread from a TLB entry, the G bits of both EntryLo0O
and EntryLol reflect the state of the TLB G hit.

RIW

Undefined

Required (TLB
MMU)

31 30 29

Figure 9-4 EntryLoO, EntryLol Register Format in Release 2 of the Architecture

6 5

3 2 1 O

Fill

PFN

DIV|G

Table 9.6 EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecture

The boundaries of thisfield change as afunction of the
value of PABITS See Table 9.7 for more information.

Fields
Read /
Name Bits Description Write Reset State Compliance
Fill 31..30 | Thesehitsareignored on write and return zero on read. R 0 Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

95

Table 9.6 EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecture

Fields
Read /
Write

Name Bits Description Reset State Compliance

PFN 29..6 Page Frame Number. Thisfield contains the physical R/W Undefined
page number corresponding to the virtual page.

If the processor is enabled to support 1KB pages
(Config3gp = 1 and PageGraingsp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-

inition to make room for PA11 10)-

If the processor is not enabled to support 1KB pages
(Config3sp = 0 or PageGrainggp = 0), the PFN field cor-
responds to bits 35..12 of the physical address.

The boundaries of thisfield change as afunction of the
value of PABITS See Table 9.7 for more information.

Required

The definition of thisfield is unchanged from Release 1. R/W Undefined

See Table 9.5 above and Table 9.9 below.

Required

The definition of thisfield is unchanged from Release 1. R/W Undefined

See Table 9.5 above.

Required

The definition of thisfield is unchanged from Release 1. R/W Undefined

See Table 9.5 above.

Required

The definition of thisfield is unchanged from Release 1. R/W Undefined

See Table 9.5 above.

Required (TLB
MMU)

Table 9.7 shows the movement of the Fill and PFN fields as afunction of 1KB page support enabled, and the value of
PABITS. Note that in implementations of Release 1 of the Architecture, thereis no support for 1KB pages, so only the
first row of the table appliesto Release 1.

Table 9.7 EntryLo Field Widths as a Function of PABITS

1KB Page Corresponding EntryLo Field Bit Ranges
Support Release 2
Enabled? PABITS Value Fill Field PFN Field Required?
No 36 > PABITS> 12 31..(30-(36-PABITY) (29-(36-PABITY))..6 No
Example: Example:
31..30if PABITS= 36 29..6if PABITS=36
31..7if PABITS=13 6..6 if PABITS=13
EntryL0yg 6 = PAgs. 12
Yes 34> PABITS> 10 31..(30-(34-PABITY) (29-(34-PABITY))..6 Yes
Example: Example:
31..30if PABITS= 34 29..6if PABITS= 34
31..7if PABITS=11 6..6if PABITS=11
EntryL.09 6 = PA33.10

Figure 9-5 EntryLoO, EntryLol Register Format in Release 3 of the Architecture

31 30 29

6

5 3 2 1 O

RI| XI

PFN

C DIV|G

96 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.6 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.8 EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance

Fill 31..30 These hits are ignored on write and return zero on read. R 0 Required if RI
The boundaries of thisfield change as a function of the and X| fieldsare
value of PABITS. See Table 9.7 for more information. not imple-

mented.

RI 31 Read Inhibit. If thisbitissetina TLB entry, an attempt, R/W 0 Required by
other than aM|1PS16 PC-relative load, to read data on SmartMIPS
the virtual page causesaTLB Invalid or aTLBRI excep- ASE; Optiona
tion, evenif theV (Valid) bit isset. The Rl bitiswritable otherwise
only if the RIE bit of the PageGrain register is set. If the
RIE bit of PageGrain is not set, the RI bit of If not imple-
EntryLoO/EntryLo1l is set to zero on any write to the mented, this bit
register, regardless of the value written. location is part

of the Fill field.
Thisbit is optional and its existence is denoted by the
Config3ry, or Config3 gy register fields.

Xl 30 Execute Inhibit. If thishbitissetinaTLB entry, an R/W 0 Required by
attempt to fetch an instruction or to load MIPS16 PC-rel- SmartMIPS
ative data from the virtual page causesa TLB Invalid or ASE; Optional
aTLBXI exception, even if the V (Valid) bit isset. The otherwise
Xl bit iswritable only if the XIE bit of the PageGrain
register is set. If the XIE bit of PageGrain is not set, the If not imple-
Xl bit of EntryLoO/EntryLo1 is set to zero on any write mented, this bit
to the register, regardless of the value written. location is part

of the Fill field.
Thisbit is optional and its existence is denoted by the
Config3ry, or Config3 gy register fields.
PFN 29..6 Page Frame Number. Thisfield contains the physical R/W Undefined Required
page number corresponding to the virtual page.
If the processor is enabled to support 1KB pages
(Config3sp = 1 and PageGraingsp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-
inition to make room for PA 17 10)-
If the processor is not enabled to support 1KB pages
(Config3sp = 0 or PageGrainggp = 0), the PFN field cor-
responds to bits 35..12 of the physical address.
The boundaries of thisfield change as afunction of the
value of PABITS See Table 9.7 for more information.

C 5.3 The definition of thisfield is unchanged from Release 1. R/W Undefined Required
See Table 9.5 above and Table 9.9 below.

D 2 The definition of thisfield is unchanged from Release 1. R/W Undefined Required
See Table 9.5 above.

\% 1 The definition of thisfield is unchanged from Release 1. R/W Undefined Required
See Table 9.5 above.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

97

Table 9.8 EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance
G 0 The definition of thisfield is unchanged from Release 1. R/W Undefined Required (TLB
See Table 9.5 above. MMU)

Programming Note:

In implementations of Release 2 of the Architecture (and subsequent releases), the PFN field of both the EntryLo0O
and EntryLol registers must be written with zero and the TLB must be flushed before each instance in which the
value of the PageGrain register is changed. This operation must be carried out while running in an unmapped

address space. The operation of the processor is UNDEFINED if this sequence is not done.

Table 9.9 lists the encoding of the C field of the EntryLoO and EntryLo1 registers and the KO field of the Config reg-
ister. An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple-
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In
other cases, the operation of the processor is UNDEFINED if software usesa TLB mapping (either for an instruction
fetch or for aload/store instruction) which was created with a C field encoding which is RESERVED for the imple-

mentation.

Table 9.9 lists the required and optional encodings for the cacheability and coherency attributes.

98 MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Table 9.9 Cacheability and Coherency Attributes

Cacheability and Coherency Attributes
C(5:3) Value With Historical Usage Compliance
0 Available for implementation dependent use Optional
1 Available for implementation dependent use Optional
2 Uncached Required
3 e Cacheable Required
4 Available for implementation dependent use Optional
5 Available for implementation dependent use Optional
6 Available for implementation dependent use Optional
7 Available for implementation dependent use Optional

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.7 Context Register (CPO Register 4, Select 0)

9.7 Context Register (CPO Register 4, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Context register is aread/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVVAddr register.

If Config3crxtc =0 and Config3gy, =0 then the Context register is organized in such away that the operating sys-

tem can directly reference a 16-byte structure in memory that describes the mapping. For PTE structures of other
sizes, the content of this register can be used by the TLB refill handler after appropriate shifting and masking.

If Config3crxtc =0 and Config3gy =0 then a TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes
bits VA3, 13 of the virtual addressto be written into the BadVPN2 field of the Context register. The PTEBasefield is
written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be mod-
ified by hardware during the address error exception sequence.

Figure 9-6 shows the format of the Context Register when Config3c1x1c =0 and Config3g, =0; Table 9.10
describes the Context register fields Config3crx1c =0 and Config3gy; =0.

Figure 9-6 Context Register Format when Config3c1x1c=0 and Config3gy=0
31 23 22 4 3 0

PTEBase BadVPN2 0

Table 9.10 Context Register Field Descriptions when Config3ctxtc=0 and Config3gy,=0

Fields
Read /
Name Bits Description Write Reset State Compliance

PTEBase 31..23 Thisfield isfor use by the operating system and is R/W Undefined Required
normally written with a value that allows the oper-
ating system to use the Context Register asa
pointer into the current PTE array in memory.

BadVPN2 22.4 Thisfield iswritten by hardware on a TLB excep- R Undefined Required
tion. It contains bits VAg; 13 of the virtual address
that caused the exception.

0 3.0 Must be written as zero; returns zero on read. 0 0 Reserved

If Config3crxTc =1 or Config3gy =1 then the pointer implemented by the Context register can point to any

power-of-two-sized PTE structure within memory. This alowsthe TLB refill handler to use the pointer without addi-
tional shifting and masking steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 99

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

of 32-bit PTEswithin asingle-level page table scheme, or to afirst level page directory entry in atwo-level lookup
scheme.

If Config3ctxTc =1 or Config3gy, =1 then the a TLB exception (Refill, Invalid, or Modified) causes bits
VAz1:31-((x-Y)-1) o be written to avariable range of bits“(X-1):Y" of the Context register, where this range corre-

sponds to the contiguous range of set bits in the ContextConfig register. Bits 31:X are R/W to software, and are unaf-
fected by the exception. Bits Y-1:0 are unaffected by the exception. If X =23 and Y =4, i.e. bits22:4 are setin
ContextConfig, the behavior isidentical to the standard MIPS32 Context register (bits 22:4 are filled with VA3;.13).

Although the fields have been made variable in size and interpretation, the M1PS32 nomenclature is retained. Bits
31:X arereferred to asthe PTEBase field, and bits X-1:Y arereferred to as BadVPN2.

If Config3gy =1 then Bits Y-1:0 will ways read as 0.

The value of the Context register is UNPREDICTABL E following a modification of the contents of the
ContextConfig register.

Figure 9-7 shows the format of the Context Register when Config3crxtc =1 or Config3gy =1; Table 9.11 describes
the Context register fields Config3crxtc =1 or Config3gy =1.

Figure 9-7 Context Register Format when Config3ctxtc=1 or Config3gy=1
31 X X1 Y Y1 0

PTEBase BadVPN2 0

Table 9.11 Context Register Field Descriptions when Config3ctxtc=1 or Config3gy=1

Fields
Read / Reset Complianc
Name Bits Description Write State e
PTEBase | Variable, 31:X where | Thisfield isfor use by the operating system R/W Undefined Required
Xin{31.0}. and is normally written with a value that
May be null. allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region containing the virtual
address which caused the exception.
BadVPN2 | Variable, (X-1):Y Thisfield iswritten by hardwareonaTLB R Undefined Required
where exception. It contains bits VAg:31((x-y)-1) Of
Xin{32.1} and the virtual address that caused the exception.
Y in{31..0}.
May be null.
0 Variable, (Y-1):0 Must be written as zero; returns zero on read. 0 0 Reserved
where
Y in{31:1}.
May be null.

100MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.7 Context Register (CPO Register 4, Select 0)

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 101

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

102MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.8 ContextConfig Register (CPO Register 4, Select 1)

9.8 ContextConfig Register (CPO Register 4, Select 1)

31

Compliance Level: Optional.

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected field of the Context register are R/W to software and serve asthe PTEBase field. Bits below the selected field
of the Context register will be unaffected by TLB exceptions.

The field to contain the virtual address index is defined by a single block of contiguous non-zero bits within the
ContextConfig register's Virtuallndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bits to be unaffected by TLB exceptions. Any zero hits to the left of the most significant
one bit cause the corresponding Context register bits to be R/W to software and unaffected by TLB exceptions.

If Config3g) 1S Set, then any zero bitsto the right of the least significant one bit causes the corresponding Context reg-
ister bitsto be read as zero.

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. All implementations of the
ContextConfig register must allow for the emulation of the MIPS32/microM|PS32 fixed Context register configura-
tion.

This paragraph describes restrictions on how the ContextConfig register may be programmed. The set bits of
ContextConfig define the BadVPN2 field within the Config register. The BadVPN2 field cannot contain address bits
which are used to index a memory location within the even-odd page pairs used by the JTLB entries. This limits the
least significant writeable bit within ContextConfig to the bits that represents BadV PN2 of the smallest implemented
page size. For example, if the smallest implemented page sizeis4KB, virtual address bit 13 isthe least significant bit
of the BadVPN2 field. This example would restrict the least significant writeable bit within ContextConfig to be bit 4
(corresponds to virtual address bit 13) or larger. Another example: if 1KB was the smallest implemented page size
then the least significant writeable bit within ContextConfig would be bit 2 or larger.

A value of all zeroes means that the full 32 bits of the Context register are R/W for software and unaffected by TLB
exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3ctx1c Or Config3gy register fields.
Figure 9.8 shows the formats of the ContextConfig Register; Table 9.12 describes the ContextConfig register fields.

Figure 9.8 ContextConfig Register Format

VirtualIndex

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 103

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.12 ContextConfig Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
Virtua Index 31:0 A mask of 0to 32 contiguous 1 bitsin this field causes R/W 0x00T7ffffO Required

the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
aTLB exception.

Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

Table 9.13 describes some useful ContextConfig values.

Table 9.13 Recommended ContextConfig Values

Page Table
Value Organization Page Size PTE Size Compliance
0x007ffffO Single Level 4K 64 bits/page REQUIRED
0x007ffff8 Single Level 2K 32 hits/page RECOMMENDED

104MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.9 UserLocal Register (CPO Register 4, Select 2)

9.9 UserLocal Register (CPO Register 4, Select 2)

31

Compliance L evel: Recommended.

The UserLocal register is aread-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

If the MIPS® MT ASE isimplemented, the UserLocal register isinstantiated per TC.

Thisregister only exists if the Config3j, g, register field is set.

Figure 9-9 shows the format of the UserLocal register; Table 9.14 describes the UserLocal register fields.

Figure 9-9 UserLocal Register Format

UserInformation

Table 9.14 UserLocal Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
UserInfor- 31.0 Thisfield contains software information that is not inter- R/W Undefined Required
mation preted by the hardware.

Programming Notes

Privileged software may write this register with arbitrary information and make it accessable to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to
enable unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer
to athread-specific storage block that is obtained viathe RDHWR register.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 105

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.10 PageMask Register (CPO Register 5, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The PageMask register is aread/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 9.16. Figure 9-10 shows the format of the
PageMask register; Table 9.15 describes the PageMask register fields.

Figure 9-10 PageMask Register Format
31 29 28 13 12 11 10 0

0 Mask MaskX 0

Table 9.15 PageMask Register Field Descriptions

Fields

Read /
Name Bits Description Write Reset State Compliance

Mask 28.13 The Mask field isabit mask inwhicha“1” bit R/W Undefined Required
indicates that the corresponding bit of the vir-
tual address should not participate in the TLB
match.

MaskX 12.11 In Release 2 of the Architecture (and subse- R/W 0 Required (Release
guent releases), the MaskX field is an exten- (See Description) 2)

sion to the Mask field to support 1KB pages
with definition and action analogous to that of
the Mask field, defined above.

If 1KB pages are enabled (Config3gp = 1 and
PageGrainggp = 1), these bits are writable and
readable, and their values are copied to and
from the TLB entry on a TLB write or read,
respectively.

If 1KB pages are not enabled (Config3gp =0
or PageGrainggp = 0), these bits are not writ-
able, return zero on read, and the effect on the
TLB entry on awriteisasif they were written
with the value Ob11.

In Release 1 of the Architecture, these bits
must be written as zero, return zero on read,
and have no effect on the virtual address trans-
lation.

0 31..29, Ignored on write; returns zero on read. R 0 Required

10..0

106MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.10 PageMask Register (CPO Register 5, Select 0)

Table 9.16 Values for the Mask and MaskX?! Fields of the PageMask Register

Page Size Values for Mask field
(Isb of value is located at Values for MaskX?
PageMask3) field

1KByte 0x0 0x0
4 KByte 0x0 0x3
16 KByte 0x3 0x3
64 KByte OxF 0x3
256 KByte Ox3F 0x3
1 MByte OXFF 0x3
4MByte OX3FF 0x3
16 MByte OXFFF 0x3
64 MByte OX3FFF 0x3
256 MByte OXFFFF 0x3

1. PageMasky, 11 = PageMaskyax €Xists only on implementations of Release 2 of the architec-
ture and are treated as if they had the value Ob11 if 1K pages are not enabled (Config3gp = 0 or

P@eGral Negp = O)

It is implementation dependent how many of the encodings described in Table 9.16 are implemented. All processors
must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, aread of
the PageMask register must return zeros in al bits that correspond to encodings that are not implemented, thereby
potentially returning a value different than that written by software.

Software may determine which page sizes are supported by writing al ones to the PageMask register, then reading
the value back. If apair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor isSUNDEFINED if software loads the Mask field with a value other than one of those listed in Table 9.16, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures

Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the MaskX field of the PageMask
register must be written with Ob11 and the TLB must be flushed before each instance in which the value of the
PageGrain register is changed. This operation must be carried out while running in an unmapped address space. The
operation of the processor is UNDEFINED if this sequence is not done.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 107

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.11 PageGrain Register (CPO Register 5, Select 1)

Compliance Level: Required for implementations of Release 2 (and subsequent releases) of the Architecture that
include TLB-based MMUs and support 1KB pages, the XI/RI TLB protection bits; Required for SmartMIPS™ ASE;
otherwise Optional.

The PageGrain register is aread/write register used for enabling 1KB page support, the XI/RI TLB protection bhits.
The PageGrain register is present in both the SmartMIPS™ ASE, and in Release 2 (and subsequent releases) of the
Architecture. As such, the description below only describes the fields relevant to Release 2 of the Architecture. In
implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definitions take prece-
dence. Figure 9-11 shows the format of the PageGrain register; Table 9.17 describes the PageGrain register fields.

Figure 9-11 PageGrain Register Format
31 30 29 28 27 26 13 12 8 7 0

RIE | XIE |ELPA|ESPIEC 0 ASE 0

Table 9.17 PageGrain Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State | Compliance
RIE 31 Read Inhibit Enable. R/W 0 Required by
- - or SmartMIPS
Encoding Meaning R ASE:

0 RI bit of the EntryLo0O and EntryLol Optional
registersis disabled and not writeable otherwise
by software.

1 Rl bit of the EntryLo0 and EntryLol

registersis enabled.

Thisbit is optional. The existence of this bit is denoted
by either the SM or RXI bitswithin the Config3 register.
If this bit is not settable then the RI bit within the
EntryLo* registers is not implemented.

108MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.11 PageGrain Register (CPO Register 5, Select 1)

Table 9.17 PageGrain Register Field Descriptions

Encoding Meaning
0 1K B page support is not enabled
1 1KB page support is enabled

If thishit isa 1, the following changes occur to coproces-

sor O registers:

* ThePFN field of the EntryLoO and EntryLo1l regis-
ters holds the physical address down to bit 10 (the
field is shifted left by 2 bits from the Release 1 defini-
tion)

e The MaskX field of the PageMask register is writ-
able and is concatenated to the right of the Mask field
to form the “don’t care” mask for the TLB entry.

* The VPN2X field of the EntryHi register iswritable
and hits 12..11 of the virtual address.

e Thevirtual address translation algorithm is modified
to reflect the smaller page size.

If Config3gp = 0, 1KB pages are not implemented, and

this bit isignored on write and returns zero on read.

Fields
Read /
Name Bits Description Write Reset State | Compliance
XIE 30 Execute Inhibit Enable. R/W 0 Required by
- - or SmartMIPS
Encoding Meaning R ASE:

0 Xl bit of the EntryLo0 and EntryLo1l Optional
registersis disabled and not writeable otherwise
by software.

1 Xl bit of the EntryLoO and EntryLol
registersis enabled.

Thisbit is optional. The existence of this bit is denoted
by either the SM or RXI bitswithin the Config3 register.
If thisbit is not settable then the XI bit within the
EntryLo* registers is not implemented.

ASE 12.8 These fields are control features of the SmartMIPS™ 0 0 Required
ASE and are not used in implementations of Release 2 of
the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.

ELPA 29 Used to enable support for large physical addressesin R 0 Required
MIPS64 processors; not used by MIPS32 processors.
Thisbit isignored on write and returns zero on read.

ESP 28 Enables support for 1KB pages. R/W 0 Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

109

Table 9.17 PageGrain Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State | Compliance

IEC 27 Enables unique exception codes for the Read-Inhibit and R/W 0 Required
Execute-Inhibit exceptions.

Encoding Meaning

0 Read-Inhbit and Execute-Inhibit
exceptions both use the TLBL excep-
tion code.

1 Read-Inhibit exceptions use the
TLBRI exception code.
Execute-Inhibit exceptions use the
TLBXI exception code

For implementations which follow the SmartMIPS ASE,
this bit isignored by the hardware, meaning the
Read-Inhibit and Execute-1nhibit exceptions can only
use the TLBL exception code.

0 26..13, 7..0 | Must be written as zero; returns zero on read. 0 0 Reserved

Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the following fields must be written
with the specified values, and the TLB must be flushed before each instance in which the value of the PageGrain
register is changed. This operation must be carried out while running in an unmapped address space. The operation of
the processor is UNDEFINED if this sequence is not done.

Field Required Value
EntryL 0Opgy, EntryLolpgy 0
EntryL 00pgpx, EntryLolpenx 0
PageM asky agcx Ob11
EntryHiypnax 0

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and
a subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

110MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.12 Wired Register (CPO Register 6, Select 0)

9.12 Wired Register (CPO Register 6, Select 0)

Compliance L evel: Required for TLB-based MM Us; Optional otherwise.

The Wired register is aread/write register that specifies the boundary between the wired and random entriesin the
TLB as shown in Figure 9-12.

Figure 9-12 Wired And Random Entries In The TLB

Entry TI:BSize-1 A
:
|
|
|
|
|
: 5
L] o
: 5
. o
|
|
|
|
|
|
|
Wired Register —_— Entry 10 Y
:
|
|
[] ©
' e
: =
|
|
Entry O

The width of the Wired field is calculated in the same manner as that described for the Index register. Wired entries
are fixed, non-replaceabl e entries which are not overwritten by a TLBWR instruction.Wired entries can be overwrit-
ten by a TLBWI instruction.

The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to
reset to its upper bound.

The operation of the processor is UNDEFINED if avalue greater than or equal to the number of TLB entriesiswrit-
ten to the Wired register.

Figure 9-12 shows the format of the Wired register; Table 9.18 describes the Wired register fields.

Figure 9-13 Wired Register Format
31 n n-l 0

0 Wired

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 111

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.18 Wired Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31.n Must be written as zero; returns zero on read. 0 0 Reserved
Wired n-1.0 | TLB wired boundary R/W 0 Required

112MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.13 HWREna Register (CPO Register 7, Select 0)

9.13 HWREnNa Register (CPO Register 7, Select 0)

Compliance Level: Required (Release 2).

The HWREna register contains a bit mask that determines which hardware registers are accessible viathe RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

Figure 9-14 shows the format of the HWREna Register; Table 9.19 describes the HWREna register fields.

Figure 9-14 HWREna Register Format
31 30 29 4 3 0

Impl Mask

Table 9.19 HWREnNa Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

31..30 Impl These bits enable access to the implementa- R/W 0 Optional - Reserved
tion-dependent hardware registers 31 and 30. for Implementations

If aregister is not implemented, the corresponding
bit returns a zero and isignored on write.

If aregister isimplemented, access to that register
isenabled if the corresponding bit in thisfieldisal
and disabled if the corresponding bit isaO.

Mask 29.0 Each bit in thisfield enables access by the RDHWR R/W 0 Required
instruction to a particular hardware register (which
may not be an actual register).

If RDHWR register ‘n’ is not implemented, bit ‘n’
of thisfield returns a zero and isignored on awrite.

If RDHWR register ‘n’ isimplemented, accessto
theregister isenabled if bit ‘n’ inthisfieldisal
and disabled if bit ‘n’ of thisfieldisaO.

See the RDHWR instruction for alist of valid hard-
ware registers.

Table 9.20 lists the RDHWR registers, and register
number ‘n’ correspondsto bit ‘n’ in thisfield.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 113

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.20 RDHWR Register Numbers

Register
Number Mnemonic Description Compliance
CPUNum Number of the CPU on which the program is currently running. This register Required
0 provides read access to the coprocessor 0 EBasecpynum field.
SYNCI_Step | Address step sizeto be used with the SYNCI instruction. See that instruc- Required
tion's description for the use of thisvalue. In the typical implementation, this
1 value should be zero if there are no caches in the system which must be syn-
chronize (either because there are no caches, or because the instruction cache
tracks writesto the data cache). In other cases, the return value should be the
smallest line size of the caches that must be synchronize.
5 cC High-resolution cycle counter. This register provides read access to the Required
coprocessor 0 Count Register.
CCRes Resolution of the CC register. This value denotes the number of cycles Required
between update of the register. For example:
CCRes Value Meaning
3 1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle
etc.
428 These registers numbers are reserved for future architecture use. Access Reserved
results in a Reserved Instruction Exception.
ULR User Local Register. Thisregister provides read access to the coprocessor 0 | Requiredif the
29 UserLocal register, if it isimplemented. In some operating environments, UserLocal
the UserLocal register is a pointer to a thread-specific storage block. register is
implemented
30-31 These register numbers are reserved for implementation-dependent use. If Optional
they are not implemented, access resultsin a Reserved Instruction Exception.

Using the HWREna register, privileged software may select which of the hardware registers are accessible viathe
RDHWR instruction. In doing so, aregister may be virtualized at the cost of handling a Reserved Instruction Excep-

tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide

direct accessto the Count register, accessto that register may be individually disabled and the return value can be

virtualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading

the value back. If abit reads back as a one, the processor implements that hardware register.

114MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.14 BadVAddr Register (CPO Register 8, Select 0)

9.14 BadVAddr Register (CPO Register 8, Select 0)

Compliance Level: Required.

The BadVVAddr register is aread-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

* Addresserror (AdEL or AdES)
e TLB Réfill

e TLBInvalid (TLBL, TLBS)

e TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
noneis an addressing error.

Figure 9-15 shows the format of the BadVVAddr register; Table 9.21 describes the BadVAddr register fields.

Figure 9-15 BadVAddr Register Format
31 0

BadVAddr

Table 9.21 BadVAddr Register Field Descriptions

Fields
Read/W
Name Bits Description rite Reset State | Compliance
BadVAddr 31.0 Bad virtual address R Undefined Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 115

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.15 Count Register (CPO Register 9, Select 0)

Compliance Level: Required.

The Count register acts as atimer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is afunction of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
SOrs.

The Count register can also be read via RDHWR register 2.
Figure 9-16 shows the format of the Count register; Table 9.22 describes the Count register fields.

Figure 9-16 Count Register Format
31 0

Count

Table 9.22 Count Register Field Descriptions

Fields
Read/W
Name Bits Description rite Reset State | Compliance
Count 31..0 Interval counter R/W Undefined Required

9.16 Reserved for Implementations (CPO Register 9, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CPOregister 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

116MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.17 EntryHi Register (CPO Register 10, Select 0)

9.17 EntryHi Register (CPO Register 10, Select 0)

Compliance L evel: Required for TLB-based MMU; Optional otherwise.
The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA3, 13 of the virtual addressto be written

into the VPN2 field of the EntryHi register. An implementation of Release 2 of the Architecture which supports 1KB
pages also writes VA 1, 11 into the VPN2X field of the EntryHi register. A TLBR instruction writes the EntryHi regis-

ter with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current
address space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of AS D
around use of the TLBR. Thisis especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPNX2 and VPN2 fields of the EntryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi register
(viaMTCO) do not cause the implicit write of address-related fieldsin the BadVAddr or Context registers.

Figure 9-17 shows the format of the EntryHi register; Table 9.23 describes the EntryHi register fields.

Figure 9-17 EntryHi Register Format
31 13 12 11 10 8 7 0

VPN2 VPN2X 0 ASID

Table 9.23 EntryHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

VPN2 31..13 | VAgz; 13 0f thevirtual address (virtual page number / 2). RIW Undefined Required

Thisfield iswritten by hardware on a TLB exception or
onaTLB read, and iswritten by software beforea TLB
write.

VPN2X 12.11 In Release 2 of the Architecture (and subseguent R/W 0 Required
releases), the VPN2X field is an extension to the VPN2 (Release 2 and
field to support 1KB pages. These bits are not writable 1KB Page Sup-
by either hardware or software unless Config3gp = 1 and port)
PageGrainggp = 1. If enabled for write, this field con-
tains VA1, 14 of the virtual address and is written by
hardware on a TLB exception or on aTLB read, and is
by software before a TLB write.

If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

0 10..8 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 117

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.23 EntryHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
ASID 7.0 Address space identifier. Thisfield is written by hard- R/W Undefined Required (TLB

ware on a TLB read and by software to establish the cur- MMU)
rent ASID value for TLB write and against which TLB
references match each entry’s TLB ASID field.

Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the VPN2X field of the EntryHi regis-
ter must be written with zero and the TLB must be flushed before each instance in which the value of the PageGrain
register is changed. This operation must be carried out while running in an unmapped address space. The operation of
the processor is UNDEFINED if this sequenceis not done.

118MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.18 Compare Register (CPO Register 11, Select 0)

9.18 Compare Register (CPO Register 11, Select 0)

31

Compliance Level: Required.

The Compare register actsin conjunction with the Count register to implement atimer and timer interrupt function.
The Compare register maintains a stable value and does not change on its own.

When the value of the Count register equals the value of the Compare register, an interrupt request is made. In
Release 1 of the architecture, this request is combined in an implementati on-dependent way with hardware interrupt 5
to set interrupt bit IP(7) in the Cause register. In Release 2 (and subsequent releases) of the Architecture, the pres-
ence of the interrupt is visible to software via the Causer, bit and is combined in an implementation-dependent way
with a hardware or software interrupt. For Vectored Interrupt Mode, the interrupt is at the level specified by the
|ntCt||pT| field.

For diagnostic purposes, the Compare register is aread/write register. In normal use however, the Compare register
iswrite-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt. Figure 9-18 shows
the format of the Compare register; Table 9.24 describes the Compare register fields.

Figure 9-18 Compare Register Format

Compare

Table 9.24 Compare Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Compare 31.0 Interval count compare value R/W Undefined Required

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
Compare register iswritten. See 6.1.2.1 “Software Hazards and the Interrupt System” on page 54.

9.19 Reserved for Implementations (CPO Register 11, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CPO register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architec-
ture.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 119

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.20 Status Register (CP Register 12, Select 0)

Compliance Level: Required.

The Status register is aread/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to “MIPS32
and microM1PS32 Operating Modes” on page 19 for adiscussion of operating modes, and “ Interrupts’ on page 43 for
adiscussion of interrupt modes.

Figure 9-19 shows the format of the Status register; Table 9.25 describes the Status register fields.

Figure 9-19 Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3..CUO|RPFR| RE| MX| 0 |BEV|TS|SR|NMI|ASE| Impl IM7..1M2 IM1..IMQ 0 UM| RO|ERL|EXL| IE
IPL KSU

Table 9.25 Status Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance

CU (Cu3.. 31..28 Controls access to coprocessors 3, 2, 1, and 0, respec- R/W Undefined | Required for all
CUO0) tively: implemented
COProcessors

Encoding Meaning

0 Access not allowed
1 Access allowed

Coprocessor 0 is always usable when the processor is
running in Kernel Mode or Debug Mode, independent of
the state of the CUq bit.

In Release 2 (and subsequent rel eases) of the Architec-
ture, and for 64-bit implementations of Release 1 of the
Architecture, execution of all floating point instructions,
including those encoded with the COP1X opcode, is
controlled by the CU1 enable. CU3 isno longer used and
isreserved for future use by the Architecture.

If thereis no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

RP 27 Enables reduced power mode on some implementations. R/W 0 Optional
The specific operation of this bit isimplementation
dependent.

If thisbit isnot implemented, it must beignored on write
and read as zero. If thishit isimplemented, the reset state
must be zero so that the processor starts at full perfor-
mance.

120MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.20 Status Register (CP Register 12, Select 0)

Table 9.25 Status Register Field Descriptions (Continued)

Fields

Read / Reset
Name Bits Description Write State Compliance

FR 26 In Release 1 of the Architecture, only MI1PS64 proces- R/W Undefined Required
sors could implement a 64-bit floating point unit. In
Release 2 of the Architecture (and subsequent releases) ,
both 32-bit and 64-bit processors can implement a 64-bit
floating point unit. Thisbit is used to control the floating
point register mode for 64-bit floating point units:

Encoding Meaning

0 Floating point registers can contain
any 32-bit datatype. 64-bit datatypes
are stored in even-odd pairs of regis-
ters.

1 Floating point registers can contain
any datatype

This bit must be ignored on write and read as zero under

the following conditions:

» No floating point unit is implemented

* InaMIPS32 implementation of Release 1 of the
Architecture

* Inanimplementation of Release 2 of the Architecture
(and subsequent rel eases) in which a 64-bit floating
point unit is not implemented

Certain combinations of the FR bit and other state or

operations can cause UNPREDICTABLE behavior.

See “64-bit FPR Enable” on page 20 for a discussion of

these combinations.

When software changes the value of thisbit, the contents

of the floating point registers are UNPREDICTABLE.

RE 25 Used to enable reverse-endian memory references while R/W Undefined Optional
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endian-
ness

1 User mode uses reversed endianness

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If thishit is not implemented, it must beignored on write
and read as zero.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 121

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.25 Status Register Field Descriptions (Continued)

(and subsequent releases), multiple TLB matches
may only be reported on a TLB write. When such a
detection occurs, the processor initiates a machine check
exception and sets this bit. It isimplementation depen-
dent whether this condition can be corrected by soft-
ware. |f the condition can be corrected, this bit should be
cleared by software before resuming normal operation.
See“TLB Initialization” on page 31 for a discussion of
software TLB initialization used to avoid a machine
check exception during processor initialization.

If thisbit is not implemented, it must beignored on write
and read as zero.

Software should not write a 1 to thisbit when itsvalueis
a0, thereby causing a 0-to-1 transition. If such atransi-
tion is caused by software, itis UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
machine check exception.

Fields
Read / Reset
Name Bits Description Write State Compliance

MX 24 Enables accessto MDMX™ and MIPS® DSPresources | Rif the 0if the Optional
on processors implementing one of these ASEs. If nei- processor processor
ther the MDMX nor the MIPS DSP ASE isimple- imple- imple-
mented, this bit must be ignored on write and read as ments nei- ments nei-

Zero. ther the ther the
Encoding Meaning MDMX MDMX
nor the nor the
0 Access not allowed MIPSDSP | MIPSDSP
1 Access allowed ASEs; oth- | ASES, oth-
erwise erwise
R/W Undefined
BEV 22 Controls the location of exception vectors: R/W 1 Required
Encoding Meaning
0 Normal
1 Bootstrap
See “Exception Vector Locations” on page 57 for
details.

TSt 21 Indicates that the TLB has detected a match on multiple R/W 0 Required if the
entries. It isimplementation dependent whether this processor
detection occurs at adl, on awriteto the TLB, or an detects and
accessto the TLB. In Release 2 of the Architecture reports amatch

onmultipleTLB
entries

122MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.20 Status Register (CP Register 12, Select 0)

Table 9.25 Status Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

SR 20

Indicates that the entry through the reset exception vec-
tor was due to a Soft Reset:

Encoding Meaning

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

If this bit is not implemented, it must be ignored on
write and read as zero.
Software should not write a 1 to thisbit when itsvalueis
a0, thereby causing a 0-to-1 transition. If such atransi-
tion is caused by software, itis UNPREDICTABLE
whether hardware ignores or accepts the write.

R/W

1 for Soft
Reset; 0
otherwise

Required if Soft
Reset isimple-
mented

NMI 19

Indicates that the entry through the reset exception vec-
tor was due to an NM| exception:

Encoding Meaning

0 Not NMI (Soft Reset or Reset)
1 NMI

If this bit is not implemented, it must be ignored on
write and read as zero.
Software should not write a 1 to thisbit when itsvalueis
a0, thereby causing a 0-to-1 transition. If such atransi-
tion is caused by software, itis UNPREDICTABLE
whether hardware ignores or accepts the write.

1for NMI;
0 otherwise

Requiredif NMI
isimplemented

ASE 18

This bit is reserved for the MCU ASE.
If MCU ASE is not implemented, then this bit must be
written as zero; returns zero on read.

Oif MCU
ASE isnot
imple-
mented

Oif MCU
ASE isnot
imple-
mented

Required for

MCU ASE;
Otherwise
Reserved

Impl 17..16

These bits are implementation dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined

Optional

IM7..1IM2 15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer to “Interrupts’ on page 43 for
a complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y g c = 1),
these hitstake on a different meaning and are interpreted
asthe |PL field, described below.

Undefined

Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

123

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.25 Status Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

IPL 15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is
enabled (Config3y g c = 1), thisfield is the encoded
(0..63) vaue of the current IPL. An interrupt will be sig-
naled only if the requested IPL is higher than this value.
If EIC interrupt mode is not enabled (Config3,/g c = 0),
these bitstake on adifferent meaning and are interpreted
asthe IM7..IM2 bits, described above.

R/W

Undefined

Optional
(Release 2 and
EIC interrupt
mode only)

IM1..IMO 9.8

Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to “Interrupts’ on page 43 for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecturein
which EIC interrupt modeis enabled (Config3y gic = 1),
these bits are writable, but have no effect on theinterrupt
system.

R/W

Undefined

Required

0 ,23,7:5

Must be written as zero; returns zero on reads

0

Reserved

KSU 4.3

If Supervisor Mode isimplemented, the encoding of this
field denotes the base operating mode of the processor.
See “MIPS32 and microM1PS32 Operating Modes” on
page 19 for afull discussion of operating modes. The
encoding of thisfieldis:

Encoding Meaning

0b00
0b01
0b10
Ob11

Base mode is Kernel Mode

Base mode is Supervisor Mode

Base mode is User Mode

Reserved. The operation of the pro-
cessor isSUNDEFINED if thisvalueis
written to the KSU field

Note: Thisfield overlaps the UM and RO fields,
described below.

Undefined

Required if
Supervisor
Modeisimple-
mented;
Optional other-
wise

124MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.20 Status Register (CP Register 12, Select 0)

Table 9.25 Status Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

UM 4 If Supervisor Mode is not implemented, this bit denotes R/W Undefined Required
the base operating mode of the processor. See “MIPS32
and microM I PS32 Operating Modes” on page 19 for a
full discussion of operating modes. The encoding of this
bitis:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note: Thisbit overlaps the KSU field, described above.

RO 3 If Supervisor Mode is not implemented, this bit is R 0 Reserved
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlaps the KSU field, described above.

ERL 2 Error Level; Set by the processor when a Reset, Soft R/W 1 Required
Reset, NMI or Cache Error exception are taken.

Encoding Meaning

0 Normal level
1 Error level

When ERL is set:

» The processor is running in kernel mode

» Hardware and software interrupts are disabled

» The ERET instruction will use the return address held
in ErrorEPC instead of EPC

» Segment kuseg is treated as an unmapped and
uncached region. See “ Address Trand ation for the
kuseg Segment when Statusgzr, = 1" on page 29. This
alows main memory to be accessed in the presence of
cache errors. The operation of the processor is
UNDEFINED if the ERL bit is set while the proces-
sor is executing instructions from kuseg.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 125

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.25 Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance

EXL 1 Exception Level; Set by the processor when any excep- R/W Undefined Required
tion other than Reset, Soft Reset, NMI or Cache Error
exception are taken.

Encoding Meaning

0 Normal level
1 Exception level

When EXL isset:

» The processor isrunning in Kernel Mode

» Hardware and software interrupts are disabled.

» TLB Réfill exceptions use the genera exception vec-
tor instead of the TLB Refill vector.

» EPC, Causegp and SRSCtl (implementations of
Release 2 of the Architecture only) will not be
updated if another exception is taken

IE 0 Interrupt Enable: Acts as the master enable for software R/W Undefined Required
and hardware interrupts:

Encoding Meaning

0 Interrupts are disabled
1 Interrupts are enabled

In Release 2 of the Architecture (and subsegquent
releases), this bit may be modified separately viathe DI
and El instructions.

1. The TSbit originally indicated a“ TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the
TLB to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the
TS hit retains its name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected
and reported by the processor.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or |IE fields of the Status register are written. See “ Software Hazards and the Interrupt System” on

page 54.

126MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.21 IntCtl Register (CPO Register 12, Select 1)

9.21 IntCtl Register (CPO Register 12, Select 1)

Compliance Level: Required (Release 2).

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 9-20 shows the format of the IntCtl register; Table 9.26 describes the IntCtl register fields.

Figure 9-20 IntCtl Register Format
31 29 28 26 25 23 22 14 13 10 9 5 4 0

IPTI IPPCI | IPFDC MCU ASE 0000 VS 0

Table 9.26 IntCtl Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt R Preset or Required
modes, thisfield specifies the IP number to which the Externaly
Timer Interrupt request is merged, and allows software Set

to determine whether to consider Causer, for a potential
interrupt.

Hardware
Encoding IP bit Interrupt Source

2 2 HWO
3 HW1
4 HW2
5 HW3
6
7

3
4
5
6 HW4

7 HW5

The value of thisfieldis UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide thisinformation for that interrupt mode.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 127

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.26 IntCtl Register Field Descriptions (Continued)

Fields

Read / Reset
Name Bits Description Write State Compliance

| PPCI 28..26 For Interrupt Compatibility and Vectored Interrupt R Preset or Optional
modes, this field specifies the |P number to which the Externaly (Performance
Performance Counter Interrupt request is merged, and Set Counters
allows software to determine whether to consider Implemented)
Causepc for apotential interrupt.

Hardware
Encoding IP bit Interrupt Source

2 2 HWO
3 3 HW1
4 4 HW?2
5 5 HW3
6 6
7 7

Hw4
HW5

The value of thisfieldis UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If performance counters are not implemented
(Configlpc = 0), thisfield returns zero on read.

IPFDC 25..23 For Interrupt Compatibility and Vectored Interrupt R Preset or Optional
modes, thisfield specifies the |P number to which the Externaly (EJTAG Fast
Fast Debug Channel Interrupt request is merged, and Set Debug Chan-
allows software to determine whether to consider nel Imple-
Causerp for apotential interrupt. mented)

Hardware
Encoding IP bit Interrupt Source

2 2 HWO
HW1
HW2
HW3
Hw4
HWS

N oo MW
N oo MW

The vaue of thisfieldis UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If EJTAG FDC is not implemented, thisfield returns
zero on read.

128MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.21 IntCtl Register (CPO Register 12, Select 1)

Table 9.26 IntCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

MCU ASE

22.14

These bits are reserved for the MicroController ASE.

If that ASE is not implemented, must be written as zero;
returns zero on read.

0

0

Reserved

.10

Must be written as zero; returns zero on read.

Reserved

VS

9.5

Vector Spacing. If vectored interrupts are implemented
(as denoted by Config3y/;; or Config3yg c), thisfield

specifies the spacing between vectored interrupts.

Spacing Between Vectors

Encoding (hex) (decimal)

0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512

All other values are reserved. The operation of the pro-
cessor isUNDEFINED if areserved value is written to
thisfield.

If neither EIC interrupt mode nor VI mode areimple-
mented (Config3y g ¢ = 0 and Config3ynt = 0), this
field isignored on write and reads as zero.

RIW

Optional

4.0

Must be written as zero; returns zero on read.

Reserved

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

129

9.22

SRSCtl Register (CPO Register 12, Select 2)

Compliance Level: Required (Release 2).

The SRSCtl register controls the operation of GPR shadow setsin the processor. This register does not existinimple-

mentations of the architecture prior to Release 2.

Figure 9-21 shows the format of the SRSCtl register; Table 9.27 describes the SRSCtl register fields.

31 30 29

26

25

Figure 9-21 SRSCtl Register Format

22 21 18 17 16 15

12 11 10 9

0
00

HSS

0 0 0
0000 EICSS 00 ESS 00

PSS

00

CSs

Table 9.27 SRSCtl Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

31..30

Must be written as zeros; returns zero on read.

0

Reserved

HSS

29..26

Highest Shadow Set. Thisfield contains the highest
shadow set number that isimplemented by this proces-
sor. A value of zero in thisfield indicates that only the
normal GPRs are implemented. A non-zero value in this
field indicates that the implemented shadow sets are
numbered 0..n, where n is the value of the field.
Thevauein thisfield also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of thisregister, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if avalue larger than the onein thisfield
iswritten to any of these other values.

R

Preset

Required

25..22

Must be written as zeros; returns zero on read.

0

Reserved

EICSS

21.18

EIC interrupt mode shadow set. If Config3yg,cis1(EIC
interrupt mode is enabled), thisfield is loaded from the
external interrupt controller for each interrupt request
and isused in place of the SRSMap register to select the
current shadow set for the interrupt.

See“External Interrupt Controller Mode” on page 50 for
adiscussion of EIC interrupt mode. If Config3yg cisO,
this field must be written as zero, and returns zero on
read.

Undefined

Required
(EIC inter-
rupt mode

only)

17..16

Must be written as zeros; returns zero on read.

Reserved

130MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.22 SRSCtl Register (CPO Register 12, Select 2)

Table 9.27 SRSCtI Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

ESS 15.12

Exception Shadow Set. Thisfield specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.

The operation of the processor is UNDEFINED if soft-
ware writes avalue into thisfield that is greater than the
valuein the HSSfield.

R/W

0

Required

0 11..10

Must be written as zeros; returns zero on read.

Reserved

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, thisfield is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSSfield if Statusggy =
0.

Thisfield is not updated on any exception which sets
Statusggr, to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurs with Statusgy| = 1, or Statusggy = 1.

The operation of the processor is UNDEFINED if soft-
ware writes avalue into thisfield that is greater than the
valuein the HSSfield.

R/W

Required

Must be written as zeros; returns zero on read.

Reserved

CSs 3.0

Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSSfield on an ERET.
Table 9.28 describes the various sources from which the
CSSfield is updated on an exception or interrupt.
Thisfield is not updated on any exception which sets
Statusggr, to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurswith Statusgy = 1, or Statusggy, = 1. Neither isit
updated on an ERET with Statusgg, = 1 or Statusggy =
1

The value of CSScan be changed directly by software
only by writing the PSSfield and executing an ERET
instruction.

Required

Table 9.28 Sources for new SRSCtlcgg 0n an Exception or Interrupt

Exception Type

Condition SRSCtlcgg Source

Comment

Exception

All SRSCllgss

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

131

Table 9.28 Sources for new SRSCtlogg 0n an Exception or Interrupt

Exception Type Condition SRSCtlcss Source Comment
Non-Vectored Causgy =0 SRSCltlgsg Treat as exception
Interrupt
Vectored Interrupt Causey = 1 and SRSMapyecenum Sourceisinternal map regis-
Config3y g c = 0and X4+3 . . VectNumx4 ter
Config3y s =1
Vectored EIC Cause)y = 1and SRSCtlg css Source is external interrupt
Interrupt Config3ygic=1 controller.

Programming Note:

A software change to the PSSfield creates an instruction hazard between the write of the SRSCtl register and the use
of a RDPGPR or WRPGPR instruction. This hazard must be cleared with a JR.HB or JALR.HB instruction as
described in “Hazard Clearing Instructions and Events’ on page 82. A hardware change to the PSS field as the result
of interrupt or exception entry is automatically cleared for the execution of the first instruction in the interrupt or
exception handler.

132MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.23 SRSMap Register (CPO Register 12, Select 3)

9.23 SRSMap Register (CPO Register 12, Select 3)

Compliance Level: Required in Release 2 (and subseguent releases) of the Architecture if Additional Shadow Sets
and Vectored Interrupt Mode are | mplemented

The SRSMap register contains 8 4-hit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or anon-vectored interrupt (Cause, = 0 or IntCtly,5 = 0). In such cases, the shadow set number comes from SRSCt-

I ESS.

If SRSCtlssis zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in thisregister that is greater than the
value of SRSCtlss.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from avector to asingle
shadow register set number.

Figure 9-22 shows the format of the SRSMap register; Table 9.29 describes the SRSMap register fields.

Figure 9-22 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 3 0
SSv7 SSvé SSv5 Ssv4 SSv3 SSv2 SSvV1 SSvOo
Table 9.29 SRSMap Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
SSv7 31..28 Shadow register set number for Vector Number 7 R/W 0 Required
SSV6 27.24 Shadow register set number for Vector Number 6 R/W 0 Required
SV 23..20 Shadow register set number for Vector Number 5 R/W 0 Required
Ssv4 19..16 Shadow register set number for Vector Number 4 R/W 0 Required
SSv3 15..12 Shadow register set number for Vector Number 3 R/W 0 Required
SSv2 11..8 Shadow register set number for Vector Number 2 R/W 0 Required
Ssv1 7.4 Shadow register set number for Vector Number 1 R/W 0 Required
SSVO0 3.0 Shadow register set number for Vector Number O R/W 0 Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

133

9.24 Cause Register (CPO Register 13, Select 0)

Compliance Level: Required.

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP; o, DC,

IV, and WP fields, all fieldsin the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP; , are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 9-23 shows the format of the Cause register; Table 9.30 describes the Cause register fields.

Figure 9-23 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 17 15 10 9 8 7 6 2 1 0
BDTI CE |DCPCI ASE | IV | WP FC? 000 | ASE IP9..IP2 IPL.IPO 0 Exc Code 0
ASE RIPL

Table 9.30 Cause Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance

BD 31 Indicates whether the last exception taken occurred in a R Undefined Required
branch delay slot:

Encoding Meaning

0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgy, was zero
when the exception occurred.

TI 30 Timer Interrupt. In an implementation of Release 2 of R Undefined Required
the Architecture, this bit denotes whether a timer inter- (Release 2)
rupt is pending (anal ogous to the IP bits for other inter-
rupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

In an implementation of Release 1 of the Architecture,
this bit must be written as zero and returns zero on read.

134MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.24 Cause Register (CPO Register 13, Select 0)

Table 9.30 Cause Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

CE 29..28 Coprocessor unit number referenced when a Coproces- R Undefined Required
sor Unusable exception is taken. Thisfield isloaded by
hardware on every exception, but is UNPREDICT -

ABLE for all exceptions except for Coprocessor Unus-
able.

DC 27 Disable Count register. In some power-sensitive applica R/W 0 Required
tions, the Count register is not used but may still be the (Release 2)
source of some noticeable power dissipation. This bit
alows the Count register to be stopped in such situa-
tions.

Encoding Meaning
0 Enable counting of Count register
1 Disable counting of Count register
In an implementation of Release 1 of the Architecture,
this bit must be written as zero, and returns zero on read.

PCI 26 Performance Counter Interrupt. In an implementation of R Undefined Required
Release 2 of the Architecture (and subsequent releases), (Release 2 and
this bit denotes whether a performance counter interrupt performance
is pending (analogous to the I P bits for other interrupt countersimple-
types): mented)

Encoding Meaning
0 No performance counter interrupt is
pending
1 Performance counter interrupt is
pending
In animplementation of Release 1 of the Architecture, or
if performance counters are not implemented (Configlpc
= 0), this bit must be written as zero and returns zero on
read.
ASE 25:24, These hits are reserved for the MCU ASE. Rrequired for
17:16 If MCU ASE is not implemented, these bits return zero MCU ASE;
on reads and must be written with zeros. Otherwise
Reserved

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 135

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.30 Cause Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

v 23 Indicates whether an interrupt exception uses the general R/W Undefined Required
exception vector or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

In implementations of Release 2 of the architecture (and
subsequent releases), if the Cause)y, is 1 and Statusggy IS
0, the special interrupt vector represents the base of the
vectored interrupt table.

WP 22 Indicates that a watch exception was deferred because R/W Undefined Required if
Statusgy | Or Statusgg, Were aone at the time the watch watch registers
exception was detected. This bit both indicates that the areimplemented
watch exception was deferred, and causes the exception
to be initiated once Statusgy and Statusgg are both
zero. As such, software must clear this bit as part of the
watch exception handler to prevent awatch exception
loop.

Software should not write a1 to thishit when itsvalueis
a0, thereby causing a 0-to-1 transition. If such atransi-
tion is caused by software, it isUNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception once Statusgy and Statusgg,_ are both
zero.

If watch registers are not implemented, this bit must be
ignored on write and read as zero.

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether R Undefined Required
aFDC interrupt is pending :

Encoding M eaning

0 No FDCinterrupt is pending

1 FDC interrupt is pending

136MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.24 Cause Register (CPO Register 13, Select 0)

Table 9.30 Cause Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance

IP7..1P2 15..10 Indicates an interrupt is pending: R Undefined Required

Bit Name Meaning
15 1P7 Hardware interrupt 5
14 1P6 Hardware interrupt 4
13 IP5 Hardware interrupt 3
12 1P4 Hardware interrupt 2
11 IP3 Hardware interrupt 1
10 1P2 Hardware interrupt O

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are combined
in an implementati on-dependent way with hardware
interrupt 5.

Inimplementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is not
enabled (Config3y/g c = 0), timer and performance
counter interrupts are combined in an implementa-
tion-dependent way with any hardware interrupt. If EIC
interrupt mode is enabled (Config3y g c = 1), these bits
take on a different meaning and are interpreted as the
RIPL field, described below.

RIPL .10 Requested Interrupt Priority Level. R Undefined Optional
Inimplementations of Release 2 of the Architecture (and (Release 2 and
subsequent releases) in which EIC interrupt modeis EIC interrupt
enabled (Config3y g c = 1), thisfield is the encoded mode only)
(0..63) value of the requested interrupt. A value of zero
indicates that no interrupt is requested.

If EIC interrupt mode is not enabled (Config3ygc = 0),
these bitstake on a different meaning and are interpreted
asthe |P..IP2 bits, described above.

IP1..IPO 9.8 Controls the request for software interrupts: R/W Undefined Required

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IPO Request software interrupt O

Animplementation of Release 2 of the Architecture (and
subsequent rel eases) which also implements EIC inter-
rupt mode exports these bits to the external interrupt
controller for prioritization with other interrupt sources.

ExcCode 6..2 Exception code - see Table 9.31 R Undefined Required

0 20..16,7, | Must be written as zero; returns zero on read. 0 0 Reserved
1..0

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 137

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.31 Cause Register ExcCode Field

Exception Code Value

Decimal Hexadecimal Mnemonic Description
0 0x00 Int Interrupt
1 0x01 Mod TLB modification exception
2 0x02 TLBL TLB exception (load or instruction fetch)
3 0x03 TLBS TLB exception (store)
4 0x04 AdEL Address error exception (load or instruction fetch)
5 0x05 AdES Address error exception (store)
6 0x06 IBE Bus error exception (instruction fetch)
7 0x07 DBE Bus error exception (data reference: load or store)
8 0x08 Sys Syscall exception
9 0x09 Bp Breakpoint exception. If EJTAG isimplemented and an SDBBP

instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the Debugpgyccoge field to

denote an SDBBP in Debug Mode.

10 0x0a RI Reserved instruction exception
11 0x0b CpU Coprocessor Unusable exception
12 0x0c Ov Arithmetic Overflow exception
13 oxod Tr Trap exception
14 0x0e - Reserved
15 OxOf FPE Floating point exception
16-17 0x10-0x11 - Available for implementation dependent use
18 0x12 C2E Reserved for precise Coprocessor 2 exceptions
19 0x13 TLBRI TLB Read-Inhibit exception
20 0x14 TLBXI TLB Execution-Inhibit exception
21 0x15 - Reserved
22 0x16 MDMX MDMX Unusable Exception (MDMX ASE)
23 0x17 WATCH Reference to WatchHi/WatchL o address
24 0x18 M Check Machine check
25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions

(MIPS® MT ASE)

26 Ox1A DSPDis DSP ASE State Disabled exception
(MIPS® DSP ASE)

138MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.24 Cause Register (CPO Register 13, Select 0)

Table 9.31 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal Mnemonic Description
27-29 0x20-0x1d - Reserved
30 Oxle CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code iswritten to the Debugpgyccode fi€ld to indicate that re-entry
to Debug Mode was caused by a cache error.
31 Ox1f - Reserved

Programming Note:

In Release 2 of the Architecture (and the subsequent releases), the EHB instruction can be used to make interrupt state
changes visible when the IP; field of the Cause register is written. See “Software Hazards and the Interrupt

System” on page 54.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

139

9.25 Exception Program Counter (CPO Register 14, Select 0)

Compliance Level: Required.

The Exception Program Counter (EPC) is aread/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are significant and must be writable.

Unlessthe EXL hit in the Status register is already a 1, the processor writes the EPC register when an exception
occurs.

» For synchronous (precise) exceptions, EPC contains either:
» thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction isin abranch delay dot, and the Branch Delay bit in the Cause register is set.

» For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the ERET instruction.

Software may write the EPC register to change the processor resume address and read the EPC register to determine
at what address the processor will resume.

Figure 9-24 shows the format of the EPC register; Table 9.32 describesthe EPC register fields.

Figure 9-24 EPC Register Format
31 0

EPC

Table 9.32 EPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EPC 31..0 Exception Program Counter R/W Undefined Required

9.25.1 Special Handling of the EPC Register in Processors That Implement the
MIPS16e ASE or the microMIPS32 Base Architectures

In processors that implement the M1PS16e A SE or microMIPS32 base architecture, the EPC register requires special
handling.

When the processor writes the EPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

140MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.25 Exception Program Counter (CPO Register 14, Select 0)

EPC ¢« resumePCy; ; || ISAMode,
“resumePC” is the address at which processing resumes, as described above.

When the processor reads the EPC register, it distributes the bits to the PC and ISAMode registers:

PC < EPC3q 1 || 0
ISAMode <« EPCj,

Software reads of the EPC register simply return to a GPR the last value written with no interpretation. Software
writes to the EPC register store a new value which isinterpreted by the processor as described above.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 141

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.26 Processor Identification (CPO Register 15, Select 0)

Compliance Level: Required.

The Processor Identification (PRId) register isa 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor. Figure 9-25 shows
the format of the PRId register; Table 9.33 describes the PRId register fields.

Figure 9-25 PRId Register Format
31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 9.33 PRId Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance

Company 31.24 Available to the designer or manufacturer of the proces- R Preset Optional

Options sor for company-dependent options. The valuein this
field is not specified by the architecture. If thisfield is
not implemented, it must read as zero.

Company 23.16 Identifies the company that designed or manufactured R Preset Required
ID the processor.
Software can distinguish a MIPS32/microMI1PS32 or
MI1PS64/microM|PS64 processor from one implement-
ing an earlier MIPS ISA by checking thisfield for zero.
If it is non-zero the processor implements the
MIPS32/microMIPS32 or M1PS64/microM I PS64
Architecture.
Company IDs are assigned by MIPS Technol ogies when
aMIPS32/microM|PS32 or M1PS64/microM | PS64
license is acquired. The encodingsin thisfield are:

Encoding Meaning

0 Not a MIPS32/microMIPS32 or
MI1PS64/microMIPS64 processor

1 MIPS Technologies, Inc.

2-255 Contact MIPS Technologies, Inc. for
the list of Company ID assignments

Processor 15..8 Identifies the type of processor. Thisfield allows soft- R Preset Required
ID ware to distinguish between various processor imple-
mentations within a single company, and is qualified by
the Company|D field, described above. The combination

of the CompanyID and Processor|D fields creates a
unique number assigned to each processor implementa-
tion.

142MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.26 Processor Identification (CPO Register 15, Select 0)

Table 9.33 PRId Register Field Descriptions

allows software to distinguish between one revision and
another of the same processor type. If thisfield is not
implemented, it must read as zero.

Fields
Read / Reset
Name Bits Description Write State Compliance
Revision 7.0 Specifiesthe revision number of the processor. Thisfield R Preset Optional

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmerswho identify cases
in which the configuration registers are not sufficient, requiring them to revert to check on the PRId register value,
should send email to support@mips.com, reporting the specific case.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

143

mailto:architecture@mips.com

9.27 EBase Register (CPO Register 15, Select 1)

Compliance Level: Required (Release 2).

The EBase register is aread/write register containing the base address of the exception vectors used when Statusggy,

equals 0, and aread-only CPU number value that may be used by software to distinguish different processorsin a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Statusggy is 0. The exception vector base address comes from the fixed defaults (see 6.2.2 “Exception

Vector Locations” on page 57) when Statusggy is 1, or for any EJTAG Debug exception. The reset state of bits 31..12

of the EBase register initialize the exception base register to 0x8000. 0000, providing backward compatibility
with Release 1 implementations.

Bits 31..30 of the EBase register are fixed with the value 0b1 0, and the addition of the base address and the excep-
tion offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination of
these two restrictions forces the final exception address to be in the kseg0 or ksegl unmapped virtual address seg-
ments. For cache error exceptions, bit 29 isforced to a 1 in the ultimate exception base address so that this exception
always runs in the ksegl unmapped, uncached virtual address segment.

If the value of the exception base register isto be changed, this must be done with Statusgg,, equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with adifferent value when Statusggy iSO.

Figure 9-26 shows the format of the EBase register; Table 9.34 describes the EBase register fields.

Figure 9-26 EBase Register Format
31 30 29 12 11 10 9 0

110 Exception Base 00 CPUNum

Table 9.34 EBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
1 31 Thisbit isignored on write and returns one on read. R 1 Required
0 30 This bit isignored on write and returns zero on read. R 0 Required
Exception 29.12 In conjunction with bits 31..30, this field specifies the R/W 0 Required
Base base address of the exception vectors when Statusggy is
zero.
0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved

144MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.34 EBase Register Field Descriptions

9.27 EBase Register (CPO Register 15, Select 1)

vauein thisfield is set by inputs to the processor hard-
ware when the processor isimplemented in the system
environment. In asingle processor system, this value

should be set to zero.

Thisfield can also be read via RDHWR register 0

Fields
Read / Reset
Name Bits Description Write State Compliance
CPUNum 9.0 Thisfield specifies the number of the CPU ina R Preset or Required
multi-processor system and can be used by software to Exter-
distinguish a particular processor from the others. The nally Set

Programming Note:

Software must set EBase; 5 1, to zeroin all bit positions less than or equal to the most significant bit in the vector off-

set. This situation can only occur when avector offset greater than OXFFF is generated when an interrupt occurs with
VI or EIC interrupt mode enabled. The operation of the processor is UNDEFINED if this condition is not met. Table
9.35 shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number
as described in Table 6.4 and the bit must be set to zero if any of the relationshipsin the row are true. No EBase bits

must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 9.35 Conditions Under Which EBasel5..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtlvsl)
EBase bit 32 64 128 256 512
15 None None None None VN =63
14 None None VN 262 VN =31
13 None VN = 60 VN =30 VN > 15
12 VN > 56 VN > 28 VN > 14 VN >7

1. See Table 9.26 on page 127

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

145

9.28 CDMMBase Register (CPO Register 15, Select 2)

Compliance Level: Optional.

The 36-bit physical base address for the Common Device Memory Map facility is defined by thisregister. Thisregis-
ter only existsif Config3cppy 1S Set to one.

For devices that implement multiple V PES, access to thisregister is controlled by the VPEConfOy,p register field. If
the MVP bit is cleared, aread to this register returns all zeros and awrite to this register isignored.

Figure 9.27 has the format of the CDMMBase register, and Table 9.36 describes the register fields.

Figure 9.27 CDMMBase Register

31 11 10 9 8 0
CDMM_UPPER_ADDR |EN| cl | CDMMSize

Table 9.36 CDMMBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CDMM_UP 31:11 Bits 35:15 of the base physical address of the memory R/W Undefined Required
PER_ADDR mapped registers.

The number of implemented physical address bitsis
implementation specific. For the unimplemented address
bits - writes are ignored, returns zero on read.

EN 10 Enables the CDMM region. R/W 0 Required
If this bit is cleared, memory requests to this address
region go to regular system memory. If thisbit is set,
memory requests to this region go to the CDMM logic

Encoding Meaning

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Cl 9 If set to 1, thisindicates that the first 64-byte Device Reg- R Preset Optional
ister Block of the CDMM isreserved for additional regis-
ters which manage CDMM region behavior and are not |O
device registers.

146MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.28 CDMMBase Register (CPO Register 15, Select 2)

Table 9.36 CDMMBase Register Field Descriptions (Continued)

ter Blocks are instantiated in the core.

Encoding Meaning
0 1DRB
1 2 DRBs
2 3DRBs
511 512 DRBs

Fields
Read / Reset
Name Bits Description Write State Compliance
CDMMSize 8:0 Thisfield represents the number of 64-byte Device Regis- R Preset Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

147

9.29 CMGCRBase Register (CPO Register 15, Select 3)

Compliance Level: Optional.

The 36-bit physical base address for the memory-mapped Coherency Manager Global Configuration Register spaceis
reflected by this register. This register only existsif Config3cpygcr iS Set to one.

On devices that implement the MIPS MT ASE, this register is instantiated once per processor.
Figure 9.28 has the format of the CMGCRBase register, and Table 9.37 describes the register fields.

Figure 9.28 CMGCRBase Register

31 1 10 0
CMGCR_BASE_ADDR 0

Table 9.37 CMGCRBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CMGCR_B 3111 Bits 35:15 of the base physical address of the memory- R Preset Required
ASE_ADDR mapped Coherency Manager GCR registers. (IP Configu-
ration Value)
Thisregister field reflects the value of the GCR_BASE
field within the memory-mapped Coherency Manager
GCR Base Register.
The number of implemented physical address bitsis
implementation specific. For the unimplemented address
bits - writes are ignored, returns zero on read.
0 10:0 Must be written as zero; returns zero on read 0 0 Reserved

148MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.30 Configuration Register (CPO Register 16, Select 0)

9.30 Configuration Register (CPO Register 16, Select 0)

Compliance Level: Required.

The Config register specifies various configuration and capabilitiesinformation. Most of the fieldsin the Config reg-
ister areinitialized by hardware during the Reset Exception process, or are constant. Three fields, K23, KU, and KO,
must be initialized by software in the reset exception handler.

Figure 9-29 shows the format of the Config register; Table 9.38 describes the Config register fields.

Figure 9-29 Config Register Format

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0
M K23 KU Impl BE| AT AR MT 0 VI KO
Table 9.38 Config Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State Compliance
M 31 Denotes that the Configl register isimplemented at a R 1 Required

select field value of 1.

K23 30:28 For processors that implement a Fixed Mapping MMU, R/W Undefined for Optional
this field specifies the kseg2 and kseg3 cacheability and processors with
coherency attribute. For processors that do not imple- aFixed Map-
ment a Fixed Mapping MMU, thisfield reads as zero and ping MMU; O
isignored on write. otherwise
See “Alternative MMU Organizations” on page 195 for
a description of the Fixed Mapping MMU organization.

KU 27:25 For processors that implement a Fixed Mapping MMU, R/W Undefined for Optional
this field specifies the kuseg cacheability and coherency processors with
attribute. For processors that do not implement a Fixed aFixed Map-
Mapping MMU, thisfield reads as zero and isignored on ping MMU; 0
write. otherwise
See “Alternative MMU Organizations” on page 195 for
a description of the Fixed Mapping MMU organization.

Impl 24:16 Thisfield is reserved for implementations. Refer to the Undefined Optional
processor specification for the format and definition of
thisfield

BE 15 Indicates the endian mode in which the processor is run- R Preset or Exter- Required
ning: nally Set

Encoding Meaning
0 Little endian
1 Big endian

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

149

Table 9.38 Config Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State Compliance

AT 14:13 Architecture Type implemented by the processor. R Preset Required

For Release 3, encoding values of 0-2, denotes address
and register width (32-bit or 64-bit).

The implemented instruction sets (M1PS32/64 and/or
microM1PS32/64) are denoted by the | SA register field
of Config3.

Encoding Meaning

0 MIPS32 or microM|PS32

1 MIPS64 or microM1PS64 with access
only to 32-bit compatibility segments

2 MIPS64or microM1PS64 with access
to al address segments

3 Reserved

AR 12:10 MIPS32 Architecture revision level. R Preset Required

microMIPS32 Architecture revision level is denoted by
the MMAR field of Config3. If Config3 register is not
implemented then microMIPS is not implemented.

If the ISA field of Config3 is one, then MIPS32 is not
implemented and thisfield is not used.

Encoding Meaning
0 Release 1
1 Release 2 or Release 3/MIPSr3

All features introduced in Release 3
are optional and detectable through
Config3 register fields.

2-7 Reserved

150MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.30 Configuration Register (CPO Register 16, Select 0)

Table 9.38 Config Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State Compliance
MT 9:7 MMU Type: R Preset Required
Encoding Meaning
0 None
1 Standard TLB (See“TLB
Organization” on page 30)
5 BAT (See“Block Address Translation”
on page 199)
3 Fixed Mapping (See “ Fixed Mapping
MMU” on page 195)
Dua VTLB and FTLB (See“Dudl
4 Variable-Page-Size and
Fixed-Page-Size TLBS’ on page 202)
0 6:4 Must be written as zero; returns zero on read. 0 0 Reserved
VI 3 Virtual instruction cache (using both virtual indexing R Preset Required
and virtua tags):
Encoding Meaning
0 Instruction Cacheis not virtual
1 Instruction Cacheisvirtua
KO 2:0 K'seg0 cacheability and coherency attribute. See Table R/W Undefined Required
9.9 on page 98 for the encoding of thisfield.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

151

9.31 Configuration Register 1 (CPO Register 16, Select 1)

Compliance Level: Required.

The Configl register isan adjunct to the Config register and encodes additional capabilitiesinformation. All fieldsin the
Configl register are read-only.

The lcache and Dcache configuration parametersinclude encodings for the number of sets per way, theline size, and the
associativity. Thetotal cache size for acacheistherefore:

Cache Size = Associativity * Line Size * Sets Per Way
If theline sizeis zero, there is no cache implemented.

Figure 9-1 shows the format of the Configl register; Table 9-1 describes the Configl register fields.

Figure 9-1 Configl Register For mat
31 30 25 24 2221 1918 1615 1312 109 7 6 5 4 3 2 1 0
\M\ MMU Size- 1 \ IS \ IL \ IA \ DS \ DL \ DA \cz\MD\Pc\WR\CA\EP\FP\

Table 9-1 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Thishit isreserved to indicate that a Config2 register is
present. If the Config2 register is not implemented, this .
M sl bit should read as a 0. If the Config2 register is R Preset Required
implemented, this bit should read asa 1.
Number of entriesin the TLB minus one. The values 0
MMU through 63 in thisfield correspond to 1 to 64 TLB .
Size-1 30..25 entries. The value zero isimplied by Configy,t having R Preset Required
avalueof ‘none'.
I cache sets per way:
Encoding Meaning
0 64
1 128
IS 24:22 2 2%6 R Preset Required
3 512
4 1024
5 2048
6 4096
7 3R

152MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.31 Configuration Register 1 (CPO Register 16, Select 1)

Table 9-1 Configl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

21:19

Icacheline size:

Encoding

Meaning

No Icache present

4 bytes

8 bytes

16 bytes

32 bytes

64 bytes

128 bytes

N|lfojlo|h~|[lw[N]|F|O

Reserved

Preset

Required

18:16

Icache associativity:

Encoding

Meaning

Direct mapped

2-way

3-way

4-way

5-way

6-way

7-way

N|[fojlo|h~|[lw[N]|F|O

8-way

Preset

Required

DS

15:13

Dcache sets per way:

Encoding

Meaning

128

256

512

1024

2048

4096

N|jlo|jloa|h|lW[IN]|FL]| O

32

Preset

Required

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

153

Table 9-1 Configl Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Dcacheline size:

Encoding Meaning

No Dcache present
4 bytes

8 bytes
16 bytes
32 bytes
64 bytes
128 bytes

Reserved

DL 12:10 R Preset Required

N|lfojlo|h~|[lw[N]|F|O

Dcache associativity:

Encoding Meaning

Direct mapped

2-way

DA 97 Sway

R Preset Required
4-way

5-way

6-way

7-way

N|[fojlo|h~|[lw[N]|F|O

8-way

Coprocessor 2 implemented:

Encoding Meaning

0 No coprocessor 2 implemented
C2 6 1 Coprocessor 2 implements R Preset Required

This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor
is attached.

Used to denote MDM X ASE implemented on a
MI1PS64/microM|PS64 processor. Not used on a
MIPS32/microMIPS32 processor.

MD 5 R 0 Required
This bit indicates not only that the processor contains

support for MDM X, but that such aprocessing element
is attached.

Performance Counter registers implemented:

Encoding M eaning

PC 4 0 No performance counter registers R Preset Required
implemented

1 Performance counter registers implemented

154MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.31 Configuration Register 1 (CPO Register 16, Select 1)

Table 9-1 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Watch registers implemented:
Encoding Meaning)
WR 3 0 No watch registers implemented R Preset Required
1 Watch registers implemented
Code compression (MIPS16€) implemented:
Encoding M eaning)
CA 2 0 MIPS16e not implemented R Preset Required
1 MIPS16e implemented
EJTAG implemented:
Encoding M eaning
EP 1 R Preset Required

0 No EJTAG implemented
1 EJTAG implemented

FPU implemented:

Encoding M eaning
0 No FPU implemented
1 FPU implemented

FP 0 R Preset Required

This bit indicates not only that the processor contains
support for afloating point unit, but that such aunitis
attached.

If an FPU isimplemented, the capabilities of the FPU
can be read from the capability bitsin the FIR CP1
register.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 155

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.32 Configuration Register 2 (CPO Register 16, Select 2)

Compliance Level: Required if alevel 2 or level 3 cacheisimplemented, or if the Config3 register is required;
Optional otherwise.

The Config2 register encodes level 2 and level 3 cache configurations.

Figure 9-30 shows the format of the Config2 register; Table 9.39 describes the Config2 register fields.

Figure 9-30 Config2 Register Format
31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

M TU TS TL TA SU SS SL SA

Table 9.39 Config2 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

M 31 This bit isreserved to indicate that a Config3 register is R Preset Required
present. If the Config3 register is not implemented, this
bit should read as a 0. If the Config3 register isimple-
mented, this bit should read asa 1.

TU 30:28 Implementati on-specific tertiary cache control or status R/W Preset Optional
bits. If thisfield is not implemented it should read as
zero and be ignored on write.

TS 27:24 Tertiary cache sets per way: R Preset Required

Encoding Sets Per Way

0 64
128
256
512

1024
2048
4096
8192
Reserved

~N|o|gal b~ W N| P

®
=
&)

156MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.32 Configuration Register 2 (CPO Register 16, Select 2)

Table 9.39 Config2 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
TL 23:20 Tertiary cacheline size: R Preset Required
Encoding Line Size
0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
TA 19:16 Tertiary cache associativity: R Preset Required
Encoding Associativity
0 Direct Mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8-15 Reserved
SU 15:12 Implementati on-specific secondary cache control or sta- R/W Preset Optional
tus bits. If thisfield is not implemented it should read as
zero and be ignored on write.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

157

Table 9.39 Config2 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

SS 11:8 Secondary cache sets per way: R Preset Required

Encoding Sets Per Way
64
128
256
512
1024
2048
4096
8192

o

N oo b~ W N|

Reserved

®
[y
(&)]

SL 74 Secondary cacheline size: R Preset Required

Encoding Line Size

0 No cache present
4
8

16

32

64

128

256

~N|o|gl b~ W N|

Reserved

®
=
&)

SA 3:0 Secondary cache associdtivity: R Preset Required

Encoding Associativity

0 Direct Mapped
2

N oA~ W N|
0| Nl O MW

Reserved

g
=
a1

158MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.33 Configuration Register 3 (CPO Register 16, Select 3)

9.33 Configuration Register 3 (CPO Register 16, Select 3)

Compliance L evel: Required if any optional feature described by this register isimplemented: Release 2 of the
Architecture, the SmartMIPS™ ASE, or trace logic; Optional otherwise.

The Config3 register encodes additional capabilities. All fieldsin the Config3 register are read-only.

Figure 9-31 shows the format of the Config3 register; Table 9.40 describes the Config3 register fields.

Figure 9-31 Config3 Register Format

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
C D c
B|M 0 M| ISA LLJRS[S)TIL\é\I/ CD ,,
M|P|G 0000000 iPLw| MMAR [u| On| ISA g X Pl o X| TP || |SP/M| T /sMTL
G| C C| Exc Tlrl2l e TIL[Al] M
R 0 P C
n

Table 9.40 Config3 Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
M 31 This bit isreserved to indicate that a Config4 register is R Preset Required

present. If the Config4 register is not implemented, this
bit should read as a 0. If the Config4 register isimple-
mented, thisbit should read asa 1.

BPG 30 Big Pages featureisimplemented. This bit indicates that R Preset Required

TLB pages larger than 256 MB are supported and that
CO_PageMask Register is 64-hits wide.

Encoding Meaning
0 Big Pages are not implemented and
PageMask register is 32bits wide.
1 Big Pages are implemented and Page-
Mask register is 64bits wide.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 159

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.40 Config3 Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
CMGCR 29 Coherency Manager memory-mapped Global Configura- R Preset Required for
tion Register Space isimplemented. Coherent
- - Multiple
Encoding Meaning Core
0 CM GCR space is not implemented implementa-
— tionsthat use
1 CM GCR space isimplemented the Coher-
ency Man-
ager.
0 28:23, Must be written as zeros; returns zeros on read 0 0 Reserved
12,9,3
IPLW 22:21 Width of Status|p and Causerp, fields: R Preset Required if
- - MCU ASEis
Encoding Meaning implemented
0 IPL and RIPL fields are 6-bitsin
width.
1 IPL and RIPL fields are 8-bitsin
width.
Others Reserved.
If the IPL field is 8-bitsin width, bits 18 and 16 of Sta-
tus areused asthe most significant bit and second
most significant bit, respectively, of that field.
If the RIPL field is 8-bitsin width, bits 17 and 16 of
Cause are used asthe most significant bit and second
most significant bit, respectively, of that field.
MMAR 20:18 microMIPS32 Architecture revision level. R Preset Required if
microMIPSis
MIPS32 Architecture revision level is denoted by the implemented
AR field of Config.
Encoding Meaning
0 Release3/MIPSr3
1-7 Reserved
If 1SA field of Config3 iszero, then microM1PS32 isnot
implemented and thisfield is not used.

160MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.33 Configuration Register 3 (CPO Register 16, Select 3)

Table 9.40 Config3 Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
MCU 17 MIPS® MCU ASE isimplemented. R Preset Required if
Encodi Meani MCU ASEis
ncoding eaning implemented
0 MCU ASE is not implemented.
1 MCU ASE isimplemented
ISAOn- 16 Reflects the Instruction Set Architecture used after vec- RW Undefined Required if
Exc toring to an exception. Affects all exceptions whose off- microMIPSis
sets are relative to EBase. implemented
Encoding Meaning
0 MIPS32is used on entrance to an
exception vector.
1 microMIPS is used on entrance to an
exception vector.
ISA 15:14 Indicates Instruction Set Availability. R Preset Required if
Encodi Meani microMIPSis
ncoding eaning implemented
0 Only MIPS32 Instruction Set isimple-
mented.
Only microM|PS32 isimplemented.
2 Both MI1PS32and microMIPS32 ISAs
areimplemented. MIPS32 | SA used
when coming out of reset.
3 Both MIPS32and microMPS32 1SAs
areimplemented. microMI1PS32 |SA
used when coming out of reset.
ULRI 13 UserLocal register implemented. This bit indicates R Preset Required
whether the UserLocal coprocessor O register isimple-
mented.
Encoding Meaning
0 UserLocal register isnot imple-
mented
1 UserLocal register isimplemented

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

161

Table 9.40 Config3 Register Field Descriptions

Fields

Read / Reset Complianc
Name Bits Description Write State e

RXI 12 Indicates whether the RIE and XIE bits exist within the R Preset Required
PageGrain register.

Encoding Meaning

0 The RIE and XIE bits are not
implemented within the PageGrain
register.

1 The RIE and XIE bits are
implemented within the PageGrain
register.

DSP2P 11 MIPS® DSP ASE Revision 2 implemented. This bit R Preset Required
indicates whether Revision 2 of the MIPSDSP ASE is
implemented.

Encoding Meaning

0 Revision 2 of the MIPSDSP ASE is
not implemented

1 Revision 2 of the MIPS DSP ASE is
implemented

DSPP 10 MIPS® DSP ASE implemented. This bit indicates R Preset Required
whether the MIPS DSP ASE is implemented.

Encoding Meaning

0 MIPS DSP ASE is not implemented
1 MIPS DSP ASE isimplemented

CTXTC 9 ContextConfig registersisimplemented and the width R Preset Required
of the BadVPN2 field within the Config register register
depends on the contents of the ContextConfig register.

Encoding Meaning

0 ContextConfig is not implemented.

1 ContextConfig isimplemented and is
used for the Configg gy pn2 field.

162MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.33 Configuration Register 3 (CPO Register 16, Select 3)

Table 9.40 Config3 Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
ITL 8 MIPS® IFlowTrace™ mechanism implemented. This R Preset Required
bit indicates whether the MIPS IFlowTraceisimple- (Release 2.1
mented. Only)
Encoding Meaning
0 MIPS IFlowTrace is not implemented
1 MIPS IFlowTrace isimplemented
LPA 7 Denotes the presence of support for large physical R Preset Required
addresses on M1PS64 processors. Not used by MIPS32 (Release 2
processors and returns zero on read. Only)
For implementations of Release 1 of the Architecture,
this bit returns zero on read.
VEIC 6 Support for an external interrupt controller isimple- R Preset Required
mented. (Release 2
Onl
Encoding Meaning y)
0 Support for EIC interrupt mode is not
implemented
1 Support for EIC interrupt mode is
implemented
For implementations of Release 1 of the Architecture,
this bit returns zero on read.
This bit indicates not only that the processor contains
support for an external interrupt controller, but that such
acontroller is attached.
Vint 5 Vectored interrupts implemented. This bit indicates R Preset Required
whether vectored interrupts are implemented. (Release 2
Onl
Encoding Meaning)
0 Vector interrupts are not implemented
1 Vectored interrupts are implemented
For implementations of Release 1 of the Architecture,
this bit returns zero on read.
SP 4 Small (1KByte) page support is implemented, and the R Preset Required
PageGrain register exists (Release 2
Only)
Encoding Meaning
0 Small page support is not imple-
mented
1 Small page support is implemented
For implementations of Release 1 of the Architecture,
this bit returns zero on read.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

163

Table 9.40 Config3 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Complianc
e

CDMM

3

Common Device Memory Map implemented. This bit

indicates whether the CDMM is implemented.

Encoding

Meaning

0

CDMM is not implemented

1

CDMM isimplemented

R

Preset

Required

MT

MIPS® MT ASE implemented. This bit indicates
whether the MIPSMT ASE isimplemented.

Encoding

Meaning

0

MIPSMT ASE is not implemented

1

MIPSMT ASE isimplemented

Preset

Required

SM

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE isimplemented.

Encoding

Meaning

0

SmartMIPS ASE is not implemented

1

SmartMIPS ASE isimplemented

Preset

Required

TL

Trace Logic implemented. This bit indicates whether PC

or data trace isimplemented.

Encoding

Meaning

0

Tracelogic is not implemented

1

Tracelogic isimplemented

Preset

Required

164MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.34 Configuration Register 4 (CPO Register 16, Select 4)

9.34 Configuration Register 4 (CPO Register 16, Select 4)

Compliance L evel: Required if any optional feature described by this register isimplemented: Release 2 of the
Architecture; Optional otherwise.

The Config4 register encodes additional capabilities.
The number of page-pair entries within the FTLB = decode(FTLBSets) * decode(FTLBWays).

Figure 9-32 shows the format of the Config4 register; Table 9.41 describes the Config4 register fields.

Figure 9-32 Config4 Register Format

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
MMU
M 0000000 K Screxist [E,); Definition Depends on MMUEXtDef
If MMUEXtDef=2 000 FILB | 1 Bways | FrLBsets
- PageSize &y
If MMUEXtDef=1 000000 MMUSizeExt
If MMUEXtDef=0, 3 00000000000000

Table 9.41 Config4 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 This bit isreserved to indicate that a Config5 register is R Preset Required
present. With the current architectural definition, this bit
should alwaysread asaO0.

0 30:24 Must be written as zeros; returns zeros on read R 0 Reserved
KScr 23:16 Indicates how many scratch registers are available to R Preset Required if
Exist kernel-mode software within COPO Register 31. Kernel

Scratch Reg-
Each bit represents a select for CoproecessorO Register istersare
31. Bit 16 represents Select 0, Bit 23 represents Select 7. available
If the bit is set, the associated scratch register isimple-
mented and available for kernel-mode software.
Scratch registers meant for other purposes are not repre-
sented in this field. For example, if EJTAG isimple-
mented, Bit 16 is preset to zero eventhough DESAVE
register isimplemented at Select 0. Select 1 isreserved
for future debug purposes and should not be used asa
kernel scratch register, so bit 17 is preset to zero.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 165

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Table 9.41 Config4 Register Field Descriptions

Implementations are allowed to implement any subset of
these sizes, even a subset of only one pagesize. Software
can detect if a FTLB page sizeisimplemented by writ-
ing the desired size into thisregister field. If the sizeis
implemented, the register field is updated to the desired
encoding. If the sizeis not implemented, the register
field value is not changed.

The FTLB must be flushed of any valid entries before
this register field value is changed by software. The
FTLB behavior isUNDEFINED if therearevalid FTLB
entries which were not all programmed using acommon
page size.

Fields
Read / Reset
Name Bits Description Write State Compliance
MMU 15:14 MMU Extension Definition. R Preset Required
Ext Defines how Config4[13:0] isto be interpreted.
Def
Encoding Meaning
1 Config4[7:0] used as MM USizeExt.
2 Config4[3:0] used as FTLBSets.
Config4{7:4] used as FTLBWays.
Config4[10:8] used as FTLBPageSize.
0,3 Reserved.
Config4{13:0] - Must be written as
Zeros, returns zeros on read.
FTLB 10:8 Indicates the Page Size of the FTLB Array Entries. RW if Preset, Required if
Page Encodi P Si multiple chosen MMUExt-
Size ncoding age size FTLB valueis Def=2
0 1KB page- | implemen-
sizesare | tation spe-
1 4KB implle- cific
2 16 KB mented
3 64KB Rif only
4 256 KB one
5 1GB FTLB
page
6 4GB sizeis
7 Reserved imple-
mented.

166MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.34 Configuration Register 4 (CPO Register 16, Select 4)

Table 9.41 Config4 Register Field Descriptions

Encoding Sets per Way
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

Fields
Read / Reset
Name Bits Description Write State Compliance
FTLB 74 Indicates the Set Associativity of the FTLB Array. R Preset Required if
Ways - — MMUEXxt-
Encoding Associativity Def=2
0 2
1 3
2 4
3 5
4 6
5 7
6 8
7-15 Reserved
FTLB 3.0 Indicates the number of Sets per Way within the FTLB R Preset Required if
Sets Array. MMUExt-
Def=2

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

167

Table 9.41 Config4 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
MMU 7.0 If Configdymuex=1 then thisfield is an extension of R Preset Required if
Size ConfiglMMUSizel field. MMUEXt-
Ext Def=1

Thisfield is concatenated to the |eft of the most signifi-
cant bit to the MMUSize-1 field to indicate the size of
the TLB-1.

168MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.35 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

9.35 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

Compliance L evel: Implementation Dependent.

CPO register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CPO register 16, Selects 6 and 7, it is hot necessary to implement CPO register 16, Selects 2 through 5
only to set the M hit in each of these registers. That is, if the Config2 and Config3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

The architecture only defines the use of the M bits for presence detection of Selects1to 5.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 169

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.36 Load Linked Address (CPO Register 17, Select 0)

Compliance Level: Optional.

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked instruction.

This register isimplementation dependent and for diagnostic purposes only and serves no function during normal
operation.

Figure 9-33 shows the format of the LLAddr register; Table 9.42 describes the LLAddr register fields.

Figure 9-33 LLAddr Register Format
31

PAddr

Table 9.42 LLAddr Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
PAddr 31..0 Thisfield encodes the physical address read by the most R Undefined Optional

recent Load Linked instruction. The format of thisregis-
ter isimplementation dependent, and an implementation
may implement as many of the bits or format the address
in any way that it finds convenient.

170MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.37 WatchLo Register (CPO Register 18)

9.37 WatchLo Register (CPO Register 18)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bitsare zero in the
Status register. If either bit isaone, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them viathe
select field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of
reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers
are implemented via the WR bit of the Configl register. See the discussion of the M bit in the WatchHi register
description below.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match. If aparticular Watch register only supports a subset of the reference types, the unimplemented enables must be
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch
register pair by setting all three enables bits and reading them back to see which ones were actually set.

It isimplementation dependent whether a data watch istriggered by a prefetch, CACHE, or SYNCI (Release 2 and
subsequent releases only) instruction whose address matches the Watch register address match conditions.

Figure 9-34 shows the format of the WatchLo register; Table 9.43 describes the WatchLo register fields.

Figure 9-34 WatchLo Register Format
31 3 2 1 0

VAddr I | R|W

Table 9.43 WatchLo Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
VAddr 31..3 Thisfield specifies the virtual address to match. Note RIW Undefined Required
that thisis a doubleword address, since bits [2:0] are
used to control the type of match.
| 2 If this bit is one, watch exceptions are enabled for RIW 0 Optional

instruction fetches that match the address and are actu-
ally issued by the processor (speculative instructions
never cause Watch exceptions).

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

171

Table 9.43 WatchLo Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

R 1 If thisbit is one, watch exceptions are enabled for |oads R/W 0 Optional
that match the address.

For the purposes of the MIPS16e PC-relative load
instructions, the PC-relative referenceis considered to be
adata, rather than an instruction reference. That is, the
watchpoint istriggered only if thisbitisa 1.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

w 0 If this bit is one, watch exceptions are enabled for stores R/W 0 Optional
that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

172MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.38 WatchHi Register (CP0O Register 19)

9.38 WatchHi Register (CPO Register 19)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bitsare zero in the
Status register. If either bit isaone, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them viathe
select field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of
reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers
are implemented via the WR bit of the Configl register. If the M bit is one in the WatchHi register reference with a
select field of ‘n’, another WatchHi/WatchLo pair isimplemented with a select field of ‘n+1'.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, aG(lobal) bit, an optional address mask, and three bits (I, R, and W) which denote the condition that caused the
watch register to match. If the G bit is one, any virtual address reference that matches the specified address will cause
awatch exception. If the G bit is a zero, only those virtual address references for which the ASID value in the
WatchHi register matches the AS D valuein the EntryHi register cause awatch exception. The optional mask field
provides address masking to qualify the address specified in WatchLo.

Thel, R, and W bits are set by the processor when the corresponding watch register condition is satisfied and indicate
which watch register pair (if more than one isimplemented) and which condition matched. When set by the proces-
sor, each of these bits remain set until cleared by software. All three bits are “write oneto clear”, such that software
must write aone to the bit in order to clear its value. The typical way to do thisisto write the value read from the
WatchHi register back to WatchHi. In doing so, only those bits which were set when the register was read are cleared
when the register is written back.

Figure 9-35 shows the format of the WatchHi register; Table 9.44 describes the WatchHi register fields.

Figure 9-35 WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 2 1 0

M| G 0 ASID 0 Mask I | R|W

Table 9.44 WatchHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 If this bit is one, another pair of WatchHi/WatchLo reg- R Preset Required
istersisimplemented at aMTCO or MFCO select field
vaueof ‘n+1’

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

173

Table 9.44 WatchHi Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

G

30

If thisbit is one, any address that matches that specified
in the WatchLo register will cause awatch exception. If
this bit is zero, the AS D field of the WatchHi register
must match the ASID field of the EntryHi register to
cause awatch exception.

R/W

Undefined

Required

ASID

23.16

ASD value which is required to match that in the
EntryHi register if the G bit is zero in the WatchHi reg-
ister.

Undefined

Required

Mask

11.3

Optional bit mask that qualifies the addressin the
WatchLo register. If thisfield isimplemented, any bit in
thisfield that is a one inhibits the corresponding address
bit from participating in the address match.

If thisfield is not implemented, writesto it must be
ignored, and reads must return zero.

Software may determine how many mask bits are imple-
mented by writing ones the this field and then reading
back the result.

Undefined

Optional

This bit is set by hardware when an instruction fetch
condition matches the valuesin this watch register pair.
When set, the bit remains set until cleared by software,
which is accomplished by writing a 1 to the bit.

wiC

Undefined

Required
(Release 2)

This bit is set by hardware when aload condition
matches the values in this watch register pair. When set,
the bit remains set until cleared by software, whichis
accomplished by writing a 1 to the bit.

wicC

Undefined

Required
(Release 2)

This bit is set by hardware when a store condition
matches the values in this watch register pair. When set,
the bit remains set until cleared by software, whichis
accomplished by writing a 1 to the bit.

wicC

Undefined

Required
(Release 2)

29..24,
15.12

Must be written as zero; returns zero on read.

Reserved

174MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.39 Reserved for Implementations (CPO Register 22, all Select values)

9.39 Reserved for Implementations (CPO Register 22, all Select values)

Compliance L evel: Implementation Dependent.

CPO register 22 isreserved for implementation dependent use and is not defined by the architecture.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 175

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.40 Debug Register (CPO Register 23, Select 0)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of
thisregister.

176MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.40 Debug Register (CPO Register 23, Select 0)

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 177

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.41 Debug?2 Register (CPO Register 23, Select 6)

Compliance Level: Optional.

The Debug?2 register is part of the EJITAG specification. Refer to that specification for the format and description of
thisregister.

178MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.42 DEPC Register (CPO Register 24)

9.42 DEPC Register (CPO Register 24)

Compliance Level: Optional.

The DEPC register isaread-write register that contains the address at which processing resumes after a debug excep-
tion has been serviced. It is part of the EJTAG specification and the reader is referred there for the format and descrip-
tion of the register. All bits of the DEPC register are significant and must be writable.

When a debug exception occurs, the processor writes the DEPC register with,

» thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtua address of the immediately preceding branch or jump instruction, when the exception causing instruc-
tion isin abranch delay slot, and the Branch Delay bit in the Cause register is set.

The processor reads the DEPC register as the result of execution of the DERET instruction.

Software may write the DEPC register to change the processor resume address and read the DEPC register to deter-
mine at what address the processor will resume.

9.42.1 Special Handling of the DEPC Register in Processors That Implement the
MIPS16e ASE or microMIPS32 Base Architecture

In processors that implement the MIPS16e ASE or the microMIPS32 base architecture, the DEPC register requires
special handling.

When the processor writes the DEPC register, it combines the address at which processing resumes with the val ue of
the ISA Mode register:

DEPC ¢ resumePC3; 1 || ISAMode,
“resumePC” isthe address at which processing resumes, as described above.

When the processor reads the DEPC register, it distributes the bits to the PC and ISA Mode registers:

PC < DEPC3; 4 || O
ISAMode < DEPCj,

Software reads of the DEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the DEPC register store a new value which is interpreted by the processor as described above.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 179

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.43 Performance Counter Register (CPO Register 25)

Compliance L evel: Recommended.

The Architecture supports implementation dependent performance counters that provide the capability to count
events or cyclesfor usein performance analysis. If performance counters areimplemented, each performance counter
consists of apair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capability,
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When the most significant bit of the counter register is aone (the counter overflows), the
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, thisinter-
rupt is combined in aimplementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture,
pending interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and
are prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register over-
flow whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of the PerfCnt register: Even selects access the con-
trol register and odd selects access the counter register. Table 9.45 shows an example of two performance counters
and how they map into the select values of the PerfCnt register.

Table 9.45 Example Performance Counter Usage of the PerfCnt CPO Register

PerfCnt
Performance Register Select
Counter Value PerfCnt Register Usage
0 PerfCnt, Select 0 Control Register 0
PerfCnt, Select 1 Counter Register 0
1 PerfCnt, Select 2 Control Register 1
PerfCnt, Select 3 Counter Register 1

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain
the desired number of performance counters. Software may determineif at least one pair of Performance Counter
Control and Counter registersisimplemented viathe PC bit in the Configl register. If the M bit is one in the Perfor-
mance Counter Control register referenced viaa select field of ‘'n’, another pair of Performance Counter Control and
Counter registersisimplemented at the select values of ‘n+2" and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.

Figure 9-36 shows the format of the Performance Counter Control Register; Table 9.46 describes the Performance
Counter Control Register fields.

Figure 9-36 Performance Counter Control Register Format

31 30 29 25 24 16 15 14 11 10 5 4 3 2 1 0
PC

M| W Impl 0 T| EventExt Event IE| U|S|K|EXL
D

180MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.43 Performance Counter Register (CPO Register 25)

Table 9.46 Performance Counter Control Register Field Descriptions

Counter Register. The list of eventsisimplementation
dependent, but typical eventsinclude cycles, instruc-
tions, memory reference instructions, branch instruc-
tions, cache and TLB misses, etc.

Implementations that support multiple performance
counters allow ratios of events, e.g., cache missratios if
cache miss and memory references are selected as the
eventsin two counters

Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 If thishit is a one, another pair of Performance Counter R Preset Required
Control and Counter registersisimplemented at aMTCO
or MFCO select field value of ‘n+2" and ‘n+3'.
w 30 Denotes that the corresponding Counter register is 64 R Preset Required
bits wide on aMIPS64/microMIPS64 processor. Unused
on a MIPS32/microMIPS32 processor.
Impl 29:25 Thisfield isimplementation dependent and is not speci- Undefined Optional
fied by the architecture.
0if not
If not used by the implementation, must be written as used by the
Zero; returns zero on read. implemen-
tation
0 24..16 Must be written as zero; returns zero on read 0 0 Reserved
PCTD 15 Performance Counter Trace Disable. RW 0 Required if
The PDTrace facility (revision 6.00 and higher) hasthe PDTrace Perfor-
ahility to trace Performance Counter in its output. This mance Counter
bit is used to disable the specified performance counter Tracing feature
from being traced when performance counter trace is isimplemented.
enabled and a performance counter trace event is trig-
gered.
Encoding Meaning
0 Tracing is enabled for this counter.
1 Tracing is disabled for this counter.
EventExt 14..11 In some implementations which support more than the RwW Undefined Optional
the 64 encodings possible in the 6-bit Event field, the
EventExt field acts as an extension to the Event field. In
such instances the event selection is the concatentation
of thetwo fields, i.e., EventExt|Event.
The actual field width isimplementation dependent. Any
bits that are not implemented read as zero and are
ignored on write.
Event 10..5 Selects the event to be counted by the corresponding R/W Undefined Required

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-

sion 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

181

Table 9.46 Performance Counter Control Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

IE 4 Interrupt Enable. Enables the interrupt request when the R/W 0 Required
corresponding counter overflows (the most significant
bit of the counter isone. Thisisbit 31 for a 32-bit wide
counter or bit 63 of a64-bit wide counter, denoted by the
W bit in this register).

Note that this bit simply enables the interrupt request.
The actual interrupt is still gated by the normal interrupt
masks and enable in the Satus register.

Encoding Meaning

0 Performance counter interrupt dis-
abled

1 Performance counter interrupt enabled

U 3 Enables event counting in User Mode. Refer to Section R/W Undefined Required
3.4 “User Mode” on page 20 for the conditions under
which the processor is operating in User Mode.

Encoding Meaning

0 Disable event counting in User Mode

1 Enable event counting in User Mode

S 2 Enables event counting in Supervisor Mode (for those R/W Undefined Required
processors that implement Supervisor Mode). Refer to
Section 3.3 “Supervisor Mode” on page 19 for the con-
ditions under which the processor is operating in Super-
visor mode.

If the processor does not implement Supervisor Mode,
this bit must be ignored on write and return zero on read.

Encoding Meaning

0 Disable event counting in Supervisor
Mode

1 Enable event counting in Supervisor
Mode

K 1 Enables event counting in Kernel Mode. Unlike the R/W Undefined Required
usual definition of Kernel Mode as described in Section
3.2 “Kernel Mode” on page 19, this bit enables event
counting only when the EXL and ERL bitsin the Status
register are zero.

Encoding Meaning

0 Disable event counting in Kernel
Mode

1 Enable event counting in Kernel Mode

182MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.43 Performance Counter Register (CPO Register 25)

Table 9.46 Performance Counter Control Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EXL 0 Enables event counting when the EXL bit in the Status R/W Undefined Required
register is one and the ERL bhit in the Status register is
zero.
Encoding Meaning
0 Disable event counting while EXL =
1,ERL=0
1 Enable event countingwhile EXL =1,
ERL=0

Counting is never enabled when the ERL bit in the Sta-
tus register or the DM bit in the Debug register is one.

The Counter Register associated with each performance counter increments once for each enabled event. Figure 9-37
shows the format of the Performance Counter Counter Register; Table 9.47 describes the Performance Counter
Counter Register fields.

Figure 9-37 Performance Counter Counter Register Format

Event Count

Table 9.47 Performance Counter Counter Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
Event 31.0 Increments once for each event that is enabled by the R/W Undefined Required
Count corresponding Control Register. When the most signif-

icant bit is one, apending interrupt request is ORed
with those from other performance counters and indi-
cated by the PCI bit in the Cause register.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the |E
field of the Control register or the Event Count Field of the Counter register are written. See sSECTION
6.1.2.1 “Software Hazards and the Interrupt System” on page 54.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 183

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.44 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level: Optional.

The ErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or
ECC information to and from the primary or secondary cache data arraysin conjunction with specific encodings of
the Cache instruction or other implementation-dependent method. The exact format of the ErrCtl register isimple-

mentation dependent and not specified by the architecture. Refer to the processor specification for the format of this
register and a description of the fields.

184MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.45 CacheErr Register (CPO Register 27, Select 0)

9.45 CacheErr Register (CPO Register 27, Select 0)

Compliance Level: Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a pro-
Cessor.

The exact format of the CacheErr register isimplementation dependent and not specified by the architecture. Refer
to the processor specification for the format of this register and a description of the fields.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 185

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.46 TagLo Register (CPO Register 28, Select 0, 2)

Compliance Level: Required if a cache isimplemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act asthe interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or
sink of tag information, respectively.

The exact format of the TagLo and TagHi registers isimplementation dependent. Refer to the processor specification
for the format of this register and a description of thefields.

However, software must be able to write zeros into the TagLo and TagHi registers and then use the Index Store Tag
cache operation to initialize the cache tags to a valid state at powerup.

It isimplementation dependent whether there isasingle TagLo register that acts as the interface to all caches, or a
dedicated TagLo register for each cache. If multiple TagLo registers are implemented, they occupy the even select
valuesfor this register encoding, with select O addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagLo registers are implemented or not for each cache, processors must accept awrite of zero to
select 0 and select 2 of TagLo as part of the software process of initializing the cache tags at powerup.

186MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.47 Datalo Register (CPO Register 28, Select 1, 3)

9.47 DatalLo Register (CPO Register 28, Select 1, 3)

Compliance Level: Optional.

The DatalLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
uesinto the DatalLo and DataHi registers.

The exact format and operation of the DatalLo and DataHi registers isimplementation dependent. Refer to the pro-
cessor specification for the format of this register and a description of the fields.

It isimplementation dependent whether there isa single Datal o register that acts as the interface to all caches, or a
dedicated Datal o register for each cache. If multiple Datal o registers are implemented, they occupy the odd select
valuesfor thisregister encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 187

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.48 TagHi Register (CPO Register 29, Select 0, 2)

Compliance Level: Required if a cache isimplemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act asthe interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or
sink of tag information, respectively.

The exact format of the TagLo and TagHi registers isimplementation dependent. Refer to the processor specification
for the format of this register and a description of the fields. However, software must be able to write zeros into the
TaglLo and TagHi registers and the use the Index Store Tag cache operation to initialize the cache tagsto avalid state
at powerup.

It isimplementation dependent whether there is a single TagHi register that acts as the interface to all caches, or a
dedicated TagHi register for each cache. If multiple TagHi registers areimplemented, they occupy the even select val-
ues for thisregister encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagHi registers are implemented or not for each cache, processors must accept awrite of zero to
select 0 and select 2 of TagHi as part of the software process of initializing the cache tags at powerup.

188MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.49 DataHi Register (CPO Register 29, Select 1, 3)

9.49 DataHi Register (CPO Register 29, Select 1, 3)

Compliance Level: Optional.

The DatalLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
uesinto the DatalLo and DataHi registers.

The exact format and operation of the DatalLo and DataHi registers isimplementation dependent. Refer to the pro-
cessor specification for the format of this register and a description of the fields.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 189

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.50 ErrorEPC (CPO Register 30, Select 0)

Compliance Level: Required.

The ErrorEPC register isaread-writeregister, similar to the EPC register, at which processing resumes after a Reset,
Soft Reset, Nonmaskable Interrupt (NMI) or Cache Error exceptions (collectively referred to as error exceptions).
Unlike the EPC register, thereis no corresponding branch delay slot indication for the ErrorEPC register. All bits of
the ErrorEPC register are significant and must be writable.

When an error exception occurs, the processor writes the ErrorEPC register with:

» thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtual address of theimmediately preceding branch or jump instruction when the error causing instruction is
in abranch delay dlot.

The processor reads the ErrorEPC register as the result of execution of the ERET instruction.

Software may write the ErrorEPC register to change the processor resume address and read the ErrorEPC register to
determine at what address the processor will resume

Figure 9-38 shows the format of the ErrorEPC register; Table 9.48 describes the ErrorEPC register fields.

Figure 9-38 ErrorEPC Register Format
31 0

ErrorEPC

Table 9.48 ErrorEPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

9.50.1 Special Handling of the ErrorEPC Register in Processors That Implement the
MIPS16e ASE or microMIPS32 Base Architecture

In processors that implement the MIPS16e ASE or microMIPS32 base architecture, the ErrorEPC register requires
specia handling.

When the processor writes the ErrorEPC register, it combines the address at which processing resumes with the
value of the ISA Mode register:

ErrorEPC < resumePCy; ; || ISAModeq

“resumePC” is the address at which processing resumes, as described above.

190MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.50 ErrorEPC (CPO Register 30, Select 0)

When the processor reads the ErrorEPC register, it distributes the bits to the PC and ISAMode registers:

PC ¢« ErrorEPC3; 1 || O
ISAMode < ErrorEPCj

Software reads of the ErrorEPC register simply return to a GPR the last value written with no interpretation. Soft-
ware writes to the ErrorEPC register store anew value which isinterpreted by the processor as described above.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 191

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.51 DESAVE Register (CPO Register 31)

Compliance Level: Optional.

The DESAVE register is part of the EJITAG specification. Refer to that specification for the format and description of
thisregister.

The DESAVE register is meant to be used solely while in Debug Mode. If kernel mode software uses this register, it
would conflict with debugging kernel mode software. For that reason, it is strongly recommended that kernel mode
software not use this register. If the KScratch* registers are implemented, kernel software can use those registers.

192MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.51 DESAVE Register (CPO Register 31)

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 193

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

9.52 KScratchn Registers (CPO Register 31, Selects 2 to 7)

Compliance Level: Optional, KScratchl and KScratch?2 at selects 2, 3 are recommended.

The KScratchn registers are read/write registers available for scratch pad storage by kernel mode software. These

registers are 32bits in width for 32-bit processors and 64bits for 64-bit processors.

The existence of these registersisindicated by the KScrExist field within the Config4 register. The KScrExist field

specifies which of the selects are popul ated with a kernel scratch register.

Debug Mode software should not use these registers, instead debug software should use the DESAVE register. If

EJTAG isimplemented, select 0 should not be used for aK Scratch register. Select 1 is being reserved for future debug

use and should not be used for a K Scratch register.

31

Figure 9-39 KScratchn Register Format

Data

Table 9.49 KScratchn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Data 31.0 Scratch pad data saved by kernel software. R/W Undefined Optional

194MIPS® Architecture For Programmers Volume Ill: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-

vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Appendix A

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.l Fixed Mapping MMU

As an dternative to the full TLB-based MMU, the MIPS32/microMIPS32 Architecture supports a lightweight mem-
ory management mechanism with fixed virtual-to-physical address trandation, and no memory protection beyond
what is provided by the address error checks required of all MMUSs. This may be useful for those applications which
do not require the capabilities of afull TLB-based MMU.

A.1.1 Fixed Address Translation

Address trandlation using the Fixed Mapping MMU is done as follows:

* Kseg0 and Ksegl addresses are translated in an identical manner to the TLB-based MM U: they both map to the
low 512MB of physical memory.

» Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the
Status register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

* Sseg/Ksseg/K seg2/K seg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table A.1 lists all mappings from virtual to physical addresses. Note that address error checking is till done before
the trandation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error

exception, just as it does with a TLB-based MMU.

Table A.1 Physical Address Generation from Virtual Addresses

Generates Physical Address
Segment
Name Virtual Address Statusgr, =0 Statusgg =1
useg 0x0000 0000 0x4000 0000 0x0000 0000
suseg through through through
kuseg 0x7FFF FFFF 0xXBFFF FFFF 0x7FFF FFFF
kseg0 0x8000 0000 0x0000 0000
through through
0x9FFF FFFF 0x1FFF FFFF

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 195

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

Table A.1 Physical Address Generation from Virtual Addresses (Continued)

Generates Physical Address
Segment
Name Virtual Address Statusgr, =0 Statusgr. = 1
0xA000 0000 0x0000 0000
ksegl through through
0xBFFF FFFF 0x0x1FFF FFFF
Sseg 0xC000 0000 0xC000 0000
ksseg through through
kseg2 O0xDFFF FFFF OxDFFF FFFF
kseg3 0xE000 0000 0xE000 0000
through through
OxFFFF FFFF OxFFFF FFFF

Note that this mapping means that physical addresses 0x2000 0000 through Ox3FFF FFFF areinaccessible
when the ERL hit is off in the Status register, and physical addresses 0x8000 0000 through 0xBFFF FFFF are
inaccessible when the ERL bit ison in the Status register.

196MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.1l Fixed Mapping MMU

Figure A-1 shows the memory mapping when the ERL bit in the Status register is zero; Figure A-2 shows the mem-
ory mapping when the ERL bit is one.

Figure A-1 Memory Mapping when ERL =0

OXFFFF FFFF OxXFFFF FFFF
kseg3 kseg3 Mapped
0xE000 0000 o 0xE000 0000
OxDFFF FFFF g OxDFFF FFFF
kseg2 kseg2
ksseg ksseg
sseg sseg Mapped
0xC000 0000 -~ 0xC000 0000
OxBFFF FFFF o OxBFFF FFFF
ksegl

0xA000 0000
Ox9FFF FFFF

ksegO0 kuseg
suseg
0x8000 0000 useg
0x7FFF FFFF Mapped
0x4000 0000
kuseg 0x3FFF FFFF
suseg
used Unmapped
0x2000 0000
0x1FFF FFFF
kseg0
ksegl
Mapped
0x0000 0000 0x0000 0000

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 197

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

Figure A-2 Memory Mapping when ERL =1

OxXFFFF FFFF OxFFFF FFFF
kseg3 kseg3 Mapped
0xE000 0000 _ 0xE000 0000
OxDFFF FFFF o OxDFFF FFFF
kseg2 kseg2
ksseg ksseg
sseg sseg Mapped
0xCO000 0000 _ 0xCO000 0000
OxXBFFF FFFF g OxBFFF FFFF
ksegl
0xA000 0000 U d
0X9FFF FFFF nmappe
kseg0
0x8000 0000 0x8000 0000
Ox7FFF FFFF Ox7FFF FFFF
kuseg
suseg
useg
kuseg Mapped
suseg
useg
kseg0
ksegl
Mapped
0x0000 0000 R 0x0000 0000

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanismis
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to the
Config register whose encoding is identical to that of the KO field. These additions are the K23 and KU fields which
control the cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bitisonin
the Status register, kuseg data references are always treated as uncacheabl e references, independent of the value of
the KU field. The operation of the processor is UNDEFINED if the ERL bit is set while the processor is executing
instructions from kuseg.

The cacheability attributes for kseg0 and ksegl are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for ksegO comes from the KO field of Config, and references to ksegl are always uncached.

Figure A-3 shows the format of the additions to the Config register; Table A.2 describes the new Config register
fields.

198MIPS® Architecture For Programmers Volume IlI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

Figure A-3 Config Register Additions
3130 2827 2524 16 15 141312 10 9 7 6 4 3 2 0
M| k3 | KU | 0 BE| AT| AR | MT | 0 [vi| ko |

Table A.2 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance

K23 30:28 K seg2/K seg3 cacheability and coherency attribute. R/W Undefined Required
See Table 9.9 on page 98 for the encoding of thisfield.

KU 27:25 Kuseg cachesbility and coherency attribute when Sta- R/W Undefined Required
tusgry IS zero. See Table 9.9 on page 98 for the encod-
ing of thisfield.

A.1.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

e ThelIndex, Random, EntryL o0, EntryL ol, Context, PageMask, Wired, and EntryHi registers are no longer
required and may be removed. The effects of aread or write to these registers are UNDEFINED.

e TheTLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and must cause a Reserved Instruc-
tion Exception.

A.2 Block Address Translation

This section describes the architecture for ablock address tranglation (BAT) mechanism that reuses much of the hard-
ware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has
the following features:
* It preserves as much as possible of the TL B-Based interface, both in hardware and software.
» It provides independent base-and-bounds checking and relocation for instruction references and data references.
» |t provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to trandate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and rel ocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 199

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

width isimplementation dependent), a cache coherencefield (C), adirty (D) bit, and avalid (V) bit. Figure A-4 shows
the logical arrangement of a BAT entry.

Figure A-4 Contents of a BAT Entry

BoundsVPN

BasePFN C D|V

The BAT isindexed by the reference type and the address region to be checked as shown in Table A.3.

Table A.3 BAT Entry Assignments

Reference
Entry Index Type Address Region

0 Instruction useg/kuseg

1 Data

2 Instruction kseg2

(or kseg2 and kseg3)

3 Data

4 Instruction kseg3

5 Data

Entries0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the
needs of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it isimplementa-
tion-dependent how, if at all, these address regions are trandated. One aternative isto combine the mapping for kseg2
and kseg3 into asingle pair of instruction/data entries. Software may determine how many BAT entries are imple-
mented by looking at the MMU Sizefield of the Configl register.

A.2.2 Address Translation

When avirtual address trandation is requested, the BAT entry that is appropriate to the reference type and address
region isread. If the virtual addressis greater than the selected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate reference typeisinitiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified exception isinitiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as follows:

i « SelectIndex (reftype, va)

bounds < BAT[i]gounasyen || 132

pfn « BAT[i]p,gepry

c « BAT[ilc

d « BAT[i]p

v ¢« BAT[i]y

if (va > bounds) or (v = 0) then
InitiateTLBInvalidException (reftype)

endif

if (d = 0) and (reftype = store) then
InitiateTLBModifiedException ()

200MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation
endif
pa <« va + (pfn || 012y

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves thefirst virtual page mapped.

A.2.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

* Thelndex register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.
* TheEntryHi register isthe interface to the BoundsVPN field in the BAT entry.

* TheEntryLoO register isthe interface to the BasePFN and C, D, and V fields of the BAT entry. The register has
the same format as for a TLB-based MMU.

* TheRandom, EntryLol, Context, PageMask, and Wired registers are eliminated. The effects of aread or
write to these registersis UNDEFINED.

* TheTLBPand TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT
entry whose index is contained in the Index register. The effects of executing a TLBP or TLBWR are UNDE-
FINED, but processors should signal a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 201

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

Most MIPS CPU cores implement a fully associative Joint TLB. Unfortunately, such fully-associative structures can
be slow, can require alarge amount of logic components to implement and can dissipate alot of power. The number
of entriesfor afully associative array that can be practically implemented is not large.

In high performance systems, it is desirable to minimize the frequency of TLB misses. In small and low-cost systems,
it is desirable to keep the implementation costs of a TLB to aminimum. This section describes an optional aternative

MMU configuration which decreases the implementation costs of asmall TLB aswell asallowsfor a TLB that can
map a very large number of pages to be reasonably implemented.

A.3.1 MMU Organization

This alternative MMU configuration uses two TLB structures.
1. Thisfirst TLB is called the Fixed-Page-Size TLB or the FTLB.

* Atany onetime, al entries within the FTLB use a shared, common page size.

e TheFTLB isnot fully-associative, but rather set associative.

* The number of ways per set isimplementation specific.

* The number of setsisimplementation specific.

* The common page size is also implementation specific.

» The common page size is allowed to be software configurable. The choice of the common page sizeis done
once for the entire FTLB, not on a per-entry basis. This configuration by software can only be done after a
full flush/initialization of the FTLB, before there are any valid entries within the FTLB. Implementations are
also allowed to support only one page size for the FTLB - in that case, the FTLB page size is fixed by hard-
ware and not software configurable.

2. Thesecond TLB is caled the Variable-Page-Size TLB or the VTLB.

» The choice of page sizeis done on aper-entry basis. That is, one VTLB entry can use a pagesize that is dif-
ferent from the size used by another VTLB entry.

 TheVTLB isfully-associative.

* The number of entries isimplementation specific.

* Theset of allowable page sizesfor VTLB entries is implementation specific.
Just as for the JTLB, both the FTLB and VTLB are shared between the instruction stream and the data stream. For
address tranglation, the virtual addressis presented to both the FTLB and VTLB in parallel. Entriesin both structures
are accessed in parallel to search for the physical address.

The use of two TLB structures has these benefits:

* Theimplementation costs of building a set-associative TLB with many entries can be much less than that of
implementing alarge fully-associative TLB.

202MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

* Theexistence of aVTLB retains the capability of using large pages to map large sections of physical memory
without consuming alarge number of entriesin the FTLB.

Random replacement of pagesin the MMU happens mainly in the FTLB. In most operating systems, on-demand pag-
ing only uses one page size so the FTLB is sufficient for this purpose. Some of the address bits of the specified virtua
address are used to index into the FTLB as appropriate for the chosen FTLB array size. The method of choosing
which FTLB way to modify is implementation specific.

TheVTLB isvery similiar to the JTLB. The CO_PageMask register is used to program the page size used for a par-
ticular VTLB entry.

The configuration of the FTLB isreflected in the FTLB fields within the new CO_Config4 register. The size of the
VTLB isreflected in the CO_Configlyvusize-1 field. The presense of the dual FTLB and VTLB is denoted by the

value of 0x4 in CO_Configy, T register field. These registers are described in “ Changes to the COPO Registers’ on
page 206.

Most implementations would choose to build a VTLB with a smaller number of entriesand a FTLB with alarger

number of entries. This combination allows for many on-demand fixed-sized pages as well asfor a small number of
large address blocks to be simultaneously mapped by the MMU.

A.3.2 Programming Interface

The software programming interface used for the fully-associative JTLB is maintained as much as possible to
decrease the amount of software porting.

Also for that purpose, each entry in the FTLB aswell asthe VTLB use one tag (VPN2) to map two physical pages
(PFN), just asin the JTLB. The entriesin either array are accessed through the CO_EntryHi and CO_EntryLo0/1
registers.

Entriesin either array (FTLB or VTLB) can be accessed with the TLBWI and TLBWR instructions.

The PageMask register is used to set the page size for the VTLB entries. This register is also used to choose which
array (FTLB or VTLB) to write for the TLBWR instruction.

For the rest of this section, the following parameters are used:
3. FPageSize - the page size used by the FTLB entries

4. FSetSize - Number of entriesin one way of the FTLB.

5. FWays- Number of ways within a set of the FTLB.

6. VIndex - Number of entriesin the VTLB.

For the CO_Index , the CO_Wired registers, the TLBP, TLBR and TLBWI instructions; the VTLB occupies indices
0to VIndex-1. The FTLB occupiesindices VIndex to VIndex + (FSetSize * FWays)-1.

The TLBP instruction produces a value which can be used by the TLBWI instruction without modification by soft-
ware. When referring to the FTLB, the value is the concatentation of the selected FTLB way and set, and incremented
by the size of the VTLB. For example, { selected FTLB Way, selected FTLB Set} + Vindex.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 203

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

If CO_PageMask is set to the page size used by the FTLB, the TLBWR instruction modifies entries within the
FTLB.

How the FTLB set-associative array isindexed isimplementation specific. In any indexing scheme, the least signifi-
cant address bit that can be used for indexing is log,(FPageSize)+1. The number of index bits needed to select the

correct set within the FTLB array islogy(FSetSize).

Since the FTLB array can be modified through the TLBW!I instruction, it is possible for software to choose an inap-
propriate FTLB index value for the specified virtual address. In this casg, it isimplementation specific whether a
Machine Check exception is generated for the TLBWI instruction.

The method of choosing which FTLB way to modify is implementation specific.

If CO_PageMask is not set to the pagesize used by the FTLB, the TLBWR instruction modifies entries within the
VTLB. The VTLB entry to be written is specified by the log,(VIndex) least significant bits of the CO_Random reg-

ister value.

For both the TLBWR and TLBWI instruction, it is implementation specific whether both (FTLB and VTLB) arrays
are checked for duplicate or overlapping entries and whether a Machine Check exception is generated for these cases.

A.3.2.1 Example with chosen FTLB and VTLB sizes
As an example, let’s assume an implementation chooses these values:
1. FPageSize - 4KB used by the FTLB entries
2. FSetSize- 128 in oneway of the FTLB.

3. FWays- 4 wayswithin aset of the FTLB. (The FTLB has (128 sets x 4 ways/set) 512 entries, capable of map-
ping (512 entries x 2 pages/entry x 4KB/page) 4MB of address space simultaneously.

4, VIndex - 8 entriesinthe VTLB.

For the CO_Index, the CO_Wired registers, the TLBP, TLBR and TLBWI instructions; the VTLB occupiesindices 0
to 7. The FTLB occupiesindices 8 to 519.

The FTLB entries have aVPN2 field which starts at virtual address bit 12.

The least significant virtual address bit that can be used for FTLB indexing is virtual address 13. To index the FTLB
set-associative array, 7 index bits are needed.

In this simple example, the design uses contiguous virtual address bits directly for indexing the FTLB (it does not
create ahash for the FTLB indexing). The FTLB set-associative array isindexed using virtual address bits 19:13. The
TLBWR instruction uses these address bits held in CO_EntryHi.

In this simple exampl e, the design uses a cycle counter of 2 bits for way selection within the FTLB.

The Random register field within CO_Random is 3 bits wide to select the entry within the VTLB.

204MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

A.3.3 Changes to the TLB Instructions

TLBP
Both the VTLB and the FTLB are probed in parallel for the specified virtual address.
If the address hitsin the VTLB, CO_Index specifies the entry within the VTLB [avalue within 0 to VIndex-1].
If the address hitsin the FTLB, CO_Index specifies the entry within the FTLB [avalue within Vindex to VIn-
dex+(FSetSize * FWays)-1]. Which bits are used to encode the selected FTLB set as opposed to which bits are
used to encode the selected FTLB way isimplementation specific, but must match what is expected by the
TLBWI instruction implementation. CO_PageMask reflects the pagesize used by the FTLB.

TLBR
Either aVTLB entry or aFTLB entry isread depending on the specified index in CO_Index.

Index values of 0to VIndex-1 accessthe VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

TLBWI
Either the VTLB or FTLB entry is written depending on the specified index in CO_Index.

Index values of 0to VIndex-1 accessthe VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

It isimplementation specific if the hardware checks the VPN2 field of CO_EntryHi is appropriate for the speci-
fied set within the FTLB. The implementation may generate a machine-check exception if the VPN2 field is not
appropriate for the specified set.

It isimplementation specific if the hardware checks both arrays (FTLB and VTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

TLBWR
Either the VTLB or FTLB entry iswritten depending on the specified pagesizein CO_PageMask.

If CO_PageMask is set to any pagesize other than that used by the FTLB, the TLBWR instruction modifies a
VTLB entry. The VTLB entry is specified by the Random register field within CO_Random.

If CO_PageMask is set to the pagesize used by the FTLB, the TLBWR modifiesaFTLB entry. The FTLB
set-associative array isindexed in an implementation-specific manner.

The method of selecting which FTLB way to modify is implementation specific.

It isimplementation specific if the hardware checks both arrays (FTLB and VTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 205

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

A.3.4 Changes to the COPO Registers

CO_Config4 (CPO Register 16, Select 4)

A new register introduced to reflect the FTLB configuration. Config4ymuextper register field must be set to a

value of 2 to reflect that the Dual VTLB and FTLB configuration isimplemented. If either Config4 is not imple-
mented or the Config4ymuextper field is not fixed to 2, the Dual VTLB/FTLB configuration is not implemented.

If Configdymuexter 1S fixed to avalue of 2, the FTLBPageSize, FTLBWays and FTLBSets fields reflect the
FTLB configuration. Please refer to “ Configuration Register 4 (CPO Register 16, Select 4)” on page 165 for more
detail on this register.

CO_Configl (CPO Register 16, Select 1)

If Config4ymuextper 1S fixed to avalue of 2, the MMUSize-1 register field is redefined to reflect only the size of
the VTLB.

CO_Config (CPO Register 16, Select 0)
If Config4),tisfixed to avalue of 4, the implemented MMU Type isthe dual FTLB and VTLB configuration.
CO_Index (CPO Register 0, Select 0)

If Configdymuextner 1S fixed to avalue of 2, the register is redefined in this way:

The value held in the Index field can refer to either an entry in the FTLB or the VTLB. Index values of 0 to

VIndex-1 accessthe VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 accessthe FTLB. Which
bitsin the register field which encode the FTLB set as opposed to which bits encode the FTLB way isimple-
mentation specific, but must match what is expected by the TLBWI instruction implementation.

CO_Random (CPO Register 1, Select 0)

If Config4ymuextper IS fixed to avalue of 2, the register is redefined in this way:

If thevaluein CO_PageMask is not set to the page-size used by the FTLB, and a TLBWR instruction is
executed, aVTLB entry is modified. The Random register field is used to select the VTLB entry which is
modified.

If thevaluein CO_PageMask is set to the page-size used by the FTLB, and a TLBWR instruction is exe-
cuted, aFTLB entry is modified. It isimplementation specific whether the CO_ RANDOM register isused to
select the FTLB entry.

The upper bound of the Random register field value is VIndex.

CO_Wired (CPO Register 6, Select 0)

If Config4ymuexiDer 1S fixed to avalue of 2, the Wired register field can only hold avalue of Vindex-1 or less.
That is, only VTLB entries can be wired down.

206MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

CO_PageMask (CPO Register 5, Select 0)
If Config4ymuextper 1S fixed to avalue of 2, the register is redefined in this way:

The Mask and MaskX field values determine whether the VTLB or the FTLB is modified by a TLBWR
instruction.

The Mask and MaskX register fields do not affect the TLB address match operation for FTLB entries. The
pagesize used by the FTLB entries are specified by the Config4rpages;ze register field.

The software writeable bitsin the Mask and MaskX fieldsreflect what page sizes are availableinthe VTLB.
These fields do not reflect the page sizes which are availablein the FTLB.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 207

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

A.3.5 Software Compatibility

One of the main software visible changes introducted by this alternative MMU are the values reported in the
CO_Index register. Previoudly, it was just asimple linear index. For this alternative MMU configuration, the value
reflects both a selected way as well as a selected set when aFTLB entry is specified.

Fortunately, this Index valueisn't frequently generated by software nor read by software. Instead, the contents of the
CO_Index register is generated by hardware upon a TLBP instruction. Software then just issues the TLBWI instruc-
tion once the CO_EnLo* registers have been appropriately modified.

Another software visible changeis that the MMUSize-1 field no longer reports the entire MMU size. For TLB initial-
ization and TLB flushing, the contents of Configlymusize-1, CONfig4rr gways ad Configdrr pses register fields
must all be read to calculate the entire number of TLB entries that must beinitialized. TLB initialization and flushing
are the only times software needs to generate an Index value to write into the CO_Index register.

Only the VTLB entries may be wired down. This limitation is due to using some of the EntryHi VPN2 bits to index
the FTLB array.

If apage using the FTLB page-size isto be wired down, that page must be programmed into the VTLB using the
TLBWI instruction, asthe TLBWR instruction would only accessthe FTLB in that situation and could not access any
wired-down TLB entry. The TLBWI instruction is normally used for wired-down pages, so this restriction should not
affect existing software.

208MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.
0.95 March 12, 2001 Clean up document for external review release
1.00 August 29, 2002 Update based on review feedback:
» Change ProbEn to ProbeTrap in the EJITAG Debug entry vector location dis-
cussion.

« Add cache error and EJTAG Debug exceptions to the list of exceptions that
do not go through the general exception processing mechanism.

« Fix incorrect branch offset adjustment in general exception processing
pseudo code to deal with extended M1PS16e instructions.

» Add Config,, to denote an instruction cache with both virtual indexing and
virtual tags.

« Correct XContext register description to note that both BadVPN2 and R
fields are UNPREDICTABLE after an address error exception.

* Note that Supervisor Mode is not supported with a Fixed Mapping MMU.

« Define TagL o bits 4..3 asimplementation dependent.

» Describe theintended usage model differences between Reset and Soft Reset
Exceptions.

¢ Correct the minimum number of TLB entriesto be 3, not 2, and show an
example of the need for 3.

« Modify the description of PageMask and the TLB lookup processto
acknowledge the fact that not all implementations may support all page sizes.

1.90 September 1, 2002 Update the specification with the changes introduced in Release 2 of the Archi-
tecture. Changesin thisrevision include:

» Thefollowing new Coprocessor 0 registers were added: EBase, HWREna,
IntCtl, PageGrain, SRSCtl, SRSMap.

» Thefollowing Coprocessor O registers were modified: Cause, Config,
Config2, Config3, EntryHi, EntryL 00, EntrylL o1, PageMask, PerfCnt, Status,
WatchHi, WatchL o.

e Thedescriptions of Virtua memory, exceptions, and hazards have been
updated to reflect the changes in Release 2.

« A chapter on GPR shadow regsiters has been added.

» The chapter on CP0 hazards has been completely rewriten to reflect the
Release 2 changes.

MIPS® Architecture For Programmers Volume lll: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 209

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Revision History

Revision Date Description

2.00 June 9, 2003 Complete the update to include Release 2 changes. These include:

* Makebits12..11 of the PageMask register power up zero and be gated by 1K
page enable. This eliminates the problem of having these bits set to Ob11 on a
Release 2 chip in which kernel software has not enabled 1K page support.

» Correct the address of the cache error vector when the BEV bit is 1. It should
be 0OXBFC0.0300,. not 0xBFC0.0200.

« Correct the introduction to shadow registers to note that the SRSCtI register
is not updated at the end of an exception in which Statusgg,, = 1.

¢ Clarify that a MIPS16e PC-relative load reference is a data reference for the
purposes of the Watch registers.

¢ Add note about a hardware interrupt being deasserted between the time that
the processor detects the interrupt request and the time that the software
interrupt handler runs. Software must be prepared for this case and simply
dismisstheinterrupt viaan ERET.

* Add restriction that software must set EBase; g5 1, to zero in all bit positions
less than or equal to the most significant bit in the vector offset. Thisisonly
required in certain combinations of vector number and vector spacing when
using VI or EIC Interrupt modes.

» Add suggested software TLB init routine which reduced the probability of
triggering a machine check.

2.50 July 1, 2005 Changesin thisrevision:

+ Correct the encoding table description for the Causep, bit to indicate that the
bit controlls the performance counter, not the timer interrupt.

« Correct the figure Interrupt Generation for External Interrupt Controller
Interrupt Mode to show Causep; g going to the EIC, rather than Status;py g

e Update al filesto FrameMaker 7.1.

« Update reset exception list to reflect missing Release 2 reset requirements.

» Define bits 31..30 in the HWREnNa register as access enables for the imple-
mentati on-dependent hardware registers 31 and 30.

« Add definition for Coprocessor 0 Enable to Operating M odes chapter.

« Add K23 and KU fields to main Config register definition as a pointer to the
Fixed Mapping MMU appendix.

» Add specific note about the need to implement all shadow sets between 0 and
HSS - no holes are allowed.

 Change the hazard from a software write to the SRSCtlpgg field and a
RDPGPR and WRPGPR and instruction hazard vs. an execution hazard.

« Correct the pseudo-codein the cache error exception description to reflect the
Release 2 change that introduced EBase.

« Document that EHB clears instruction state change hazards for writesto
interrupt-related fields in the Status, Cause, Compare, and PerfCnt regis-
ters.

« Note that implementation-dependent bitsin the Status and Config registers
should be defined in such away that standard boot software will run, and that
software which preservesthe val ue of the field when writing the registerswill
also run correctly.

« With Release 2 of the Architecture the FR bit in the Status register should be
aR/W bit, not aR hit.

¢ Improve the organization of the CPO hazards table, and document that
DERET, ERET, and exceptions and interrupts clear all hazards before the
instruction fetch at the target instruction.

e Addlist of MIPS® MT CPO registersand MIPSMT and MIPS® DSP
present bitsin the Config3 register.

210MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Revision Date Description

2.60 Jun 25, 2008 Changesin this revision:
« Addthe UserlLocal register and accessto it viathe RDHWR instruction.
« Operating Modes - footnote about ksseg/sseg
* COP3 no longer usable for customer extensions
« EIC Mode alows VectorNum != RIPL
* CPORegs Table - added missing EJTAG & PDTrace Registers
e CO_DatalLo/Hi are actually R/'W
» Hazards table - added a bunch of missing ones
« Varioustypos fixed.

2.61 August 01, 2008 « Inthe Status register description, the ERL behavior description was incor-
rect in saying only 29bits of kuseg becomes uncached& unmapped.
2.62 January 2,009 * CCResis accessed through $3 not $4 - HWENA register affected.
¢ PCTD hit added to CO_PerfCtl.
2.70 January 22,2009 MIPS Technologies-only release for internal review:

* Added CPO Reg 31, Select 2 & 3 as kernel scratch registers.

e Added VTLB/FTLB optional MMU configuration to Appendix A and
Config4 register for these new MMU configurations

¢ Added CDMM chapter, CDMMBase COPO Register, CDMM bit in
CO_Config3, FDCI hitin CO_Cause register and IPFDC field in IntCtl reg-
ister.

271 January 28,2009 MIPS Technologies-only release for internal review:
« EIC mode - revision 2.70, was actually missing the new option of EIC driv-
ing an explicit vector offset (not using VectorNumbers).
 Clarified the text and diagrams for the 3 EIC options - RIPL=VectorNum,
Explicit VectorNum; Explicit VectorOffset.

272 April 20, 2009 MIPS Technologies-only release for internal review:

» Tablewasincorrectly saying ECRponen SElected debug exception Vector.
Changed to ECRpyobTrap-

* Added MIPS Technologies traditional meanings for CCA values.

« Added list of COP2 instruction to COPUnusable Exception description.

* Added statement that only uncached accessis allowed to CDMM region.

« Updated Exception Handling Operation pseudo-code for EIC Option_3 (EIC
sends entire vector).

2.73 April 22, 2009 MIPS Technologies-only release for internal review:
» Fixed comments for ASE.

274 June 03, 2009 MIPS Technologies-only release for internal review:
¢ Added CDMM Enable Bitin CDMMBase COPO register
* Reserved CCA values can be used to init TLB; just can't be used for map-
ping.
275 June 12, 2009 MIPS Technologies-only release for internal review:
e CDMMBase Upper_Address Field doesn't have afixed reset value.
* Added DSP State Disabled Exception to CO_Cause Exception Typetable.

2.80 July 20, 2009 e FTLB and VTLB MMU configuration denoted by 0x4 in Configyt

¢ Added TLBP-> TLBWI hazard
e Added KScrExist field in Config4.

MIPS® Architecture For Programmers Volume llI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Revi-
sion 3.12 211

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

Revision History

Revision Date Description

281 September 22, 2009 MIPS Technologies-only release for internal review:
« ContextConfig Register description added.
« Context Register description updated for SmartMIPS behavior.
« EntryLo* register descriptions updated for Rl & XI bits.
e TLB description and pseudo-code updated for Rl & XI bits.
» PageMask register updated for RIE and XIE bits.
« Config3 register updated for CTXTC and RXI bits.
¢ Reserve MCU ASE bitsin CO_Cause and CO_Status.
» Clean up description for KScratch registers - selects 2& 3 are recommended,
but additional scratch registers are allowed.

2.82 January 19, 2010 MIPS Technologies-only release for internal review:
¢ Added Debug? register.
3.00 March 8, 2010 ¢ RI/XI feature moved from SmartMIPS ASE.

¢ microMIPS features added

¢ MCU ASE features added.

e Xl and RI exceptions can be programmed to use their own exception codes
instead of using TLBL code.

« Xl and RI can be independently implemented as X1E and RIE bits are
allowed to be Read-Only.

* TCOpt Register added to CO Register list.

¢ Added encoding (0x7) for 32 sets for one cache way.

3.05 July 07, 2010 * CMGCRBase register added.
» Lower bits of CO_Context register allowed to be write-able if
Config3.CTXTC=1 and Config3.SM=0.

3.10 July 27, 2010 » Explain the limits of the BadV PN2 field within Context register and the rela-
tionships with the writeable bits within ContextConfig register.

311 April 24, 2011 MIPS Technologies-only release for internal review:

* FPR registers are UNPREDICTABLE after change of Status.FR bit.

¢ 1004K did not support CCA=0

« Config4 - KScratch Registers, mention that select 1 is reserved for future
debugger use.

« Context Register - the bit subscripts describing which VA bits go into the
BadVPN2 field was incorrect for the case when the ContextConfig register is
used. The correct VA bits are 31:31-((X-Y)-1) for MIPS32.

312 April 28, 2011 ¢ Changes for MIPS64, no changes for MIPS32.

212MIPS® Architecture For Programmers Volume 1lI: The MIPS32® and microMIPS32™ Privileged Resource Architecture, Re-
vision 3.12

Copyright © 2001-2003,2005,2008-2011 MIPS Technologies Inc. All rights reserved.

	MIPS® Architecture For Programmers Volume III: The MIPS32® and microMIPS32™ Privileged Resource Architecture
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The MIPS32 and microMIPS32 Privileged Resource Architecture
	2.1 Introduction
	2.2 The MIPS Coprocessor Model
	2.2.1 CP0 - The System Coprocessor
	2.2.2 CP0 Registers

	MIPS32 and microMIPS32 Operating Modes
	3.1 Debug Mode
	3.2 Kernel Mode
	3.3 Supervisor Mode
	3.4 User Mode
	3.5 Other Modes
	3.5.1 64-bit Floating Point Operations Enable
	3.5.2 64-bit FPR Enable
	3.5.3 Coprocessor 0 Enable
	3.5.4 ISA Mode

	Virtual Memory
	4.1 Differences between Releases of the Architecture
	4.1.1 Virtual Memory
	4.1.2 Protection of Virtual Memory Pages
	4.1.3 Context Register

	4.2 Terminology
	4.2.1 Address Space
	4.2.2 Segment and Segment Size
	4.2.3 Physical Address Size (PABITS)

	4.3 Virtual Address Spaces
	4.4 Compliance
	4.5 Access Control as a Function of Address and Operating Mode
	4.6 Address Translation and Cacheability & Coherency Attributes for the kseg0 and kseg1 Segments
	4.7 Address Translation for the kuseg Segment when StatusERL = 1
	4.8 Special Behavior for the kseg3 Segment when DebugDM = 1
	4.9 TLB-Based Virtual Address Translation
	4.9.1 Address Space Identifiers (ASID)
	4.9.2 TLB Organization
	4.9.3 TLB Initialization
	4.9.4 Address Translation

	Common Device Memory Map
	5.1 CDMMBase Register
	5.2 CDMM - Access Control and Device Register Blocks
	5.2.1 Access Control and Status Registers

	Interrupts and Exceptions
	6.1 Interrupts
	6.1.1 Interrupt Modes
	6.1.1.1 Interrupt Compatibility Mode
	6.1.1.2 Vectored Interrupt Mode
	6.1.1.3 External Interrupt Controller Mode

	6.1.2 Generation of Exception Vector Offsets for Vectored Interrupts
	6.1.2.1 Software Hazards and the Interrupt System

	6.2 Exceptions
	6.2.1 Exception Priority
	6.2.2 Exception Vector Locations
	6.2.3 General Exception Processing
	6.2.4 EJTAG Debug Exception
	6.2.5 Reset Exception
	6.2.6 Soft Reset Exception
	6.2.7 Non Maskable Interrupt (NMI) Exception
	6.2.8 Machine Check Exception
	6.2.9 Address Error Exception
	6.2.10 TLB Refill Exception
	6.2.11 Execute-Inhibit Exception
	6.2.12 Read-Inhibit Exception
	6.2.13 TLB Invalid Exception
	6.2.14 TLB Modified Exception
	6.2.15 Cache Error Exception
	6.2.16 Bus Error Exception
	6.2.17 Integer Overflow Exception
	6.2.18 Trap Exception
	6.2.19 System Call Exception
	6.2.20 Breakpoint Exception
	6.2.21 Reserved Instruction Exception
	6.2.22 Coprocessor Unusable Exception
	6.2.23 Floating Point Exception
	6.2.24 Coprocessor 2 Exception
	6.2.25 Watch Exception
	6.2.26 Interrupt Exception

	GPR Shadow Registers
	7.1 Introduction to Shadow Sets
	7.2 Support Instructions

	CP0 Hazards
	8.1 Introduction
	8.2 Types of Hazards
	8.2.1 Possible Execution Hazards
	8.2.2 Possible Instruction Hazards

	8.3 Hazard Clearing Instructions and Events
	8.3.1 MIPS32 Instruction Encoding
	8.3.2 microMIPS32 Instruction Encoding

	Coprocessor 0 Registers
	9.1 Coprocessor 0 Register Summary
	9.2 Notation
	9.3 Writing CPU Registers
	9.4 Index Register (CP0 Register 0, Select 0)
	9.5 Random Register (CP0 Register 1, Select 0)
	9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	9.7 Context Register (CP0 Register 4, Select 0)
	9.8 ContextConfig Register (CP0 Register 4, Select 1)
	9.9 UserLocal Register (CP0 Register 4, Select 2)
	9.10 PageMask Register (CP0 Register 5, Select 0)
	9.11 PageGrain Register (CP0 Register 5, Select 1)
	9.12 Wired Register (CP0 Register 6, Select 0)
	9.13 HWREna Register (CP0 Register 7, Select 0)
	9.14 BadVAddr Register (CP0 Register 8, Select 0)
	9.15 Count Register (CP0 Register 9, Select 0)
	9.16 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	9.17 EntryHi Register (CP0 Register 10, Select 0)
	9.18 Compare Register (CP0 Register 11, Select 0)
	9.19 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	9.20 Status Register (CP Register 12, Select 0)
	9.21 IntCtl Register (CP0 Register 12, Select 1)
	9.22 SRSCtl Register (CP0 Register 12, Select 2)
	9.23 SRSMap Register (CP0 Register 12, Select 3)
	9.24 Cause Register (CP0 Register 13, Select 0)
	9.25 Exception Program Counter (CP0 Register 14, Select 0)
	9.25.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE or the microMIPS32 Base Architectures

	9.26 Processor Identification (CP0 Register 15, Select 0)
	9.27 EBase Register (CP0 Register 15, Select 1)
	9.28 CDMMBase Register (CP0 Register 15, Select 2)
	9.29 CMGCRBase Register (CP0 Register 15, Select 3)
	9.30 Configuration Register (CP0 Register 16, Select 0)
	9.31 Configuration Register 1 (CP0 Register 16, Select 1)
	9.32 Configuration Register 2 (CP0 Register 16, Select 2)
	9.33 Configuration Register 3 (CP0 Register 16, Select 3)
	9.34 Configuration Register 4 (CP0 Register 16, Select 4)
	9.35 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	9.36 Load Linked Address (CP0 Register 17, Select 0)
	9.37 WatchLo Register (CP0 Register 18)
	9.38 WatchHi Register (CP0 Register 19)
	9.39 Reserved for Implementations (CP0 Register 22, all Select values)
	9.40 Debug Register (CP0 Register 23, Select 0)
	9.41 Debug2 Register (CP0 Register 23, Select 6)
	9.42 DEPC Register (CP0 Register 24)
	9.42.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE or microMIPS32 Base Architecture

	9.43 Performance Counter Register (CP0 Register 25)
	9.44 ErrCtl Register (CP0 Register 26, Select 0)
	9.45 CacheErr Register (CP0 Register 27, Select 0)
	9.46 TagLo Register (CP0 Register 28, Select 0, 2)
	9.47 DataLo Register (CP0 Register 28, Select 1, 3)
	9.48 TagHi Register (CP0 Register 29, Select 0, 2)
	9.49 DataHi Register (CP0 Register 29, Select 1, 3)
	9.50 ErrorEPC (CP0 Register 30, Select 0)
	9.50.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE or microMIPS32 Base Architecture

	9.51 DESAVE Register (CP0 Register 31)
	9.52 KScratchn Registers (CP0 Register 31, Selects 2 to 7)

	Alternative MMU Organizations
	A.1 Fixed Mapping MMU
	A.1.1 Fixed Address Translation
	A.1.2 Cacheability Attributes
	A.1.3 Changes to the CP0 Register Interface

	A.2 Block Address Translation
	A.2.1 BAT Organization
	A.2.2 Address Translation
	A.2.3 Changes to the CP0 Register Interface

	A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs
	A.3.1 MMU Organization
	A.3.2 Programming Interface
	A.3.2.1 Example with chosen FTLB and VTLB sizes

	A.3.3 Changes to the TLB Instructions
	A.3.4 Changes to the COP0 Registers
	A.3.5 Software Compatibility

	Revision History

