
Lazaridis Dimitris

A fault tolerant for processor

The mips – fault tolerant is mips 32 bits processor with error detection (Fault

Tolerant). The processor implementation was designed by Lazaridis Dimitris.

Main aspects

The core is in 5 stages:

- Instruction extraction

- Instruction decoding

- Execution

- Memory access

- Update registers

It supports almost all instructions of mips technology, R type, I type, Branch, Jump

and multiply packet instructions.

The multiply result is stored until is needed regardless if others instructions follows.

There is an error detection circuits for fault tolerant. It is implementing in hardware

100% which provides error detection at reset start-up.

There is a separate memory for instructions and another for data read – write which

can be changed.

At each stage one clock cycle is used. Both memories function in descending pulse

and the remaining pulse is used for developing the necessary functions (e.g.

pipeline), which makes the core faster and more flexible.

All I types instructions are part decoded in first stage and all R types also part

decoded in Alu control reducing the complexity in main Control unit (FSM).

All instructions are tested for correct execution. A test benchs from separate circuit

implementation is also included (to verify the program which exists in Instruction

memory).

The mips – fault tolerant was integrated in an FPGA from Xilinx version 13.1 in

Spartan 3 xc3s400-5tq144 target device but can be fit in another similar target

device.

The processor is implemented all in VHDL.

Lazaridis Dimitris

Error detection

With continuous scaling in CMOS technology the number of transistors grows more

and more in a single chip. Chip multiprocessors (CMPs) are an efficient way for using

this very large number of transistors integrated in a chip. Several researches show

that high density integration makes modern processors prone to the risk of transient

or permanent fault. However, the increase of temperature and decrease of the

voltage in the chip lead to a higher susceptibility to faults. As the feature size shrinks

the probability of a single transistor to become faulty, it increases due to the low

threshold voltages.

It is projected that the rate at which the transient errors occur will grow

exponentially and will soon represent one of the most significant issues in the design

of future generation high-performance microprocessors.

This work proposes a fault tolerant architecture that tolerates the high fault rates

that are expected in future technologies. It is test the multiply block counting a 0f as

an input data and compare the result with a signature. It has a high fault coverage

and fast execution due to hardware implementation, which will be more popular

method for errors detection in future for the time saving (there is not time penalty),

reliability, low cost and high presentence to fault coverage, low power consumption.

Further research

Most error detect methods for fault tolerance check the mips or a circuit at start up

or at once or periodically to find any errors for fault coverage, but what if an error

occurs during the tests? A fault data will process as correct. To work around with

this, a non stop searching method test the mips continuously, it can be implement

and find any error as it appears at the beginning and further more if the fpga has

enough room to relocate the damaged place in another undamaged.

To implement this error detect method, we can inject in fsm and detect the errors

for fault tolerance. Knowing the next stage (instruction) through fsm, and decide to

test the “multiply” block circuits, could test the multiply circuits until the next

instruction it is not concern this circuits, if a multiply instruction is coming up we can

stop the process and continue when it is free again, thus we can find if an error

occurs in this part of cpu and cover the fault tolerance. The same process it is

possible to test all critical parts of mips or central unit and find if an error exits. The

advantage in this method is that the error detects circuit works continuously. This

method does not require double cores, but only some additional parts (low cost) and

which can work in conjunction with fsm without consume the microprocessor’s

working time but it works simultaneously.

