[image: image28.wmf] OpenCores
EV_JPEG_ENC
3/28/2009

[image: image28.wmf]
EV_JPEG_ENC IP Core
Specification

Author: Michal Krepa

Rev. 1.7
March 28, 2009
Krakow, PL
	Version

	Date
	Author
	Comment

	1.0
	15.02.2009
	Michal Krepa
	Initial Creation.

	1.1
	13.03.2009
	Michal Krepa
	Huffman description updated.

	1.2
	17.03.2009
	Michal Krepa
	Huffman design restored to use two stage VLI/VLC handler to achieve better timing. Simulation HOWTO chapter added.

	1.3
	19.03.2009
	Michal Krepa
	BUF_FIFO fifo almost full signal changed.

	1.4
	20.03.2009
	Michal Krepa
	Added C_MEMORY_OPTIMIZED configuration constant to reduce memory footprint at expense of performance. Look at BUF_FIFO description for details.

	1.5
	24.03.2009
	Michal Krepa
	BUF_FIFO now uses single RAM which is used for all SubFIFOs. Added description of divider used in Quantizer block.

	1.6
	26.03.2009
	Michal Krepa
	Added chrominance quantization table support.

	1.7
	28.03.2009
	Michal Krepa
	Added separate pipeline stage for Quantizer to balance chain load across design.

51.1
EV_JPEG_ENC

51.1.1
General description

51.1.2
Architecture

51.1.3
Features

61.1.4
Example throughput

61.1.5
Open points / TODO list / Limitations

71.1.6
Control State Machine

81.1.7
MAIN_SM

101.1.8
MAIN_SM details

111.1.9
BUF_FIFO

131.1.10
Output Mux

141.2
Host IF

171.3
FDCT

171.3.1
BUF_FIFO Read Controller

181.3.2
FRAM1

181.3.3
RGB to YCbCr conversion

181.3.4
Write Counter / DCT matrix transpose

191.3.5
Mux1

191.3.6
MDCT

191.3.7
FIFO1 and FIFO RD CTRL

191.3.8
DBUF

201.4
ZIGZAG

211.4.1
ZIGZAG Core

221.4.2
FIFO ctrl

221.4.3
DBUF

221.4.4
QUANTIZER

251.5
RLE

261.5.1
RLE Core

271.5.2
Entropy Coder

271.5.3
Read counter

271.5.4
EOB Detector / Write Counter

281.5.5
Double FIFO

291.6
HUFFMAN Encoder

291.6.1
General Description

291.6.2
Operation

291.6.3
Double FIFO

311.6.4
Variable Length Processor

351.6.5
DC Luminance ROM

361.6.6
AC Luminance ROM

381.7
Byte Stuffer

381.7.1
CTRL_SM

391.7.2
Write Counter

391.7.3
Byte Stuff Detector

391.7.4
bs_buf_sel

391.7.5
last_addr

401.8
JFIF Header Generator

401.8.1
Header RAM Programming

411.8.2
JFIF Generator

411.8.3
EOI Writer

411.8.4
Mux1/Mux2

411.8.5
Generic Header

441.9
Programming Interface

441.9.1
General

441.9.2
Core address map

441.9.3
Register Descriptions

461.10
Users Manual

471.11
Simulation

471.11.1
OPB Master BFM

481.12
Performance / Area

481.12.1
General

481.12.2
Area

1.1 EV_JPEG_ENC
1.1.1 General description

EV_JPEG_ENC core is intended to encode raw bitmap images into JPEG compliant coded bit stream. JPEG baseline encoding method is used.
1.1.2 Architecture

[image: image1.emf]JPEG_ENC.vsd

data(23:0)

HOST DATA

HOST

PROG

Huffman

Encoder

RLE

ZIG

ZAG

Quantizer

DCT

2D

RGB

to

YCbCr

Pipeline Controller

RAM

Host IF

sof

size_x

size_y

almost_full

Byte

Stuffer

ready_int

JFIF

GEN

m

u

x

BUF_FIFO

we

Figure 1
General system architecture consist of encoding chain started by Host Programming interface. Host Data interface shall continuously write BUF_FIFO until FIFO almost full signal is received. Then, it should stop and wait for signal FIFO almost full to deassert. When this is the case it should continue writing and so on.

Encoding is governed by Controller and is a pipelined process where each pipeline stage process 8x8 block of samples at a time (8x8 block is so called “data unit”).

Finally, encoded bit stream is byte stuffed and then stored to output (RAM or FIFO).
Following steps are performed: Line Buffering, RGB to YCbCr conversion, Discrete Cosine Transform 2-dimensional, followed by Zig Zag scan, Quantizer, , Run Length Encoding and Huffman coding followed by byte stuffing and JFIF header is also generated at the beginning of encoding and with EOI marker closing image.
1.1.3 Features

· JPEG baseline encoding JPEG ITU-T T.81 | ISO/IEC 10918-1
· Standard JFIF header v 1.01 automatic generation
· Color images only (3 components, RGB input)
· Two programmable Quantization tables, one for luminance and one for chrominance
· Hardcoded Huffman tables
· 4 clock cycles per one input 24 bit pixel @ 50% quantization
· OPB programming and data Host interface

· No subsampling, means 4:4:4 system used
· Source code target independent, synthesizable RTL VHDL code
· Design easily exceeds 100 MHz on decent FPGA like Stratix II, Virtex IV etc.

1.1.4 Example throughput

Measured from JPEG encoding start till encoding done:

· Input image 800x600 24 bit RGB color. New sample loaded every cycle until FIFO full.
· Quantization table 50% quality setting
· 21.6 ms processing time @ 100 MHz clock
· 1000/18.4=54 frames per second @ 100 MHz
· Input file size = 1.44 MB. Output file size = 187 kB (depends on image)

1.1.5 Open points / TODO list / Limitations
· Create stallable design on the output side
· Use different Huffman table for chroma than for luminance

· Allow Huffman tables to be configurable via Host Prog IF

· Add subsampling
· replace OPB interface used for programming with PLB or Wishbone interface
· Check encoding quality (PSNR, etc)
1.1.6 Control State Machine (CTRL_SM)

[image: image2.emf]JPEG_ENC.vsd

Ctrl

SM1

start1

idle1

start

rdy

Ctrl

SM3

start

rdy

start3

idle3

MAIN_SM

Host IF

QUANTIZER

data

RLE

Ctrl

SM2

start

rdy

start2

idle2

FDCT

data

idle6

sof

„1"

Byte Stuffer

data

data

ZIGZAG

data

Ctrl

SM4

idle4

start4

start

rdy

rd_addr,

rden

BUF_FIFO

size_x,

size_y

rd_addr

rd_addr

rd_addr

rd_addr

ready

Reg1

sm_settings

HUFFMAN

wr_addr

data

Ctrl

SM5

idle5

start

rdy

start5

Reg2

Reg3

JFIF

GEN

start_jfif

ready_jfif

out_mux_ctrl

eoi

Out_Mux

Ctrl

SM6

idle7

start6

start

rdy

rd_addr

Figure 2
Description:
· EV_JPEG_ENC is main control state machine for JPEG encoding process. It gets uncoded raw image samples and transforms it into JPEG encoded bit stream.
· First, Host asserts “sof” (start of frame) single pulse along with size_x (image width) and size_y (image height) signals valid (programming registers are used for that purpose).
· After this is done, Host starts loading raw image to Host Data interface

· Then EV_JPEG_ENC process image in 8x8 pixels blocks following horizontal order, from left to right and vertically from top to bottom of the image. When color image is encoded, 3 components (Y, Cb, Cr) are interleaved 8x8 block wise.
· Limitation: Currently, only image sizes (length, width) multiple of 8 samples are supported

· Finally, coded bit stream is stored to output RAM.
· Ready signal to Host is asserted when all 8x8 blocks are processed and all pipeline state machines are idle. Also, ready_int interrupt to Host is generated.
1.1.7 MAIN_SM

[image: image3.emf]Idle

Horiz

MAIN_SM.vsd

sof

Vert

y_cnt == y_size &&

idle1 && idle2 && idle3 && idle4 && idle5

&& idle6

x_cnt < size_x

start1

x_cnt == size_x y_cnt < y_size

ready

ready_int

Comp

idle1 &&

cmp_idx < cmp_max

idle1 &&

cmp_idx = cmp_max

JFIF

ready_jfif

start_jfif

EOI

start_jfif

ready_jfif

Figure 3
MAIN_SM state machine is responsible for control of whole encoding process.
1.1.7.1 Some variables/signals are defined
	Name
	description
	range

	x_cnt
	count samples in horizontal direction. Incremented in steps of 8 samples. (16 bits)
	0..image_width-8
warning: image width must be multiple of 8 samples

	y_cnt
	count lines in vertical direction. Incremented in steps of 8 samples. (16 bits)
	0..image_height-8
warning: image height must be multiple of 8 samples

	cmp_idx
	Component index. Indicates currently processed color component (Y, Cb, Cr).
	0..2

	sof
	start of frame. Asserted by Host after raw (uncoded) image is loaded.
	0/1

	size_x
	image width (16 bits)
	8...65536-8

	size_y
	image height (16 bits)
	8...65536-8

	start1
	starts first stage of pipeline (FDCT)
	0/1

	ready
	ready pulse signal to Host – JPEG encoding complete
	0/1

	cmp_max
	Maximum number of components.
	3

	eoi
	generation of EOI marker to end coded image data. Sampled when jfif_start is high.
	0/1

1.1.7.2 States description
	Name
	description

	Idle
	JPEG encoder is inactive waiting to be started by Host

	Horiz
	encoding process blocks of 8x8 samples until horizontal counter reaches width of image.

	Vert
	Reset horizontal counter and advance vertical counter by 8. Check if end of image reached.

	Comp
	Component processing. Process one 8x8 block from each component in interleaved fashion.

	JFIF
	Generation of JFIF header.

	EOI
	Generation of EOI marker (End Of Image)

1.1.7.3 SM_SETTINGS
SM_SETTINGS is record passed through pipeline from main state machine. When start1 asserts sm_settings from MAIN_SM are latched to Reg1.
	SM_SETTINGS
	description

	x_cnt
	current sample coordinate starting point in horizontal direction

	y_cnt
	current sample coordinate starting point in vertical direction

	cmp_idx
	Component index. We have three components in color image and only one in grayscale.

Order of processing:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	...
	...
	...
	...
	...

Each cell in table above represents block 8x8 pixels (“data unit”). Blocks are processed in direction of increasing numbers.
1.1.8 MAIN_SM details

[image: image4.emf]MAIN_SM_details.vsd

Horiz

yes

no

x_cnt = 0

y_cnt = 0

out_mux_ctrl=1

Horiz

Vert

x_cnt < size_x ?

Comp

Idle

sof == 1 ?

start_jfif

JFIF

ready_jfif ?

out_mux_ctrl=0

eoi=0

Figure 4

[image: image5.emf]MAIN_SM_details2.vsd

Horiz

Vert

y_cnt < size_y ?

yes

no

x_cnt=0

y_cnt=y_cnt+8

Horiz

idle1 && idle2 &&

idle3 && idle4 &&

idle5 && idle6

cmp_idx = 0

x_cnt = x_cnt + 8

idle1 == 1 ?

start1

Comp

cmp_idx < cmp_max?

yes

no

cmp_idx++

Comp

EOI

start_jfif

ready_jfif == 1 ?

eoi=1

out_mux_ctrl=0

ready_int = 1

Idle

Figure 5
1.1.9 BUF_FIFO

Host Data interface writes input image line by line to BUF_FIFO. This FIFO is intended to minimize latency between raw image loading and encoding start. It performs raster to block conversion (line wise input to 8x8 block conversion).
BUF_FIFO is actually a number of sub-FIFOs. Number ot them depends on maximum_image_width:
num_fifos = max_image_width / 8
Note: Maximum supported image width must be configured by constant in JPEG_PKG.VHD to fix FIFO size before synthesis.
Default C_MAX_LINE_WIDTH = 640
Warning: This parameter heavily affects size of used memory (block ram etc).
BUF_FIFO must be able to store at least 8 lines of input image, so that JPEG encoding can be started for 8x8 blocks.

BUF_FIFO depth = 16 lines is selected to keep pipeline full at all times.
Signal FIFO almost full asserts when 14 eight-pixel lines are occupying FIFO number 2 before last (n-1-2) so that no overflow happens.
That is, for FIFO(num_fifos-1-2) is checked if number of FIFO used words exceeds 128-2*8. 128=FIFO size, 16=arbitrary selected safety margin.

FIFO 2 before last was selected from safety_margin/pixels_written_per_fifo_in_one_line = 16/8=2.

Such selection of FIFO almost full signal allows to keep pipeline full at all times and also avoid overflow.

NOTE: It is be possible to reduce FIFO memory size required by half as 64 words is enough for operation instead of 128. That however reduces performance by about 18% as found in simulations, because pipeline drain happens from time to time. In reduced memory size scheme FIFO almost full signal is in fact FIFO full signal.
To reduce memory size footprint please adjust parameter C_MEMORY_OPTIMIZED in JPEG_PKG.VHD package.
One SubFIFO size is (16x8) x 24 bits.

[image: image6.emf]BUF_FIFO.vsd

FDCT

data

Host Data

FIFO(0)

CTRL_SM

24

FIFO(1) FIFO(n-1)

Mux1

wren

pixel_cnt /

wblock_cnt

x_block_cnt

fifo_rd

fifo_empty

almost

full(0)

almost

full(1)

almost

full(n)

almost

full(n-1-2)

Mux2

empty(0)

sof

flush

image_width

rst

SUB_RAM

wblock_cnt

wblock_cnt

SUB_FIFO

SIZE

waddr

base

fifo

ramwaddr

fifo

ramwe

waddr

ram

Mux3

raddr

ram

Mux4

raddr

base

SUB_FIFO

SIZE

x_block_cnt

ramq(23:0)

ramd(23:0)

fifo

ramraddr

from Sub FIFOs

from Sub FIFOs

Figure 6
1.1.9.1 FIFO write

· Host writes image data line by line.

· FIFOs are written from 0 to n-1 (left to right) with 8 pixels in each line written per FIFO
· pixel_cnt(15:0) is incremented every write enable from Host and is reset when end of line is reached (equal to image_width-1).
· wblock_cnt(12:0) is pixel_cnt shifted right by 3 bits (divide by 8).
· wblock_cnt controls Mux1 and selects to which Sub FIFO data should be written to

· FIFO number last-2’s almost full signal is routed back to Host Data interface to indicate that Host should hold off with writing for a moment to prevent FIFO overflow. When almost full disappears Host can continue with writing.
1.1.9.2 FIFO read

· FDCT indicates by x_block_cnt which horizontal 8x8 block (sub FIFO) it wants to read
· read is performed only if FIFO is half full (at least 64 words) so that burst of 64 words is read each time. When FIFO is empty reading is stalled and FDCT waits until FIFO has new data.
1.1.9.3 General

When SOF asserts

· pixel_cnt, wblock_cnt are reset

1.1.9.4 SUB_RAM

SUB_RAM is memory shared between all SubFIFOs. This is possible as at any given time only one SubFIFO is being read and (another) one is being written. Instead of using separate memory for every SubFIFO one central memory block allows for more efficient usage of FPGA resources.

Mux3 and Mux4 are used to properly construct SUB_RAM write and read address. Write address consist of base address plus offset. Base address comes from index of currently written SubFIFO multiplied by single FIFO depth. Offset comes from internal FIFO write counter increased every time new sample is written to Sub FIFO. Similar approach is used to construct SUB_RAM read address.
1.1.10 Output Mux

Output Mux is used to switch data path to JFIF Generator for the time of JFIF header writing. After JFIF header is written to output, mux is switched to “normal” data processing path.
Switch is realized by means of signal out_mux_ctrl toggle.

1.2 Host IF

Host IF is an interface block between host (CPU) and JPEG encoder IP core.

Xilinx OPB v2.1 has been selected as Host communication protocol. JPEG encoder core will act as OPB slave device.
[image: image7.emf]
Figure 7
More information on interface can be found in OPB v2.1 specification.
On figure below OPB read transaction is shown
[image: image8.emf]
Figure 8
On figure below OPB write transaction is shown.

[image: image9.emf]
Figure 9
Note: Above images are taken from “Designing Custom OPB Slave Peripherals for MicroBlaze” Xilinx tutorial.
1.3 FDCT

FDCT is intended to perform functions: RGB to YCbCr conversion, input level shift and DCT (discrete cosine transform).

[image: image10.emf]FDCT.vsd

MDCT

ZIGZAG

data

fifo_rd,

x_block_cnt

data_dct

d_valid

d_valid

DBUF

size_x(16:0),

size_y(16:0)

BUF_FIFO

buf_sel

BUF_FIFO

read

Controller

d_valid

wrt_cnt /

transpose

wr_addr

(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data_dct_q

24

12

12

start_pb

ENC_START_REG

IMAGE_SIZE_REG

SOF

not

wr_addr(6)

rd_addr(6)

mux1

8

cur_cmp_idx

RBG2YCbCr

FIFO1

12

data_dct

FIFO

rd ctrl

rden

empty

fifo_empty

FRAM1

wr_addr(5:0),

rd_addr(5:0)

 Figure 10
When sof asserts
· size_x and size_y are latched internally
· RAM Read Ctrl is started
1.3.1 BUF_FIFO Read Controller

This submodule performs reading of input samples fom BUF_FIFO. To maximize performance this block operates “almost” independently from EV_JPEG_ENC pipeline control processing chain.
· When SOF asserts, Read Controller starts reading data from BUF_FIFO given it is not empty.
· Read Ctrl has its own horizontal, vertical and component counters to point into currently processed 8x8 block and know end of image. These counters operate similarly to ones in Pipeline Controller FSM.

· Independent counters are necessary as Read Ctrl can operate at higher rate than rest of processing chain.

· Data read from BUF_FIFO is given to MDCT core
· Read Ctrl stalls reading when FIFO1 has less space than 64 words (aka FIFO1 almost full signal). This is necessary to prevent FIFO1 overflow, because MDCT output results in burst of 64 words.

· Rad Ctrl stalls reading when BUF_FIFO is empty
· Read_ctrl is started once by SOF and then it does self-trigger internal start after reading of one 8x8 block.

· When all 8x8 blocks are read out internal self-start mechanism is stopped and Read Ctrl goes to idle.

· Reading of one 8x8 block proceeds like follow: read one 8x8 block of pixels from BUF_FIFO and store it to FRAM1. Read FRAM1 3 times one per each component to perform DCT on each component seperately.
· cur_cmp_idx is counter modulo 3. It is incremented every time RAM RD CTRL is started for new 8x8 block.
· x_block_cnt is incremented every 8 samples in horizontal direction and reset when end of line is reached. y_block_cnt is incremented every 8 lines.
Reading details:

· 64 image samples are read from FRAM1 using rd_addr as read address. These contain R,G,B 8 bit values per one sample. This is done 3 times, one per each component. At each pass, different data (R,G or B) is taken to DCT processing.

· First, 64 R values undergo DCT (increment cur_cmp_idx), then 64 G (increment cur_cmp_idx), and finally 64 B. Thus 3 x 64 x 8 bit data from Image RAM is level shifted and DCT encoded

1.3.2 FRAM1

FRAM1 is dual port memory with size 64x24 bits. Used to store one 8x8 block read from FIFO. Since one 8x8 block read from FIFO contains data already for all 3 components and 3 components are processed in 3 consecutive read passes, it means reading 3 times the same 24 bit data is necessary, just use different byte from it each time. As from FIFO we cannot read 3 times same data, intermediate RAM=FRAM1 is used.
1.3.3 RGB to YCbCr conversion

Following equation is implemented by means of multipliers and adders to perform conversion:
Y = (0.299*R)+(0.587*G)+(0.114*B)
Cb = (-0.1687*R)-(0.3313*G)+(0.5*B)+128
Cr = (0.5*R)-(0.4187*G)-(0.0813*B)+128
Constants used in this equation have format 14 bits of precision plus 1 sign bit on MSB.

Saturation to 255 is not implemented. Not necessary it seems???

Warning: EV_JPEG_ENC design assumes that hardware multipliers are available on target FPGA!
1.3.4 Write Counter / DCT matrix transpose
· wrt_cnt is write counter used to count number of samples (0..63
· Every time d_valid output from MDCT asserts, wrt_cnt is post incremented by 1.
· Wrt_cnt is reset by start_pb to zero.
· When all words are written (wrt_cnt == 63) ready_pb asserts to signal block processing complete to EV_JPEG_ENC chain control.
· It is necessary to transpose MDCT output as it is column wise output while row wise is needed.
· For that purpose two 3 bit counters are created. yw_cnt counts vertically and xw_cnt counts horizontally. Normally, yw_cnt counts from 0..7, when 7 is reached xw_cnt is incremented and yw_cnt reset. xw_cnt is wrap around type of counter. Write address to DBUF: wraddr(5:3) = yw_cnt, wraddr(2:0) = xw_cnt
1.3.5 Mux1

Mux1 is used to select currently processed image component. It routes proper byte from 24 bits input data. Data(7:0) is used for cur_cmp_idx=0, data(15:8) for cur_cmp_idx=1, data(23:16) for cur_cmp_idx=2.
1.3.6 MDCT

2D Discrete cosine transform core combined with level shift. Works on block of 64 samples. Take 8 bit input and produces 12 bit output.

First, uncoded image is level shifted from unsigned integers with range [0, 2^P - 1] to signed integers with range [-2^(P-1), 2^(P-1)-1]. x^p means here x to power of p.

Then 2D DCT is performed using following equation:

[image: image11]
· where C(u),C(v)
= 2-1/2
for u=0,v=0

= 1
otherwise
· x(i,j) – input sample at position (i,j) in 8x8 block
· X(u,v) – output sample at position (u,v) in 8x8 block
· N=64
MDCT takes data row-wise but outputs column-wise. To get row-wise order it is necessary to transpose output DCT matrix.
1.3.7 FIFO1 and FIFO RD CTRL
FIFO1 has space for 4 8x8 block DCT results. Its size = 4x64x12 bit.

FIFO read controller has internal counter fifo_cnt(5:0) to count number of words read per one start_pb.
When start_pb asserts:

· fifo_cnt is reset and starts FIFO reading.
· if fifo_cnt is less than 64 and FIFO is not empty -> read FIFO and increment fifo_cnt
· when fifo_cnt is = 64-1 FIFO reading is disabled until next start_pb
1.3.8 DBUF
Dual port RAM 2x64x12 bit. Double Buffer necessary for pipeline operation. Buf_sel signal is used as MSB in read address of DBUF. ~buf_sel (inverted) is used as MSB of write address to DBUF. Thus, while FDCT is writing
next block of data, ZIGZAG is reading previous block.
1.4 ZIGZAG

[image: image12.emf]ZIGZAG.vsd

ZIGZAG

Core

CTRL_SM

Quantizer

data

rd_addr

(5:0)

data

DBUF

FDCTQ

buf_sel

rd_cnt

start_pb

wrt_cnt

wr_addr

(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data

12

12

12

start_pb

t flop

buf_sel

not

wr_addr(6)

rd_addr(6)

FIFO

ctrl

empty

rden

d_valid

zz_rd_addr

(5:0)

Figure 11
Zig-Zag block is responsible to perform so called zig-zag scan. It is simply reorder of samples positions in one 8x8 block according to following tables.

input order (natural):

	0
	1
	2
	3
	4
	5
	6
	7

	8
	9
	10
	11
	12
	13
	14
	15

	16
	17
	18
	19
	20
	...
	...
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	...
	...
	62
	63

Zig-zag output order:

	0
	1
	5
	6
	14
	15
	27
	28

	2
	4
	7
	13
	16
	26
	29
	42

	3
	8
	12
	17
	25
	30
	41
	43

	9
	11
	18
	24
	31
	40
	44
	53

	10
	19
	23
	32
	39
	45
	52
	54

	20
	22
	33
	38
	46
	51
	55
	60

	21
	34
	37
	47
	50
	56
	59
	61

	35
	36
	48
	49
	57
	58
	62
	63

It means for example that first sample (position 0) is mapped to the same output position 0. Sample 2 is mapped to output position 5, etc.
When start_pb asserts:

· buf_sel toggles

· wrt_cnt is reset

· rd_cnt is reset to 0 and starts counting 0..63. -> 64 values are read from FDCT.
· ZIGZAG scanning is performed

· reordered data is written to DBUF using wr_addr generated from write counter (wrt_cnt)
· after 64 values are written to DBUF ready_pb is asserted

· Wrt_cnt can be implemented as simply delayed version of rd_cnt as ZIGZAG scan processing latency is constant.
1.4.1 ZIGZAG Core

[image: image13.emf]ZIGZAG Core.vsd

ZIGZAG TOP

zz_rd_addr

(5:0)

data

d_valid

FIFO

ZIGZAG TOP

rden

data

12

12

REORDER

ROM

rd_addr

(5:0)

delay

empty

Figure 12
ZigZag Core is performing reordering of input samples according to zig-zag sequence. For that purpose REORDER ROM is used.
This ROM should be filled with following values written from address 0 to address 63:

	0,1,8,16,9,2,3,10,

 17,24,32,25,18,11,4,5,

 12,19,26,33,40,48,41,34,

 27,20,13,6,7,14,21,28,

 35,42,49,56,57,50,43,36,

 29,22,15,23,30,37,44,51,

 58,59,52,45,38,31,39,46,

 53,60,61,54,47,55,62,63

Note: This table is reverse from JPEG std spec table.

FIFO is used to store reordered samples for next processing step. FIFO size 64x12 bit.
1.4.2 FIFO ctrl

FIFO CTRL is read controller for FIFO. It reads FIFO output as long as it is not empty. Also it generates data valid signal which is simply delayed FIFO read req.
1.4.3 DBUF

Dual port RAM size 2 x 64 x 12 bits.
QUANTIZER

[image: image14.emf]Quantizer.vsd

CTRL_SM

RLE

data

rd_addr

(5:0)

data

d_valid

DBUF

ZIGZAG

buf_sel

rd_cnt

start_pb

wrt_cnt

wr_addr

(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data

12

12

12

start_pb

t flop

buf_sel

Quantizer

Core

qdata(7:0)

qaddr(6:0)

qwren

HOST

PROG

not

wr_addr(6)

rd_addr(6)

d_valid

sm_settings.

cmp_idx

rd_addr

(5:0)

Figure 13
1.5

Quantizer performs division of input samples by defined quantization values. Works sample wise. Host can fill in 64 different quantization coefficients to internal RAM (64x8 bits)

Following equation is implemented:

FOUT(u, v) = round(FINPUT(u,v)/Q(u,v))
· u,v –rectangular coordinates

· FINPUT – input sample to quantizer

· FOUTPUT – output sample from quantizer.
· Rounding to nearest integer

Default quantization table: All ones, i.e. no quantization at all.
When start_pb asserts:

· rd_cnt is reset to 0. 64 samples are then read from ZIGZAG

· wr_cnt is reset
· buf_sel to ZIGZAG is toggled

Quantizer Core

Quantizer Core contains Divider and Quantizer RAM. Incoming data is divided by divisor taken from Quantizer RAM. Result is divisor (quantized value).
1.5.1 DBUF

Dual port RAM size 2 x 64 x 12 bits.

1.5.1.1 Divider
Divider for quantizer uses precomputed reciprocals stored in ROM at 16 bits accuracy. Thus input dividend is actually multiplied with reciprocal of divisor to obtain quotient. Quotient is then rounded to nearest integer. No remainder is produced and used.

· Reciprocal ROM has 256 elements where one element is 16 bit number.
· Reciprocals of 8 bit numbers from 0 to 255 are stored in this ROM.
· Since reciprocals are almost all fractional numbers and internal arithmetic is integer, all reciprocal are multiplied by constant factor CK=256*256
· This gives enough accuracy for our purpose
· After multiplication dividend with reciprocal only 12 MSBs of result are taken to final quotient. 16 LSBs are thrown away.

· Bit 15 of multiplier result is, if thinking in fractional numbers first digit after decimal dot. This is good indication if rounding is necessary. Number >=0.5 is rounded to 1.0 and number <0.5 is rounded to 0.0.

· During rounding special care must be taken for negative dividend. For negative numbers to round up 1 must be subtracted from quotient. For positive numbers rounding up 1 must be added to quotient. Mux1 is used for that purpose.
· Divider is quite fast and need only 4 cycles to divider 12 bit signed number by 6 bit unsigned number with rounding included

· Divider is pipelined, after initial latency of 4 cycles new result is given every cycle

· One hardware multiplier is necessary in target architecture

[image: image16.emf]R_DIVIDER.vsd

ZIGZAG

‘0’

Z

-1

divisor(7:0)

dividend(11:0)

reciprocal(15:0)

ROM_R

sign

abs

mult

uns(27:0)

restore

sign

round

(15)

(11)

Z

-1

mult sign

(27:16)

mux1

‘1’ ‘-1’

Quotient

Quotient

(11:0)

Quantizer

RAM

rd_addr

(5:0)

Quantizer

TOP

Figure 13
1.5.1.1.1 Mux1
	Sign
	Round
	Mux1 out

	0
	0
	0

	0
	1
	1

	1
	0
	0

	1
	1
	-1

Mux1 is used for rounding result to nearest integer according to table above.
1.5.1.1.2 ABS
Performs arithmetic absolute value. Pass through for positive numbers, two’s complement inversion for negative numbers.

1.5.1.1.3 ROM_R
· ROM_R is ROM memory holding reciprocal values for all possible divisor values (1..255).

· For address X, data stored under this address is CK/X where CK is precision constant arbitrary set to 65535.

· For special case address 0, 0 is also stored as value. However this location will never be used as quantization value cannot be zero!
1.5.1.1.4 Restore Sign
Block used to simply restore sign after division is complete. Uses delayed sign bit from dividend to invert its input given that sign bit is ‘1’. Sign bit is simply MSB of dividend.
1.5.1.2 Quantizer RAM
· Quantizer RAM is actually two RAMs one for luminance, other for Chrominance.

· This could be implemented as one physical RAM 2x64x8 bits.

· Lower half used for luminance (MSB of addr = 0)

· Upper part used for chrominance (MSB of addr = 1)

· address width 7 bits. MSB used for sub-table select.
· data width 8 bits

· quantization values are unsigned integers

· When Y component is processed Luminance table is used

· When Cr, Cb components are processed chrominance table is used

· To select proper quantization sub-table, cmp_idx signal from CtrlSM shall be used. When cmp_idx = 0 use luminance, when cmp_idx = 1 or 2 use chrominance sub-table.

1.6 RLE

RLE core performs run-length encoding of data. For input block 8x8 samples, multiple symbol outputs are created consisting of RUNLENGTH, SIZE and AMPLITUDE.

· RUNLENGTH is the number of consecutive zero-valued AC coefficients in the zig-zag sequence preceding the nonzero AC coefficient being represented. For DC coefficient RUNLENGTH is always zero.

· SIZE is the number of bits used to encode AMPLITUDE. SIZE value is between 1 and 10 for AC coefficient. SIZE value is between 1 and 11 for DC coefficient.

· AMPLITUDE is two complement’s signed integer. Value ranges from -2047 to 2047 for DC coefficient and from -1023 to 1023 for AC coefficient.

[image: image17.emf]RLE.vsd

RLE

Core

CTRL_SM

HUFF

data

rd_addr

(5:0)

runlength(3:0),

size(3:0),

amplitude(11:0)

d_valid

DoubleFifo

QUANTIZER

rd_cnt

d_valid

start_pb

EOB detector

/ wr_cnt

CTRL_SM

ready_pb

rd_req

12

runlength(3:0),

size(3:0),

amplitude(11:0)

not

buf_sel

t flop

buf_sel

cmp_idx(1:0)

Figure 12
When start_pb asserts:

· buf_sel used by ZIGZAG toggles

· rd_cnt is reset to 0 and starts counting 0..63. -> 64 values are read from QUANTIZER.

· wr_cnt is reset to 0.

· RLE encoding is done on 8x8 block
· RLE encoded data is written to DoubleFIFO
1.6.1 RLE Core

RLE Core perform encoding of 64 input samples to variable number of output symbols. Input data to RLE consists of 64 words. First word is DC coefficient, words 1..63 are AC coefficients

[image: image18.emf]RLE Core.vsd

CTRL_SM

RLE

data

runlength(3:0)

QUANTIZER

zero_cnt

di_valid

start_pb

12

amplitude(11:0)

write_cnt(5:0)

DC DIFF

Entropy

Coder

mux1

size(3:0)

CTRL

do_valid

start_pb

write_cnt(5:0)

di_valid

SOF

CTRL_SM

write_cnt

cmp_idx(1:0)

· zero_cnt(3:0) – counts number of zeros preceding non-zero AC coefficient. When start_pb asserts zero_cnt is reset to 0. Output of zero_cnt is used as RUNLENGTH.
· DC DIFF – performs differential encoding of DC coefficient. Also latches current DC value to register to use in next 8x8 block. This latch is reset when SOF asserts.
· MUX1 – switches between DC and AC path depending on write_cnt value. When write_cnt == 0, DC path is used, AC path used otherwise.
· CTRL – controls encoding flow and data valid generation.

· write_cnt is 6 bit counter incremented every time divalid is high. Reset on start_pb.

1.6.1.1 Encoding of input coefficients to output symbols

· DC coefficient (write_cnt == 0) is differentially encoded with DC coefficient from previous 8x8 block for the same color component. That is, RLE_DC = DC(current_block of component x) – DC(last block of component x). To distinguish which component is currently handled sm_settings.cmp_idx input is used.
· On each non-zero input AC coefficient exactly one output symbol is generated with RUNLENGTH=zero_cnt. Zero_cnt is then reset to 0. Output data valid asserts for 1 cycle.
· On each input AC coefficient equal to zero:

· and zero_cnt < 15 and AC coefficient is not last in 8x8 block: no output symbol is generated, zero_cnt is incremented by 1.

· and zero_cnt = 15: one “extension symbol is generated” with RUNLENGTH=15, SIZE=0, AMPLITUDE=0. After that zero_cnt is reset to 0. Output data valid asserts for 1 cycle.
· and AC coefficient is last in 8x8 block (write_cnt == 63) EOB output symbol is generated: RUNLENGTH=0, SIZE=0, AMPLITUDE=0. Output data valid asserts for 1 cycle.
1.6.2 Entropy Coder

Encodes data sample into pair of symbols: AMPLITUDE (encoded as 2’s complement signed integer) and SIZE according to following table:

	SIZE
	AMPLITUDE

	1

2

3

4

5

6

7

8

9

10
11
	-1,1

-3,-2,2,3

-7..-4,4..7

-15..-8,8..15

-31..-16,16..31

-63..-32,32..63

-127..-64,64..127

-255..-128,128..255

-511..-256,256..511

-1023..-512,512..1023

–2 047..–1 024,1 024..2 047

Note: Encoded amplitude MSB bit is ‘1’ for positive numbers and ‘0’ for negative numbers!
1.6.3 Read counter

rd_cnt counting is triggered by start_pb assertion.

1.6.4 EOB Detector / Write Counter
· RLE encoding returns variable number of words between 2..63. Final word in case of zero run is called EOB (End Of Block) which is simply runlength=size=amplitude=0 and sample is not DC! EOB detects this and asserts ready_pb pulse.
· Moreover wr_cnt(6:0) is incremented by (1+RUNLENGTH) on every d_valid signal incoming to EOB block. Counter is necessary when EOB code is bypassed (If the last coefficient is not zero).

· assumption: there is always single DC symbol at the beginning. Shortest combination: DC + EOB = 2 symbols.
· It can happen that there are zero runs but no EOB. wr_cnt must adjust its value basing on any zero runs encountered (accumulate RUNLENGTHs) so that when all words are handled counter value = 64 and ready_pb pulse can be asserted.
· Zero run extension. If RUNLENGTH=15 and SIZE=0 this means special Zero Extension symbol was encountered which indicates zero run of 16. In this case write counter must be incremented by 16.
1.6.5 Double FIFO

[image: image19.emf]DoubleFIFO.vsd

RLE

Huffman

wr_en

packed_byte(7:0)

FIFO1

FIFO2

mux2

bs_buf_sel

mux3/demux3 not

rd_req

rd_req

packed_byte(7:0)

empty

empty

empty

Huffman encoded data are stored to output FIFO. Two FIFOs with size is 64x20 bits each.

Double FIFO block is simply double buffer using two FIFOs.
FIFO is used instead of RAM because RLE encoder can write variable number of encoded words to FIFO thus in this case FIFO implementation is easier than using RAM.

data content in DoubleFIFO:

	Q(19:16)
	Q(15:12)
	Q(11:0)

	RUNLENGTH
	SIZE
	AMPLITUDE

1.7 HUFFMAN Encoder
1.7.1 General Description
Huffman block performs Huffman encoding operation. It converts parallel data into serial bit stream. Serial bit stream output is packed into bytes which are stored in output FIFO.
1.7.2 Operation

· When start_pb asserts processing is started.

· AC/DC ROMs are used to translate RUNLENGTH/VLI size into variable length code (VLC).

· Variable Length Processor is main FSM logic governing Huffman encoding process.

· buf_sel alternates when start_pb asserts. It is used for double buffering of RLE output buffer, it is to be connected to rd_addr(6) in RLE.

[image: image20.emf]HUFF.vsd

CTRL_SM

fifo_rden

RLE

d_valid

start_pb

CTRL_SM

VLI(11:0) VLI_size(3:0)

runlength(3:0)

DC ROM

luminance

AC ROM

luminance

VLC_AC,

VLC_size(4:0)

VLC_DC,

VLC_size(3:0)

mux

1st RLE word

wr_en

packed_byte(7:0)

ready_pb

Double FIFO

VLC(15:0),

VLC_size(4:0)

Variable

Length

Processor

start_pb

t flop

buf_sel

Byte

Stuffer

bs_buf_sel rd_req

packed_byte(7:0)

empty

fifo_empty

 Figure 13
1.7.3 Double FIFO

[image: image21.emf]DoubleFIFO.vsd

HUFF

Byte Stuffer

wr_en

packed_byte(7:0)

FIFO1

FIFO2

mux2

bs_buf_sel

mux3/demux3 not

rd_req

rd_req

packed_byte(7:0)

empty

empty

empty

Huffman encoded data are stored to output FIFO. Two FIFOs with size is 2x64x8 bits each.2x 64x8 for assumption that JPEG encoded stream is no more size than 2x of input unencoded stream.

Double FIFO block is simply double buffer using two FIFOs. The idea is that while Huffman writes data for next block Byte Stuffer can read encoded data for previous block.
FIFO is used instead of RAM because Huffman encoder can write variable number of encoded words to FIFO thus FIFO implementation is easier than using RAM.
1.7.4 Variable Length Processor

[image: image22.emf]VariableLengthProcessor.vsd

CTRL_SM

HUFF

d_valid

start_pb

VLI(11:0) VLI_size(3:0)

VLP_ctrl

packed_word(7:0)

ready_pb

HUFF

VLC(15:0) VLC_size(4:0)

rle_fifo_empty

VLC_VLI_sel

mux1

VLx(15:0)

VLx_size(4:0)

word_reg(22:0)

wr_ptr

+

bit_ptr(4:0)

OUT_R(7:0)

wren

SOF

rle_fifo_rd_req

Block_Cnt

IMAGE_SIZE_REG

last_block

ENC_START_REG

 Figure 14
1.7.4.1 General Description

· VLP is Huffman Encoder main state machine and core processing logic. Processing is driven by VLP_ctrl FSM.

· When start_pb asserts all variables are moved into known state and FSM moves to processing state (Run_VLC).

· variable number of words are read from RLE by issuing read_req command until RLE fifo is empty
· Data read from RLE consists of so called RUNLENGTH and VLI (Variable Length Integer code).

· RUNLENGTH (and VLI_SIZE for AC ROM) is then transformed into VLC (Variable Length Code) using luminance DC and AC ROMs

· One RLE data symbol can be seen as pair of {VLC,VLI} words.

· DC ROM is used only for first word=0, words 1..63 use AC ROM.

· Since VLI and VLC codes are variable bit length, actual VLC/VLI bit size is given by 2nd argument VLC_size/VLI_size.

1.7.4.2 Serialization

· VLC/VLI encoded pair undergo serialization to bit stream. Serial bit stream is divided into number of output bytes.

· VLC is serialized first, then VLI.

· special bit pointer (bit_ptr(5:0)) is used to track pointer to first empty bit in word register (word_reg)

· VLC/VLI serial bits are mapped to word register (word_reg) starting from bit_ptr position. After that bit_ptr is moved to the right by number of bits in current VLC/VLI word. Bit pointer starts from LSB.

· After all VLC/VLI words from current block are serialized and stored to output FIFO ready_pb signal asserts

1.7.4.3 data valid

· input data valid d_valid can be simply delayed version of read_req.

1.7.4.4 1st RLE word detection
· set first_rle_word to 1 when start_pb asserts. Reset to zero on first fifo read request to RLE. This way for DC word DC-ROM will be used and for other RLE words AC-ROM will be used.
1.7.4.5 bit pointer

· bit_ptr(4:0) is used to track last used bit in word_reg. Bit_ptr is reset to zero when SOF asserts and is NOT reset when start_pb asserts!.

1.7.4.6 VLP State Machine

[image: image23.emf]Idle

Run_VLC

VLP_SM.vsd

start_pb

Run_VLI

rle_fifo_empty==0 &&

pad no necessary

rle_fifo_empty==0

Pad

rle_fifo_empty==0 &&

pad necessary

Figure 15
1.7.4.7 VLP SM details

[image: image24.emf]VLP_SM_details1.vsd

start_pb == 1 ?

Idle

Run_VLC

Run_VLC /

Run_VLI

first_rle_word=1

VLC_VLI_sel = VLC

issue(read_req)

Run_VLC

word_reg[M-bit_ptr,VLx_size] = VLx

bit_ptr += VLx_size

num_fifo_wrs = bit_ptr/8

state == Run_VLI ?

yes no

rle_fifo_empty?

yes no

assert(ready_pb)

read_cnt++

assert(read_req)

VLC_VLI_sel = VLC

first_rle_word=0

Idle

VLC_VLI_sel = VLI

Run_VLI

HandleFifoWrites

shift left(word_reg, num_fifo_wrs*8)

bit_ptr = bit_ptr mod 8

bit_ptr != 0 && last block

yes

no

word_reg[M-bit_ptr,M-8-bit_ptr] = 1's

num_fifo_wrs = 1

HandleFifoWrites

bit_ptr = 0

assert(ready_pb)

Idle

Pad

Figure 16
· Idea of above state machine is to write byte-wise Huffman encoded variable length bit stream to output FIFO

· It is assumed that single VLC or VLI serial “word” is no more than 16 bits and no less than 1 bit. 16 comes from: max VLC = max(max VLC DC=9, max VLC AC=16) = 16 bits. Max VLI is is 11 bits. Thus max VLx is 16 bits.

· Entropy-coded segments must be made an integer number of bytes. This is performed as follows: for Huffman coding, 1-bits are used, if necessary, to pad the end of the compressed data to complete the final byte of a segment.

· This means HUFFMAN block needs to know when last 8x8 block is being processed and then pad final byte with ones. Otherwise few last encoded bits (<8) would go lost.
· Last Block detection can be done by dividing known size of image (from programming register). Last Block = number_of_components * (image_width * image_height) / 64

· M = word_reg register bit size-1. Currently M=23-1=22.
1.7.4.7.1 Last_Block / Block_Cnt

It is necessary to know when last 8x8 block occurs to make entropy coded segment integer number of bytes. Last block detector works as follows:

· Block_Cnt is incremented every time start_pb asserts. Its maximum value = 3*(Max_image_width * max_image_height) / 64 = 65536 * 65536 / 64 = 201326592
· Thus bitwidth is ceil(log2(67108864)) = 28 bits necessary

· When Block_Cnt reaches last block [(Block_Cnt == number_of_components*(image_width * image_height)/64] it signals it to VLP by asserting last_block signal.

· Block_Cnt is reset to 0 when SOF asserts

1.7.4.7.2 Word_Reg

· word_reg is intermediate processing register designed to be able to hold code word of maximum size

· Variable Length Code is stored to word_reg MSB first

· word_reg register is used to take incoming data. Its size must be 16+7=23 bits to handle worst case. (7 bits left from previous loop iteration and 16 bits from current loop iteration).

1.7.4.7.3 Procedure HandleFifoWrites

· This procedure is responsible to write output bytes to FIFO. As arguments it takes word_reg (data) and num_fifo_wrs (number of bytes to be written).

· number of bytes to write from single RLE word can vary between 0 and 2 per one VLx.

· Bytes to be written are taken starting from MSB of word_reg.

1.7.5 DC Luminance ROM

DC Luminance ROM is used to perform variable length encoding for 1st sample in single processing block (8x8 samples). For given input VLI_size value, VLC code is returned along with its bit width. VLI_size(3:0) is used as address to DC-ROM.
As per ITU-T81 Table K.3 – Table for luminance DC coefficient differences
	Category
	Code length
	Code word

	0
	2
	00

	1
	3
	010

	2
	3
	011

	3
	3
	100

	4
	3
	101

	5
	3
	110

	6
	4
	1110

	7
	5
	11110

	8
	6
	111110

	9
	7
	1111110

	10
	8
	11111110

	11
	9
	111111110

Category here means VLI_size. Code length (VLC_DC_size) and Code word (VLC_DC) are mapped to “q” output of DC-ROM.
DC-ROM is 12 words x 13 bits.
One entry in DC-ROM is

	Q(12:9)
	Q(8:0)

	VLC_DC_size(3:0)
	zero padding(9-variable length)
	VLC_DC(variable length)

size of leading zero padding = maximum(Code Length) - VLC_DC_size
From table above: maximum(Code Length)= 9

1.7.6 AC Luminance ROM
AC-ROM is similar in operation to DC-ROM. Address is constructed from RUNLENGTH(3:0) and VLI_Size(3:0):

AC_ROM_address(7:4) = RUNLENGTH(3:0)

AC_ROM_address(3:0) = VLI_Size(3:0)

From ITU-T81 Table K.5 – Table for luminance AC coefficients (sheet 1 of 4)
Few entries from Table K.5 given here as an example:

	Run/Size
	Code length
	Code word

	0/0 (EOB)
	4
	1010

	0/1
	2
	00

	0/2
	2
	01

	0/3
	3
	100

	...
	...
	...

	F/A
	16
	1111111111111110

AC-ROM size is 150 words x 20 bits. 150 words comes from Run range 0..15, Size range 0..10.
20 bit width comes from: 4 bits are necessary to store Code Length and 16 bits are necessary to store Code Word (worst case).

Run/Size there means here RUNLENGTH/ VLI_Size. Code Length means VLC_AC_size and Code word means VLC_AC

One entry in AC-ROM is

	Q(19:15)
	Q(15:0)

	VLC_AC_Size(4:0)
	zero padding(16-variable length)
	VLC_AC(variable length)

size of leading zero padding = maximum(Code Length) - (VLC_AC_size)
From table 5: maximum(Code Length)= 16

1.8 Byte Stuffer
In order to ensure that a false marker does not occur within an entropy-coded segment, any X’FF’ byte (generated by Huffman encoder, or an X’FF’ byte that was generated by the padding of 1-bits of final segment) is followed by a “stuffed” zero byte.
Byte Stuffer stuffs a zero byte whenever the addition of the carry to the data already in the entropy-coded segments creates a X’FF’ byte.

[image: image25.emf]ByteStuffer.vsd

CTRL_SM

rd_req

HUFFMAN

CTRL_SM

start_pb

wr_en

ready_pb

t flop

bs_buf_sel

OUT MUX

out(7:0)

wr_addr(23:0)

data(7:0) empty

data_reg(7:0)

Byte Stuff

Detector

Mux1

0x00

wr_cnt(23:0)

ENC_START_REG

SOF

ENC_LENGTH_REG

JFIFGen

last_addr

 Figure 17
1.8.1 CTRL_SM
Control state machine operates as follows:

· When start_pb asserts Huffman output FIFO is started to being read until it becomes empty

· Every byte read from Huffman FIFO is checked against 0xFF value – this done by Byte Stuff Detector. If 0xFF byte is encountered, byte stuffing with value 0x00 must be performed

· For example: if following bytes are read from Huffman FIFO: AA BB CC FF 22 33, then after byte stuffing there is: AA BB CC FF 00 22 33

· When stuffing is necessary Mux1 is switched to 0x00 path after 0xFF from data path was written to output RAM. Thus, for every 0xFF on input 0xFF, 0x00 is written to output. Otherwise for every input one byte is written to output (the same data)

· When FIFO is empty it means all bytes were processed, ready_pb pulse can assert.

1.8.2 Write Counter

· Counter wr_cnt is used as address to output RAM

· Its current bitwidth is selected arbitrary to 24 bits however necessary size of coded image vary. Thus bitwidth with quite big margin was selected.

· wrt_cnt is preset when SOF asserts to JFIF header size. This is to put coded data byte stream after the JFIF header.
· wrt_cnt is incremented on every new byte written to output RAM (wren – write enable)

· Number of coded bytes stored to RAM (including header) can be read out by Host from ENC_LENGTH_REG

1.8.3 Byte Stuff Detector
· Simple comparator which checks if input byte is equal to 0xFF.

1.8.4 bs_buf_sel

Double buffer selector. Flips on every start_pb assertion.

1.8.5 last_addr
After all encoded bytes are written, EOI (End Of Image) marker must be written. JFIFGen which does that must know last address written by ByteStuffer to append EOI right after it.

1.9 JFIF Header Generator
Default JFIF header is generated from onchip RAM.
Most of header fields are hardcoded, however some are configurable and must be programmed by Host.

[image: image26.emf]JFIF_GEN.vsd

CTRL_SM

CTRL_SM

start_jfif

wr_en

ready_jfif

OUT MUX

out(7:0)

wr_addr(23:0)

HEADER

RAM rd_cnt(8:0)

wr_addr(23:0)

rdaddr(8:0)

HOST_IF

waddr(8:0)

wren

data(7:0)

eoi

ByteStuffer

last_addr(23:0)

EOI Writer

Mux1

Mux2

eoi

eoi

These are:

SIZE_Y_H, SIZE_Y_L – upper and lower byte of image height

SIZE_X_H, SIZE_X_L – upper and lower byte of image width

Number of components – 0=grayscale, 3=color. Fixed to 3.
QL0....QL63 – Luminance Quantization table in zig zag order
QC0....QC63 – Chrominance Quantization table in zig zag order

1.9.1 Header RAM Programming
When Host performs programming of JPEG coding parameters, some of them are also passed to JFIF generator module and are written to Header RAM:
· Image Height and Width: written when IMAGE_SIZE_REG is written by Host. Write addresses decimal 25, 26 for Height, 27, 28 for Width.
· Number of components: Fixed to 03! Programming not supported, always 3 components used.
· Luminance Quantization table written from offset 44 decimal.
· Chrominance Quantization table written from offset 44+69=113 decimal.

1.9.2 JFIF Generator

When start_jfif asserts and eoi = 0:

· rd_cnt is reset. rd_cnt then counts from 0..406 (JFIF header size=407 bytes). This reads Header RAM whose output is then saved to Output RAM.
· After all bytes from Header RAM are transmitted ready_jfif asserts.
When start_jfif asserts and eoi = 1:

· EOI marker “FF D9” is written after coded byte stream to “close” image.

1.9.3 EOI Writer

Writes two EOI marker bytes “FF D9” to signal end of image.

1.9.4 Mux1/Mux2

Switch path depending on eoi signal from JPEG CtrlSM. When eoi is high EOI marker is written, otherwise JFIF header is written to output.
1.9.5 Generic Header

Generic header defaults are stored in RAM using preinitialization. These defaults are (stored starting from address 0):
	Description
	Data (hex byte)

	SOI, start of image marker
	FF, D8

	
	

	JFIF header
	

	Marker APP0
	FF, E0

	Length (16 bytes)
	00, 10

	“JFIF” ascii zero terminated
	4A, 46, 49, 46, 00

	Version
	01, 01

	Units
	00

	XDensity
	00, 01

	YDensity
	00, 01

	XThumbnail (no thumbnail)
	00

	YThumbnail (no thumbnail)
	00

	
	

	Start Of Frame
	

	Baseline DCT, SOF0 marker
	FF, C0

	Length (11 bytes)
	00, 11

	Sample Precision
	08

	Height
	SIZE_Y_H, SIZE_Y_L

	Width
	SIZE_X_H, SIZE_X_L

	Number of components (grayscale/color)
	03

	Scan 1: 1:1 horiz, (byte) 1:1 vertical, (byte) use QT 0
	01, 11, 00

	Scan 2: 1:1 horiz, (byte) 1:1 vertical, (byte) use QT 1
	02, 11, 01

	Scan 3: 1:1 horiz, (byte) 1:1 vertical, (byte) use QT 1
	03, 11, 01

	
	

	Define Quantization table (Luminance)
	

	marker
	FF, DB

	Length (67 bytes)
	00, 43

	8 bit values, table 0
	00

	quantization 8-bit values (64 entries, zigzag order)
	QL0....QL63

	
	

	Define Quantization table (Chrominance)
	

	marker
	FF, DB

	Length (67 bytes)
	00, 43

	8 bit values, table 1
	01

	quantization 8-bit values (64 entries, zigzag order)
	QC0....QC63

	
	

	Define Huffman Table
	

	Marker
	FF, C4

	Length (31 bytes)
	00, 1F

	DC, Table 0
	00

	L1..L16
	00, 01, 05, 01, 01, 01, 01, 01

01, 00, 00, 00, 00, 00, 00, 00

	Symbol codes for L1..L16 (Vij)
	00, 01, 02, 03, 04, 05, 06, 07,

08, 09, 0A, 0B

	
	

	Define Huffman Table
	

	Marker
	FF, C4

	Length (181 bytes)
	00, B5

	AC, table 0
	10

	L1..L16
	00, 02, 01, 03, 03,

02, 04, 03, 05, 05,

04, 04, 00, 00, 01,

	Symbol codes for L1..L16 (Vij)
	7D, 01, 02, 03, 00,

04, 11, 05, 12, 21,

31, 41, 06, 13, 51,

61, 07, 22, 71, 14,

32, 81, 91, A1, 08,

23, 42, B1, C1, 15,

52, D1, F0, 24, 33,

62, 72, 82, 09, 0A,

16, 17, 18, 19, 1A,

25, 26, 27, 28, 29,

2A, 34, 35, 36, 37,

38, 39, 3A, 43, 44,

45, 46, 47, 48, 49,

4A, 53, 54, 55, 56,

57, 58, 59, 5A, 63,

64, 65, 66, 67, 68,

69, 6A, 73, 74, 75,

76, 77, 78, 79, 7A,

83, 84, 85, 86, 87,

88, 89, 8A, 92, 93,

94, 95, 96, 97, 98,

99, 9A, A2, A3, A4,

A5, A6, A7, A8, A9,

AA, B2, B3, B4, B5,

B6, B7, B8, B9, BA,

C2, C3, C4, C5, C6,

C7, C8, C9, CA, D2,

D3, D4, D5, D6, D7,

D8, D9, DA, E1, E2,

E3, E4, E5, E6, E7,

E8, E9, EA, F1, F2,

F3, F4, F5, F6, F7,

F8, F9, FA

	
	

	Start Of Scan
	

	Marker
	FF, DA

	Length
	00, 0C

	Number of Image components (color)
	03

	Component 1, use DC/AC huff tables 0/0
	01, 00

	Component 2, use DC/AC huff tables 0/0
	02, 00

	Component 3, use DC/AC huff tables 0/0
	03, 00

	Ss
	00

	Se
	3F

	Ah, Al
	00

	
	

	Data Scan
	

	JPEG encoded byte stream goes here

...
	

	
	

	End of Image
	

	Marker: EOI
	FF, D9

NOTE: This header must be pre-programmed to FPGA memory for example using mif or hex files. For ModelSim simulation hex file can be used.
1.10 Programming Interface

1.10.1 General
JPEG core programming is done via OPB Host interface using for example Xilinx Microblaze processor.
Only 32 bit aligned accesses are supported. It means input address must be multiple of 4.

All registers are 32 bits wide. Although some bits may be unused.
R/W = read/write

WO = write only

RO = read only

1.10.2 Core address map
	Address

	Register
	

	
	
	

	0x0 0000
	ENC_START_REG
	WO

	0x0 0004
	IMAGE_SIZE_REG
	R/W

	0x0 000C
	ENC_STS_REG
	RO

	0x0 0010
	-
	-

	0x0 0014
	ENC_LENGTH_REG
	RO

	0x00 0100 ... 0x00 01FF
	QUANTIZER_RAM_LUM
	WO

	0x00 0200 ... 0x00 02FF
	QUANTIZER_RAM_CHR
	WO

1.10.3 Register Descriptions

	ENC_START_REG

	 WO
	Default: 0x0

	

	-
	D31..D3
	-

	cmp_max
	D2..D1
	Number of image components.
3=color RGB input, YUV output

	SOF
	D0
	Start Of Frame. Writing ‘1’ to this bit starts JPEG encoding process.

	IMAGE_SIZE_REG

	 R/W
	Default: 0x0

	

	size_x
	D31..D16
	Image width in pixels (must be multiple of 8)

	size_y
	D15..D0
	Image height in pixels (must be multiple of 8)

	ENC_STS_REG

	 RO
	Default: 0x0

	

	-
	D31..D2
	-

	done
	D1
	JPEG encoding complete

	busy
	D0
	JPEG encoding in progress

	ENC_LENGTH_REG

	 RO
	Default: 0x0

	Header and data length included.

	-
	D31..D10
	-

	length
	D23..D0
	coded stream length (in bytes)

	QUANTIZER_RAM_LUM

	 WO
	Default: 0x1

	64 entries for Luminance table. Address increment every 4!

	-
	D31..D8
	-

	q_coeff
	D7..D0
	Quantization coefficient. Unsigned integer range 1..255

	QUANTIZER_RAM_CHR

	WO
	Default: 0x1

	64 entries for Chrominance table. Address increment every 4!

	-
	D31..D8
	-

	q_coeff
	D7..D0
	Quantization coefficient. Unsigned integer range 1..255

1.11 Users Manual

To perform JPEG encoding of image Host must perform steps below:
· Write IMAGE_SIZE_REG with width and height of image to be encoded
· Fill in Quantizer table using QUANTIZER_RAM
· write SOF bit in ENC_START_REG to start encoding process

· Write raw bitmap image samples BUF_FIFO.
· Host either waits for interrupt ready_int (pulse) or polls for JPEG encoding done flag in ENC_STS_REG to know when encoding is complete
· Host can read ENC_LENGTH_REG to get length of encoded byte stream in output RAM

· Enjoy!
1.12 Simulation

· VHDL simulation can be run by executing sim.do TCL script under ModelSim.
· Input bitmap image is in text format and is called test.txt – must be in directory where sim.do is placed

· test.txt image text format can be generated using img2txt.m Matlab script

· img2txt.m is in ./testbench/matlab/img2txt. It takes as input test.bmp and converts it to test.txt
· test.bmp is 24 bit RGB bitmap

· image must have dimensions multiple of 8
· Image width must not be higher than JPEG_PKG.VHD constant C_MAX_LINE_WIDTH otherwise simulation error will occur. In this case increase this constant to support bigger input image width. Be warned that bigger this constant value is, the more memory FPGA will be needed when core is synthesized.
· JPEG encoded output byte stream is saved to file OUT_RAM.txt as hex byte string and also to test_out.jpg as regular JPEG format file.
1.12.1 OPB Master BFM

· OPB Master Bus Functional Model is used to drive OPB slave bus of EV_JPEG_ENC core to configure JPEG Core and also it loads image through fast FIFO-like interface.

· This BFM is in file HostBFM.vhd
· Quantization table can be modified in HostBFM.vhd file by changing qrom constant. There are 3 predefined quantization tables, just comment 2 of them and uncomment one to use 100%, 75% or 50%.
1.13 Performance / Area

1.13.1 General

Here is snapshot from Quartus II Fitter for Stratix II S90 device. This is based on really dummy project where JPEG encoder top entity is just mapped directly to pins. Anyway, area reported shall be quite accurate.
1.13.2 Area
Example below is given for configuration of (in JPEG_PKG.VHD):

C_MAX_LINE_WIDTH = 640 (maximum line width)

C_MEMORY_OPTIMIZED = 1 (try to favor area at expense of performance).
Fitter set to perform for best performance.

1.13.2.1 Fitter results
[image: image27.png]ter Resource Ut

by Entity

Compiion Heracy Cortintenl [y, [Dedkaedlogo [0 ToookMorey ez [ace e [B50
1|5 WpegEne 10703(1) [78%5(1) |5924(0) 67(67) 174348 1 (I 4
2 BUF_FIFO.U_BUF_FIFO] 6026 (1625) | 4372 (355) | 3083 (326) 0@ 122880 0 @ o 0
23| ByteSuiferl_ByeSuel | 43(43) 62(62) |86(86) o [0 0 CG 0
21, 1520124) 10784 |77043) o [0 0 o o 0
20, 1329(230) [1260(189) | 1531 (288) 0 4048 0 o 0
503| HostFU_HostFl 118(118) (1530153 |11 (191) o [0 0 CG 0
504, uffmersU_Hulmar 241 (2233) _[1554 (1374] 486 (318) CURNETT] 0 2 o 2
523| @ UFIFGent)_JFiFGen| %031) 7862 [102(77) 00 409 0 1o 0
527 IDubhusl)_Dutud 303 2020 [0 o [0 0 CG 0
526, IALE_TOP.U_RLE_TOPI | 243 (45] 227 [23(17) o) 260 0 2 o 0
538} [z T0PL 22 T0F 188 (22] TER (15 |163 (18] o 2816 i ER A

Number of memory bits really used is halved for BUF_FIFO but number of M4K blocks usage is the same as in performance optimized configuration because each FIFO needs separate RAM anyway. For different FPGA or even different RAM partitioning using more fine grained memory blocks and/or LUTs area optimized configuration constant could yield advantange however.

1.13.2.2 Performance
Design utilizes single clock for everything included Host interface.
For this clock CLK maximum achievable frequency is 115 MHz

 i=0





























N

1

j=0

1

X(u,

v)

2

N

C(u)

C(v)

x(i,

j)

cos

(2i

1)u

2N

cos

(2j

1)v

2N

� EMBED PBrush ���

PAGE
	JPEG.doc
Michal Krepa
	Page 1 of 50
	Created on 3/9/2009 7:11:00 PM

[image: image29.png]o
\ OpenCores.Org

[image: image30.png]o
\ OpenCores.Org

_1299796751.vsd
„1"

FDCT

Byte Stuffer

data

data

data

MAIN_SM

Host IF

idle6

JPEG_ENC.vsd

QUANTIZER

data

RLE

size_x, size_y

Ctrl
SM1

start1

idle1

start

rdy

Ctrl
SM3

start

rdy

start3

idle3

Ctrl
SM2

start

rdy

start2

idle2

ZIGZAG

data

Ctrl
SM4

idle4

start4

start

rdy

sof

rd_addr,
rden

BUF_FIFO

rd_addr

rd_addr

rd_addr

rd_addr

ready

Reg1

sm_settings

HUFFMAN

wr_addr

data

Ctrl
SM5

idle5

start

rdy

start5

Reg2

Reg3

JFIF
GEN

start_jfif

ready_jfif

out_mux_ctrl

eoi

Out_Mux

Ctrl
SM6

idle7

start6

start

rdy

rd_addr

_1299801183.vsd
d_valid

runlength(3:0),
size(3:0),
amplitude(11:0)

data

RLE
Core

CTRL_SM

rd_cnt

d_valid

not

buf_sel

start_pb

EOB detector
/ wr_cnt

CTRL_SM

ready_pb

rd_req

RLE.vsd

HUFF

rd_addr
(5:0)

DoubleFifo

QUANTIZER

12

runlength(3:0),
size(3:0),
amplitude(11:0)

t flop

buf_sel

cmp_idx(1:0)

_1299801274.vsd
d_valid

data

buf_sel

MDCT

BUF_FIFO
read
Controller

d_valid

data_dct

d_valid

wrt_cnt /
transpose

wr_addr
(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data_dct_q

FDCT.vsd

ZIGZAG

fifo_rd,
x_block_cnt

DBUF

size_x(16:0), size_y(16:0)

BUF_FIFO

24

12

12

start_pb

IMAGE_SIZE_REG

ENC_START_REG

SOF

not

wr_addr(6)

rd_addr(6)

mux1

8

cur_cmp_idx

RBG2YCbCr

FIFO1

12

data_dct

FIFO
rd ctrl

rden

empty

fifo_empty

FRAM1

wr_addr(5:0),
rd_addr(5:0)

_1299801316.vsd
FIFO(1)

FIFO(n-1)

Mux1

data

wren

pixel_cnt /
wblock_cnt

FIFO(0)

wblock_cnt

wblock_cnt

sof

x_block_cnt

fifo_rd

fifo_empty

CTRL_SM

almost
full(n-1-2)

almost
full(0)

almost
full(1)

BUF_FIFO.vsd

almost
full(n)

Mux2

empty(0)

flush

FDCT

image_width

rst

SUB_FIFO
SIZE

waddr
base

fifo
ramwaddr

fifo
ramwe

waddr
ram

Mux3

raddr
ram

Mux4

raddr
base

SUB_FIFO
SIZE

x_block_cnt

ramq(23:0)

ramd(23:0)

fifo
ramraddr

Host Data

24

SUB_RAM

from Sub FIFOs

from Sub FIFOs

_1299801220.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

VLI_size(3:0)

VLP_ctrl

bit_ptr(4:0)

VLC_size(4:0)

CTRL_SM

rle_fifo_empty

d_valid

mux1

start_pb

VLC_VLI_sel

VLx(15:0)

VLx_size(4:0)

packed_word(7:0)

ready_pb

VariableLengthProcessor.vsd

HUFF

word_reg(22:0)

VLC(15:0)

SOF

wr_ptr

+

OUT_R(7:0)

wren

HUFF

VLI(11:0)

rle_fifo_rd_req

Block_Cnt

IMAGE_SIZE_REG

last_block

ENC_START_REG

_1299801240.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

data(7:0)

wr_addr(23:0)

CTRL_SM

CTRL_SM

start_pb

wr_en

ready_pb

ByteStuffer.vsd

rd_req

HUFFMAN

t flop

bs_buf_sel

out(7:0)

OUT MUX

empty

data_reg(7:0)

Byte Stuff Detector

Mux1

0x00

wr_cnt(23:0)

ENC_START_REG

SOF

ENC_LENGTH_REG

JFIFGen

last_addr

_1299801255.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

rdaddr(8:0)

Mux2

wr_addr(23:0)

HOST_IF

CTRL_SM

CTRL_SM

waddr(8:0)
wren

data(7:0)

eoi

eoi

start_jfif

wr_en

ready_jfif

JFIF_GEN.vsd

wr_addr(23:0)

out(7:0)

OUT MUX

HEADER
RAM

rd_cnt(8:0)

eoi

ByteStuffer

last_addr(23:0)

EOI Writer

Mux1

_1299801206.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

VLI_size(3:0)

runlength(3:0)

DC ROM
luminance

AC ROM
luminance

CTRL_SM

d_valid

VLC_AC, VLC_size(4:0)

VLC_DC, VLC_size(3:0)

mux

start_pb

Variable
Length
Processor

1st RLE word

CTRL_SM

wr_en

packed_byte(7:0)

ready_pb

HUFF.vsd

Double FIFO

VLC(15:0),
VLC_size(4:0)

start_pb

fifo_rden

RLE

VLI(11:0)

t flop

buf_sel

packed_byte(7:0)

Byte
Stuffer

bs_buf_sel

rd_req

empty

fifo_empty

_1299800830.vsd
Idle

EOI

Vert

y_cnt < size_y ?

start_jfif

ready_jfif == 1 ?

MAIN_SM_details2.vsd

yes

no

x_cnt=0
y_cnt=y_cnt+8

Horiz

idle1 && idle2 && idle3 && idle4 && idle5 && idle6

start1

idle1 == 1 ?

cmp_idx = 0
x_cnt = x_cnt + 8

Comp

Horiz

cmp_idx < cmp_max?

yes

no

cmp_idx++

Comp

eoi=1
out_mux_ctrl=0

ready_int = 1

_1299801169.vsd
Entropy Coder

runlength(3:0)

data

write_cnt(5:0)

DC DIFF

CTRL_SM

zero_cnt

di_valid

mux1

start_pb

size(3:0)

CTRL

do_valid

start_pb

write_cnt(5:0)

RLE Core.vsd

di_valid

RLE

QUANTIZER

12

amplitude(11:0)

SOF

CTRL_SM

write_cnt

cmp_idx(1:0)

_1299800804.vsd
Idle

y_cnt == y_size &&
idle1 && idle2 && idle3 && idle4 && idle5 && idle6

y_cnt < y_size

MAIN_SM.vsd

Horiz

x_cnt == size_x

ready
ready_int

sof

Vert

x_cnt < size_x

start1

Comp

idle1 &&
cmp_idx < cmp_max

idle1 &&
cmp_idx = cmp_max

JFIF

ready_jfif

start_jfif

EOI

start_jfif

ready_jfif

_1298231315.vsd
data(23:0)

DCT
2D

RGB
to
YCbCr

Huffman
Encoder

ZIG
ZAG

Pipeline Controller

RLE

JPEG_ENC.vsd

we

Quantizer

BUF_FIFO

almost_full

HOST DATA

HOST
PROG

RAM

Host IF

sof
size_x
size_y

Byte
Stuffer

ready_int

JFIF
GEN

m
ux

_1299785690.vsd
d_valid

data

data

buf_sel

CTRL_SM

rd_cnt

start_pb

wrt_cnt

wr_addr
(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data

Quantizer.vsd

RLE

rd_addr
(5:0)

DBUF

ZIGZAG

12

12

12

start_pb

t flop

buf_sel

Quantizer
Core

qdata(7:0)
qaddr(6:0)
qwren

HOST
PROG

not

wr_addr(6)

rd_addr(6)

d_valid

sm_settings.cmp_idx

rd_addr
(5:0)

_1299789475.vsd
round

(15)

(11)

Z -1

Z -1

‘0’

Quotient

mult sign
(27:16)

mux1

‘1’

ROM_R

‘-1’

Quotient(11:0)

R_DIVIDER.vsd

ZIGZAG

divisor(7:0)

dividend(11:0)

reciprocal(15:0)

sign

abs

mult
uns(27:0)

restore
sign

Quantizer RAM

rd_addr
(5:0)

Quantizer TOP

_1298824643.vsd
start_pb == 1 ?

Idle

Run_VLC

shift left(word_reg, num_fifo_wrs*8)
bit_ptr = bit_ptr mod 8

word_reg[M-bit_ptr,VLx_size] = VLx
bit_ptr += VLx_size
num_fifo_wrs = bit_ptr/8

Run_VLC

Run_VLC / Run_VLI

VLP_SM_details1.vsd

state == Run_VLI ?

yes

no

rle_fifo_empty?

yes

no

assert(ready_pb)

read_cnt++
assert(read_req)
VLC_VLI_sel = VLC	
first_rle_word=0

Idle

VLC_VLI_sel = VLI

Run_VLI

first_rle_word=1
VLC_VLI_sel = VLC
issue(read_req)

HandleFifoWrites

bit_ptr != 0 && last block

yes

no

word_reg[M-bit_ptr,M-8-bit_ptr] = 1's
num_fifo_wrs = 1

HandleFifoWrites

bit_ptr = 0
assert(ready_pb)

Idle

Pad

_1299785452.vsd
data

data

buf_sel

ZIGZAG
Core

CTRL_SM

rd_cnt

start_pb

wrt_cnt

wr_addr
(5:0)

CTRL_SM

ready_pb

rd_addr(5:0)

data

ZIGZAG.vsd

Quantizer

rd_addr
(5:0)

DBUF

FDCTQ

12

12

12

start_pb

t flop

buf_sel

not

wr_addr(6)

rd_addr(6)

FIFO
ctrl

empty

rden

d_valid

zz_rd_addr
(5:0)

_1298824100.vsd
Idle

rle_fifo_empty==0

VLP_SM.vsd

Run_VLC

rle_fifo_empty==0 &&
pad no necessary

start_pb

Run_VLI

Pad

rle_fifo_empty==0 &&
pad necessary

_1297796677.vsd
d_valid

data

delay

rden

empty

REORDER
ROM

rd_addr
(5:0)

data

ZIGZAG Core.vsd

ZIGZAG TOP

zz_rd_addr
(5:0)

FIFO

ZIGZAG TOP

12

12

_1298056868.vsd
sof == 1 ?

Idle

JFIF

ready_jfif ?

yes

no

Horiz

start_jfif

MAIN_SM_details.vsd

Horiz

Vert

x_cnt < size_x ?

Comp

x_cnt = 0
y_cnt = 0
out_mux_ctrl=1

out_mux_ctrl=0
eoi=0

_1297276165.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

wr_en

packed_byte(7:0)

FIFO1

FIFO2

mux2

bs_buf_sel

mux3/demux3

not

rd_req

rd_req

packed_byte(7:0)

DoubleFIFO.vsd

Byte Stuffer

HUFF

empty

empty

empty

_1297454724.vsd
Multiplexer

S1
S2

D

C

ENB

Multiplexer

S1
S4

D

C2

C1

ENB

￼

wr_en

packed_byte(7:0)

FIFO1

FIFO2

mux2

bs_buf_sel

mux3/demux3

not

rd_req

rd_req

packed_byte(7:0)

DoubleFIFO.vsd

Huffman

RLE

empty

empty

empty

_1054035473

