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Introduction 
 

The LiquidMotion processor is a reconfigurable ASIP (Application Specific Instruction Set 

Processor) designed to execute user-defined block-matching motion estimation algorithms 

optimized for hybrid video codecs such as MPEG-2, MPEG-4, H.264 AVC and Microsoft VC-1. 

A generic overview of how these codecs operate is shown in Fig. 1.  

 

Motion estimation is used during inter-frame analysis to remove temporal redundancy and 

typically accounts for more than 50% of the whole entire cycle budget. This is especially true in 

the advanced video coding standard H.264
1
, which includes advanced features for motion 

estimation such as variable block sizes,  fractional pel support down to quarter-pel resolution,   

multiple reference frames and multiple motion vector candidates. The  implementation of these  

features help H.264 to deliver high quality result, but they can also introduce a performance 

bottleneck into the video processing chain.  

 

Fig. 1 - Generic Video Codec Block Diagram 

 

Traditionally, the preferred implementation for motion estimation in hardware has been based on 

full-search algorithms due to their regular dataflow, which makes them well suited to systolic 

array principles. This is a simple approach capable of achieving a high level of hardware 

utilization and generally avoids global routing which results in high clock frequencies. Practical 

full search implementations, however, need to consider the memory interface to the frame data, 

and this can often lead to designs requiring large data widths and port counts, or a large number 

of registers to buffer the pixel data. Data broadcasting techniques can be used to reduce this need 

but this can also reduce the achievable clock frequency.  

 

                                                 
1
 H.264 has been selected as the preferred coding standard by the Blu-ray Disc Association and for the new 

high-definition television broadcasting standard (DVB-S2) due to its excellent coding performance that typically 

halves the bit-rates compared with previous standards. 
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Full search implies a large number of SAD operations, and even for reduced search areas, a 

number of optimizations are still required to make it more computationally tractable. One of the 

drawbacks of the full search approach in hardware is that its throughput is determined by the size 

of the search area, and this increases dramatically for high definition video formats thereby 

limiting its scalability and increasing its energy consumption. Considering fractional-pel in full 

search compounds this problem further since an exhaustive search to quarter-pel precision will 

increase the number of points to be searched by more than an order of magnitude, on top of the 

overhead in interpolating these pixels using computationally intensive filters.  

 

LiquidMotion offers scalable performance dependent on the features of the chosen algorithm and 

the number and type of execution units implemented. Hardware configuration can typically be 

achieved at compile time by adapting the architecture to the chosen algorithm, and in a FPGA 

implementation, it is possible to pre-compile a range of hardware bitstreams with different 

configurations from which one can be chosen to match the current video processing 

requirements. The LiquidMotion processor microarchitecture can be easily scaled to high 

definition video even when using low cost FPGAs such as the Xilinx Spartan3 - and the ability to 

program the search algorithm to be used, and to reconfigure the underlying hardware that it will 

execute on, combines to give an extremely flexible video processing platform. The processor is 

programmed using a reduced instruction set optimized for the development of motion estimation 

algorithms.  

 

A base configuration consisting of a single 64-bit integer pipeline, which is capable of 

processing a hexagonal motion estimation algorithm such as the one used in the x264 video 

encoder
2
, can be implemented in as little as 2000 logic cells on a Xilinx FPGA. As an example of 

its performance, macroblocks from a high motion video clip such as the American football test 

sequence can be computed in around 700 clock cycles using a diamond search algorithm with a 

final square refinement as implemented in x264, and even at a modest clock frequency of 100 

MHz, this translates to around 140,000 MBs/second which is enough to support the high 

definition 720p@30 frames/second. This performance scales linearly with the number of 

execution units implemented, and is unaffected by the addition of fractional-pel support.    

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2
 x264 is a open-source implementation of a H.264 encoder: http://www.videolan.org/developers/x264.html 
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Hardware description 
 

Fig. 2 shows the architecture of a configuration with 6 execution units: four integer-pel execution 

units (64x4 bits data path), one fractional-pel execution unit (64-bit data path) and one 

interpolation unit. 

 
 

Fig. 2 - LiquidMotion sample configuration  architecture 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

 Fig. 3 - Toolset for algorithm development 
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Motion estimation algorithms have not been standardized and over the years many fast motion 

estimation algorithms have been proposed by both industry and academia. Well-known fast 

motion estimation algorithms include logarithmic search, three-step search, diamond search, 

hexagon search, etc. along with more complex methods such as PMVFAST and UMH.  These 

algorithms work by searching only a subset of all candidate positions for the best match,  using a  

dynamic search pattern iteratively with each local winner set as the starting point for the 

following iteration. The same principles of calculating motion vectors by block-matching the 

current frame with other reference frames in the video sequence are shared by MPEG-2, MPEG-

4, VC-1 and H.264, although the more recent standards have more sophisticated ways of 

achieving this.  

 

Tables 1 and 2 indicate the level of performance and complexity obtained by different 

configurations of the LiquidMotion processor. The LiquidMotion compiler toolset shown in 

Fig. 3 enables a designer to implement any of the above algorithms, or to develop his/her own 

using a simple C-like syntax which can then be compiled into machine code ready to  run on the 

hardware.  
      Number of  

Integer 

Execution 

units 

implemented 

Throughput in 

macroblocks 

per second 

(16x16, 

diamond, 200 

MHz, 4 ppp) 

Throughput 

in 

Macroblocks 

per second 

(16x16, 8x8, 

diamond, 200 

MHz,4ppp) 

Throughput 

in 

macroblocks 

per second 

(16x16, 

hexagon, 200 

MHz, 6 ppp) 

Throughput in 

Macroblocks 

per second 

(16x16, 8x8, 

hexagon, 200 

MHz, 6ppp) 

Throughput 

in 

Macroblocks 

per second 

(16x16 UMH 

200 MHz, 16 

ppp) 

Throughput 

in 

Macroblocks 

per second 

(16x16, 8x8 

UMH 200 

MHz, 16 

ppp) 

1 372,960 
 (1080p@30) 

233,918 
(720p@50) 

260,983 
(1080p@30) 

173,988 
(720p@30) 

84,813 
 

56,542 
 

2 692,640 
(1080p@50) 

461,760 
(1080p@50) 

495,867 
(1080p@50) 

330,578 
(1080p@30) 

166,233 
(720p@30) 

110,822 
 

3 

  
708,382 

(1080p@50) 
472,255 

(1080p@50)   
4 1,212,121 

(1080p@50) 
808,080 

(1080p@50)   
319,680 

(1080p@30) 
213,120 

(720p@50) 
6 

  
1,239,669 

(1080p@50) 
826,446 

(1080p@50)   

8 

    
593,692 

(1080p@50) 
395,794 

(720p@30) 
16 

    
1,038,961 

(1080p@50) 
692,640 

(1080p@50) 

 

Table 1 - Estimated number of execution units required depending on motion estimation 

algorithm and video format 

 
Table 2 - Complexity of different hardware configurations 

when implemented on a SX35 Xilinx Virtex4 device 
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The application specific instructions generated by the compiler specify the parallelism available 

at the search point level, and the resulting level of performance depends on the number of 

execution units present. Similar to VLIW processors, parallelism is extracted at compile time 

using a simple fetch, decode and issue unit which deals with one instruction at a time, and just 

like superscalar processors, different implementations of the microarchitecture remain binary 

compatible so that hardware upgrades will not need a software recompile. 

 

Hardware Interface 
 

The LiquidMotion processor is fully synchronous, and its top-level interface is shown in Fig. 4. 

Fig 5. shows thirty general purpose registers, and these, can be accessed through the register  

access ports for reading and writing. If a new program/point memory needs to be loaded this can 

be used using the dma_address and dma_data_in ports to write addresses 0 to 255 (256 locations 

per memory). The dma_data_in port should be padded with zeros since the program memory 

instructions only have 20 bits while the point memory locations only have 16 bits. To control 

which memory to write the dma_pom_we (point memory) and the dma_prm_we (program 

memory) signals are used. 

 

The command register (Reg0) is used to start the processing of a new macroblock and its 

contents are used to indicate the partition mode required and the coordinates of the macroblock 

to be processed. Once bit 31 in the command register is set to 1, the processor will begin 

executing the internally stored program using the specified partition mode on the macroblock 

currently loaded. A new command must be issued if a new partition mode is required, and this 

allows the rate-distortion optimization algorithm part of the video codec to decide whether or not 

more partitions should be pursued. Fig. 6 shows the strategy used by the x264 encoder, while 

Fig. 7 shows the hardware calls performed by the rest of the video coding algorithm. 
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Debugging ports

 
                                             Fig.4 - LiquidMotion interface 

 

The DMA ports are used to load new macroblocks, reference area data and program data into the 

processor’s internal buffers. These DMA transfers must be carried out by an external controller, 

and can be performed in parallel with executing a search. At the start of each new frame row it is 

necessary to load a full reference area of 7x5 macroblocks (112x80 pixels search area) but for 

each subsequent macroblock from the same row only the newest column of 1x5 macroblocks 
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needs to be loaded. Internally, the processor operates a sliding window mechanism so that the 

overlapping reference area can be transparently reused. 

 

The done_interrupt signal will be raised by the processor once the processing of the current 

macroblock is complete. Finally, the debugging ports can be used to monitor the SAD and 

winning motion vector calculations as they are performed, and also to read back the contents of 

the internal memories.  
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Fig. 5 - Register File description 

 
 

 
Signal Name I/O Width Description 

clk In 1 System clock signal 

reset In 1 Synchronous reset 

clear In 1 Asynchronous clear 
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register_file_address In 3 Access general purpose registers 

register_file_write In 1 Write enable for the general purpose registers 

register_file_data_in In 32  Data in for general purpose registers 

register_file_data_out Out 32 Data out for general purpose registers 

dma_address In 10 Read/write addresses for reference memory, current macroblock memory, 

point memory and program memory 

dma_data_in In 64 Reference memory/current macroblock memory/ program memory/point 

memory data input 

dma_rm_we In 1 Write enable reference memory 

dma_cm_we In 1 Write enable current macroblock memory 

dma_pom_we In 1 Write enable point memory 

dma_prm_we In 1 Write enable program memory 

done_interrupt Out 1 Macroblock processing terminates 

best_sad_debug Out 16 SAD value debugging port 

best_mv_debug Out 16 Motion vector debugging port 

dma_rm_debug Out 64 Reference memory debugging port 

Table 3 - Processor interface signal description 
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Fig.6 - Mode selection in x264 
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     Fig.7 - Software access to the ME processor 

 

IP Integration 
 
A prototype implementation has already been developed which successfully integrates the base 

configuration of the LiquidMotion core with a LEON3 System-on-Chip design, as illustrated in 

Fig. 8, and is available for demonstration. The processor is instantiated inside a wrapper 

component with an AMBA interface, as depicted in Fig. 9, which is implemented on a PCI-based 

FPGA board developed by Avnet containing a single Xilinx Spartan-3 device. A supporting API 

is also available, and the entire design has been successfully integrated into an x264 plug-in for 

the VLC cross-platform multimedia player. The system can be seen working at the following 

URL:  http://uk.youtube.com/watch?v=TkRnm8qvdDA 
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Fig. 8 - Processor SoC integration example 
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Fig. 9 - Processor AMBA wrapper 

 

 

 

 

 

 

 

Summary of the LiquidMotion processor features  
 

♦ Programmable block-matching motion estimation algorithms (hexagonal, diamond, log, 

PMVFAST, UMH, etc) using an optimized reduced instruction set architecture. 

♦ Lagrangian hardware support adds the cost of the motion vector to the SAD cost using 

Lagrangian multipliers typically reducing bit rate by 5-10% . 

♦ Configurable number of integer execution units (1 to 16) to give scalable performance, from 

low cost energy efficient single-pipeline configurations up to highly parallel implementations 

capable of executing the advanced motion estimation features available in H.264. 

♦ Half-pel and quarter-pel support using a configurable 6-tap interpolation filter array 
implemented with 48 processing elements and a single fractional-pel execution unit.  

Fractional-pel instructions can be issued to these execution units in parallel with the main 

integer execution units, allowing each to operate on different macroblocks. 

♦ Accompanying toolset/compiler for easy development of new motion estimation algorithms –

enabling a designer to use a simple C-like syntax to implement publicly available motion 

estimation algorithms, or his/her own algorithms without having to resort to any error prone 

assembly language syntax. 

♦ Multiple reference frame (1 to 5) and partition size support (16x16, 16x8, 8x16, 8x8) -  

capable of working with any rate distortion optimization algorithms present in the rest of the 

video encoder so that partition modes and reference frames can be used selectively for an 

optimal performance/energy trade off. 

♦ Multiple motion vector candidates and a large search area of 112x128 pixels enable precise 

motion estimation with little impact on execution time. 

♦ Unrestricted motion vector capability – as described in the H.264 standard, which allows a 

vector to describe motion that lies outside of the reference frame. 

♦ Efficient implementation of the early termination and duplicate-point optimizations in 

configurations with multiple execution units – these features terminate or change the 
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execution flow of the motion estimation algorithm when a pattern fails to improve on the 

previous best match bypassing search points that have already been computed, 

♦ VHDL RTL description deliverable optimized for ASIC or FPGA implementation – fully 

synchronous and synthesizable allowing it to make use of the special features available in 

modern FPGAs. 

♦ Working demonstration using the x264 encoder and PCI bus available – take a look at 

http://uk.youtube.com/watch?v=TkRnm8qvdDA for a very brief example!. 


