
 1

The LiquidMotion Programmable/Configurable

Motion Estimation Instruction Set Processor

Data sheet Version 5.0

11-09-2009

Introduction

The LiquidMotion processor is a reconfigurable ASIP (Application Specific Instruction Set

Processor) designed to execute user-defined block-matching motion estimation algorithms

optimized for hybrid video codecs such as MPEG-2, MPEG-4, H.264 AVC and Microsoft VC-1.

A generic overview of how these codecs operate is shown in Fig. 1.

Motion estimation is used during inter-frame analysis to remove temporal redundancy and

typically accounts for more than 50% of the whole entire cycle budget. This is especially true in

the advanced video coding standard H.264
1
, which includes advanced features for motion

estimation such as variable block sizes, fractional pel support down to quarter-pel resolution,

multiple reference frames and multiple motion vector candidates. The implementation of these

features help H.264 to deliver high quality result, but they can also introduce a performance

bottleneck into the video processing chain.

Fig. 1 - Generic Video Codec Block Diagram

Traditionally, the preferred implementation for motion estimation in hardware has been based on

full-search algorithms due to their regular dataflow, which makes them well suited to systolic

array principles. This is a simple approach capable of achieving a high level of hardware

utilization and generally avoids global routing which results in high clock frequencies. Practical

full search implementations, however, need to consider the memory interface to the frame data,

and this can often lead to designs requiring large data widths and port counts, or a large number

of registers to buffer the pixel data. Data broadcasting techniques can be used to reduce this need

but this can also reduce the achievable clock frequency.

1
 H.264 has been selected as the preferred coding standard by the Blu-ray Disc Association and for the new

high-definition television broadcasting standard (DVB-S2) due to its excellent coding performance that typically

halves the bit-rates compared with previous standards.

DCT Quantisation
Entropy

Encoder

Inter-frame

analysis

(Motion

Estimation)

Intra-frame

analysis

Residue

Motion Vector

Output

Feedback

Input

 2

Full search implies a large number of SAD operations, and even for reduced search areas, a

number of optimizations are still required to make it more computationally tractable. One of the

drawbacks of the full search approach in hardware is that its throughput is determined by the size

of the search area, and this increases dramatically for high definition video formats thereby

limiting its scalability and increasing its energy consumption. Considering fractional-pel in full

search compounds this problem further since an exhaustive search to quarter-pel precision will

increase the number of points to be searched by more than an order of magnitude, on top of the

overhead in interpolating these pixels using computationally intensive filters.

LiquidMotion offers scalable performance dependent on the features of the chosen algorithm and

the number and type of execution units implemented. Hardware configuration can typically be

achieved at compile time by adapting the architecture to the chosen algorithm, and in a FPGA

implementation, it is possible to pre-compile a range of hardware bitstreams with different

configurations from which one can be chosen to match the current video processing

requirements. The LiquidMotion processor microarchitecture can be easily scaled to high

definition video even when using low cost FPGAs such as the Xilinx Spartan3 - and the ability to

program the search algorithm to be used, and to reconfigure the underlying hardware that it will

execute on, combines to give an extremely flexible video processing platform. The processor is

programmed using a reduced instruction set optimized for the development of motion estimation

algorithms.

A base configuration consisting of a single 64-bit integer pipeline, which is capable of

processing a hexagonal motion estimation algorithm such as the one used in the x264 video

encoder
2
, can be implemented in as little as 2000 logic cells on a Xilinx FPGA. As an example of

its performance, macroblocks from a high motion video clip such as the American football test

sequence can be computed in around 700 clock cycles using a diamond search algorithm with a

final square refinement as implemented in x264, and even at a modest clock frequency of 100

MHz, this translates to around 140,000 MBs/second which is enough to support the high

definition 720p@30 frames/second. This performance scales linearly with the number of

execution units implemented, and is unaffected by the addition of fractional-pel support.

2
 x264 is a open-source implementation of a H.264 encoder: http://www.videolan.org/developers/x264.html

 3

Hardware description

Fig. 2 shows the architecture of a configuration with 6 execution units: four integer-pel execution

units (64x4 bits data path), one fractional-pel execution unit (64-bit data path) and one

interpolation unit.

Fig. 2 - LiquidMotion sample configuration architecture

 Fig. 3 - Toolset for algorithm development

 4

Motion estimation algorithms have not been standardized and over the years many fast motion

estimation algorithms have been proposed by both industry and academia. Well-known fast

motion estimation algorithms include logarithmic search, three-step search, diamond search,

hexagon search, etc. along with more complex methods such as PMVFAST and UMH. These

algorithms work by searching only a subset of all candidate positions for the best match, using a

dynamic search pattern iteratively with each local winner set as the starting point for the

following iteration. The same principles of calculating motion vectors by block-matching the

current frame with other reference frames in the video sequence are shared by MPEG-2, MPEG-

4, VC-1 and H.264, although the more recent standards have more sophisticated ways of

achieving this.

Tables 1 and 2 indicate the level of performance and complexity obtained by different

configurations of the LiquidMotion processor. The LiquidMotion compiler toolset shown in

Fig. 3 enables a designer to implement any of the above algorithms, or to develop his/her own

using a simple C-like syntax which can then be compiled into machine code ready to run on the

hardware.
 Number of

Integer

Execution

units

implemented

Throughput in

macroblocks

per second

(16x16,

diamond, 200

MHz, 4 ppp)

Throughput

in

Macroblocks

per second

(16x16, 8x8,

diamond, 200

MHz,4ppp)

Throughput

in

macroblocks

per second

(16x16,

hexagon, 200

MHz, 6 ppp)

Throughput in

Macroblocks

per second

(16x16, 8x8,

hexagon, 200

MHz, 6ppp)

Throughput

in

Macroblocks

per second

(16x16 UMH

200 MHz, 16

ppp)

Throughput

in

Macroblocks

per second

(16x16, 8x8

UMH 200

MHz, 16

ppp)

1 372,960
 (1080p@30)

233,918
(720p@50)

260,983
(1080p@30)

173,988
(720p@30)

84,813

56,542

2 692,640
(1080p@50)

461,760
(1080p@50)

495,867
(1080p@50)

330,578
(1080p@30)

166,233
(720p@30)

110,822

3

708,382

(1080p@50)
472,255

(1080p@50)
4 1,212,121

(1080p@50)
808,080

(1080p@50)
319,680

(1080p@30)
213,120

(720p@50)
6

1,239,669

(1080p@50)
826,446

(1080p@50)

8

593,692

(1080p@50)
395,794

(720p@30)
16

1,038,961

(1080p@50)
692,640

(1080p@50)

Table 1 - Estimated number of execution units required depending on motion estimation

algorithm and video format

Table 2 - Complexity of different hardware configurations

when implemented on a SX35 Xilinx Virtex4 device

 5

The application specific instructions generated by the compiler specify the parallelism available

at the search point level, and the resulting level of performance depends on the number of

execution units present. Similar to VLIW processors, parallelism is extracted at compile time

using a simple fetch, decode and issue unit which deals with one instruction at a time, and just

like superscalar processors, different implementations of the microarchitecture remain binary

compatible so that hardware upgrades will not need a software recompile.

Hardware Interface

The LiquidMotion processor is fully synchronous, and its top-level interface is shown in Fig. 4.

Fig 5. shows thirty general purpose registers, and these, can be accessed through the register

access ports for reading and writing. If a new program/point memory needs to be loaded this can

be used using the dma_address and dma_data_in ports to write addresses 0 to 255 (256 locations

per memory). The dma_data_in port should be padded with zeros since the program memory

instructions only have 20 bits while the point memory locations only have 16 bits. To control

which memory to write the dma_pom_we (point memory) and the dma_prm_we (program

memory) signals are used.

The command register (Reg0) is used to start the processing of a new macroblock and its

contents are used to indicate the partition mode required and the coordinates of the macroblock

to be processed. Once bit 31 in the command register is set to 1, the processor will begin

executing the internally stored program using the specified partition mode on the macroblock

currently loaded. A new command must be issued if a new partition mode is required, and this

allows the rate-distortion optimization algorithm part of the video codec to decide whether or not

more partitions should be pursued. Fig. 6 shows the strategy used by the x264 encoder, while

Fig. 7 shows the hardware calls performed by the rest of the video coding algorithm.

me_top

register_file_write

register_file_address

clear

reset

clk

3

register_file_data_in
32

register_file_data_out
32

dma_address
10

dma_data_in
64

dma_rm_we

dma_cm_we

dma_pom_we

done_interrupt

best_sad_debug
16

best_mv_debug
16

dma_rm_debug
64

dma_prm_we

Debugging ports

 Fig.4 - LiquidMotion interface

The DMA ports are used to load new macroblocks, reference area data and program data into the

processor’s internal buffers. These DMA transfers must be carried out by an external controller,

and can be performed in parallel with executing a search. At the start of each new frame row it is

necessary to load a full reference area of 7x5 macroblocks (112x80 pixels search area) but for

each subsequent macroblock from the same row only the newest column of 1x5 macroblocks

 6

needs to be loaded. Internally, the processor operates a sliding window mechanism so that the

overlapping reference area can be transparently reused.

The done_interrupt signal will be raised by the processor once the processing of the current

macroblock is complete. Finally, the debugging ports can be used to monitor the SAD and

winning motion vector calculations as they are performed, and also to read back the contents of

the internal memories.

Register File

Reg0

Command

Register

Start macroblock

processing

Start new

31 30 7 0

Partition mode

19 Mb_x coordinate Mb_y coordinate

Quantization

paramenter
8162029 28

Done interrupt bits

27

31
25

Reference Frame

number

MV candidate

36
Reg4

Mode

Register

31
7

reserved
15 Mb_x coordinate Mb_y coordinate816

Reg 5-12
Motion

vector

candidate(s)

Motion vector candidate

31

FP MV cost

1516

Reg 14-21

Result

Registers fp

31
QP MV cost

15

Reg 22 -29

Result

Registers qp

7Mb_x coordinate Mb_y coordinate8

15

row

31
7

reserved
15 816

Reg1
Frame

dimensions
Register

Winning MV

Frame

dimension x

Frame
dimension y

31Reg2

Profile FP

Register

Cycle count to do Integer-pel

Motion estimation in MB

31Reg3

Profile QP
Register

0

Cycle count to do Fractional-pel

Motion estimation in MB
0

09

Partition mode
Reserved

7
Mb_x coordinate Mb_y coordinate

8

Winning Motion vector

Winning Motion vector

31 7
reserved

15 Mb_x coordinate Mb_y coordinate816

Reg 13
Motion

vector

Predicted

MVP

Fig. 5 - Register File description

Signal Name I/O Width Description

clk In 1 System clock signal

reset In 1 Synchronous reset

clear In 1 Asynchronous clear

 7

register_file_address In 3 Access general purpose registers

register_file_write In 1 Write enable for the general purpose registers

register_file_data_in In 32 Data in for general purpose registers

register_file_data_out Out 32 Data out for general purpose registers

dma_address In 10 Read/write addresses for reference memory, current macroblock memory,

point memory and program memory

dma_data_in In 64 Reference memory/current macroblock memory/ program memory/point

memory data input

dma_rm_we In 1 Write enable reference memory

dma_cm_we In 1 Write enable current macroblock memory

dma_pom_we In 1 Write enable point memory

dma_prm_we In 1 Write enable program memory

done_interrupt Out 1 Macroblock processing terminates

best_sad_debug Out 16 SAD value debugging port

best_mv_debug Out 16 Motion vector debugging port

dma_rm_debug Out 64 Reference memory debugging port

Table 3 - Processor interface signal description

Start

Can MB be

skipped?

Search for

16x16 MB

Search for

8x8 partitions

Is 8x8 <

16x16?

Search for

4x4 partitions

Is 4x4 <

8x8?

Search for

4x8 & 8x4 partitions

Search for

16x8 & 8x16 partitions

Finish

Can 8x16/16x8

< 16x16?

No

No

No

Yes

Yes

Yes

No

Yes

Is Intra < Inter?

Encode Intra-MB Encode Inter-MB

Encode Skip MB

Fig.6 - Mode selection in x264

Copy current MB

Clear engine

Start

Start of new row?

Copy newest column

into reference memory

Clear the reference

area shift effect

Copy whole search

area into reference

memory

Clear previous

result

Start processing

Wait for

done_interrupt

Read result

Yes

No

End of frame? Finish

Yes

No

 Fig.7 - Software access to the ME processor

IP Integration

A prototype implementation has already been developed which successfully integrates the base

configuration of the LiquidMotion core with a LEON3 System-on-Chip design, as illustrated in

Fig. 8, and is available for demonstration. The processor is instantiated inside a wrapper

component with an AMBA interface, as depicted in Fig. 9, which is implemented on a PCI-based

FPGA board developed by Avnet containing a single Xilinx Spartan-3 device. A supporting API

is also available, and the entire design has been successfully integrated into an x264 plug-in for

the VLC cross-platform multimedia player. The system can be seen working at the following

URL: http://uk.youtube.com/watch?v=TkRnm8qvdDA

 8

FPGA

LEON3

Processor
PCI Core

AHB/APB

Bridge

Memory

Controller

UART

Interface

Timer

Unit

Interrupt

Controller

AHB

APB

On-board memory

me_

wrapper

Fig. 8 - Processor SoC integration example

me_wrapper

ahsbi

ahbmi

reset

clk

ahbso

ahbmo

me_tophmindex

hsindex

hsaddr

hsmask

VHDL Generics:

Fig. 9 - Processor AMBA wrapper

Summary of the LiquidMotion processor features

♦ Programmable block-matching motion estimation algorithms (hexagonal, diamond, log,

PMVFAST, UMH, etc) using an optimized reduced instruction set architecture.

♦ Lagrangian hardware support adds the cost of the motion vector to the SAD cost using

Lagrangian multipliers typically reducing bit rate by 5-10% .

♦ Configurable number of integer execution units (1 to 16) to give scalable performance, from

low cost energy efficient single-pipeline configurations up to highly parallel implementations

capable of executing the advanced motion estimation features available in H.264.

♦ Half-pel and quarter-pel support using a configurable 6-tap interpolation filter array
implemented with 48 processing elements and a single fractional-pel execution unit.

Fractional-pel instructions can be issued to these execution units in parallel with the main

integer execution units, allowing each to operate on different macroblocks.

♦ Accompanying toolset/compiler for easy development of new motion estimation algorithms –

enabling a designer to use a simple C-like syntax to implement publicly available motion

estimation algorithms, or his/her own algorithms without having to resort to any error prone

assembly language syntax.

♦ Multiple reference frame (1 to 5) and partition size support (16x16, 16x8, 8x16, 8x8) -

capable of working with any rate distortion optimization algorithms present in the rest of the

video encoder so that partition modes and reference frames can be used selectively for an

optimal performance/energy trade off.

♦ Multiple motion vector candidates and a large search area of 112x128 pixels enable precise

motion estimation with little impact on execution time.

♦ Unrestricted motion vector capability – as described in the H.264 standard, which allows a

vector to describe motion that lies outside of the reference frame.

♦ Efficient implementation of the early termination and duplicate-point optimizations in

configurations with multiple execution units – these features terminate or change the

 9

execution flow of the motion estimation algorithm when a pattern fails to improve on the

previous best match bypassing search points that have already been computed,

♦ VHDL RTL description deliverable optimized for ASIC or FPGA implementation – fully

synchronous and synthesizable allowing it to make use of the special features available in

modern FPGAs.

♦ Working demonstration using the x264 encoder and PCI bus available – take a look at

http://uk.youtube.com/watch?v=TkRnm8qvdDA for a very brief example!.

