
1 | P a g e

MPMC9 – Multi-Port Memory Controller #9

robfinch<remove>@finitron.ca

Overview
The multi-port memory controller provides eight access ports with either small streaming read

caches or a 16kB shared read cache to the ddr3 ram. The multi-port memory controller

interfaces between the SoC and a MIG controller. The DDR3 ram controller is outside of the

scope of the MPMC.

The ports have suggested pre-designated usages. Ports may be specialized to their use. Data

widths are configurable with parameters. Most devices are filling some sort of cache or buffer

from memory or dumping data back to memory. A large number of memory ports are required

because the system has only a single physical memory port and everything is in the system on

chip.

MPMC9 increases the number of 16-byte memory strips that may be fetched in one access.

MPMC8 allowed up to eight strips to be fetched, this has been increased to 64 for MPMC9. The

larger number of strips fetched allows the controller to make much better use of memory

bandwidth.

2 | P a g e

Port Suggested Usage
Port Use Port Bits Common

Cache
Stream
Buffer

Access

0 Frame Buffer / Bitmap Controller 128 * 4

1 CPU #1 128 * 4

2 Ethernet controller 32 * 4

3 Audio controller 16 * 8

4 Graphics controller 128 * 2

5 Sprite controller (read only) 64 * 2

6 SD Card (disk) controller 32 * 4

7 CPU #2 128 * 4

Port Priorities
The ports have a fixed priority arrangement according to the port number. The lowest port

number has the highest priority. Periodically, for one access cycle only, port priorities are

inverted so that port 7 has the highest priority and port #0 the lowest.

Overall Organization
The controller may use separate small streaming read caches or a larger common shared cache

for each of the ports. This allows multiple read accesses by different devices to occur in parallel,

provided the data to be read is in the read cache. Some of the latency for memory reads can be

hidden in this manner.

One may wonder why there are separate streaming read caches available when many systems

often use a single cache. Using a common cache for all ports including streaming data ports is

not a good idea. Streaming data, as for a frame buffer for instance, will fill the entire cache with

data that used only once in a frame. Without special considerations, it will bump data from the

cache causing a large number of cache reloads.

Port Descriptions

Frame Buffer Port #0

Bitmapped graphics can require a high memory bandwidth. In many systems the display

memory is separate from the rest of the main memory of the system so that the bandwidth

requirements of the display don’t slow the rest of the system down. As an example of

bandwidth requirements, the test system uses 800 x 600 x 16bpp color bitmapped graphics

mode. The clock frequency for this mode is about 40MHz. About 80MB/s of data is required.

(40MHz * 16-bit data). Each byte must be read in about 12ns.

3 | P a g e

Given that in the test system the main memory of the system is being used for display, it is

desirable to make the best use of available bandwidth. To achieve better bandwidth memory

access for the bitmap controller is organized into a number of strips. One key thing to note is

that the bitmap controller basically always reads forwards through memory. It’s addressing is

predictable and not random. This makes it easier to achieve high bandwidth access. While the

ddr3 controller already does burst access to fetch 128 bit (burst length of eight, two bytes at a

time) at a time from the memory, performance can be maintained by performing larger burst

accesses. Hence the use of memory strips. For the bitmap controller a burst of sixty-four 128-bit

memory strip accesses or 8192 bits (1024 bytes) at a time. The vendor’s controller does not

need to wait for a read access to complete before starting a second (or more). However, there is

about a 24-cycle latency for memory access. The following diagram shows memory access for

the bitmap display.

To perform accesses in this manner takes about 40 clock cycles. Note the display’s effective dot

rate is about 40MHz, while the memory controller clock is 100MHz. If performing sixty-four

consecutive accesses to memory is good wouldn’t it be better to perform even more? It would

be except the issue here is that there are other devices in the system that need to access

memory sometimes within a limited time-frame. Giving too many consecutive cycles to the

bitmap controller would starve other devices. There is also an issue with the fact that part of the

last access for a scan line is wasted. More data is fetched than needed because 128 bytes

doesn’t divide evenly into an 800-pixel scan line. (1600 bytes / 128 = 12.5 burst accesses).

The bitmap controller has a programmable access interval so that it does not continuously

access the memory. This gives some time for other devices to access the memory. The interval

has to be set carefully or there could be display problems with the bitmap display.

CPU#1 Port / CPU#2 Port

Memory access for a cpu is somewhat like the bitmap controller. Many accesses travel forwards

through memory. However, there is a more random aspect to the cpu’s accesses. To improve

4 | P a g e

performance the CPU already has a cache. So, most of the read access required by the cpu is in

order to fill a cache line. The CPU only fills one cache line at a time during a miss. Most of the

time that’s all that’s required. Timing is similar to the bitmapped display, except that only four

consecutive burst accesses are performed. Four burst access are enough to supply one cache

line (512 bits / 64 bytes) of data.

Ethernet Controller

The Ethernet controller requires read / write access to memory for network transfers. Ethernet

memory transfers are often done by a dedicated DMA controller and not the CPU. Hence, they

require a memory port. The current system uses an Ethernet controller that supports only 32-bit

accesses. So, the ethernet’s port is only 32 bits wide. However, a read operation from memory

always transfers 128 bits, so only those bits that the controller needs are passed back to it. The

other bits are cached.

Graphics Controller

The graphics controller port services memory requests for that device. A graphics accelerator

reads and manipulates pixels from memory then writes pixels back. Most of the time the

accelerator is dealing with individual pixels. There’s little benefit to fetching or storing large

numbers of pixels in this case. Hence the port for the graphics controller uses only single burst

accesses.

Sprite Controller

The sprite controller uses dedicated DMA triggered during the horizontal or vertical blanking

interval. Sprite images have linear accesses to memory just like a bitmap display. To minimize

the number of memory accesses required to display sprite data, each sprite has its own read

cache. The sprite’s read cache is enough to buffer about four scan-lines worth of display data. If

the sprites were to share a common cache then the cache would be constantly dumped and

reloaded since each sprite’s display data address is different.

SD Card Controller

The SD card controller has only a 32-bit data path and hence a 32-bit port is used.

Write Ports
Everything mentioned so far has had to do with read ports. All ports except the sprite port are

also capable of writing to memory. While the read ports are somewhat customized to the port

owner, write ports all work in the same manner.

There is no write cache. Writes go directly to memory as soon as possible. Except for the bitmap

controller, they have a higher priority than reads.

5 | P a g e

All write ports write perform a single 128 bit burst write to memory. Caches are not updated by

writes. Instead, if there is a cache hit during a write cycle that cache line is invalidated. This is a

simple means of keeping all the caches in the memory controller coherent.

Memory Reservations
The MPMC keeps track of up to two reserved memory addresses for the cpu ports. The number

of address reservations is configurable. Memory reservations are used to implement atomic

memory operations. A conditional store operation by the cpu will be done only if the store

address is reserved. The cpu must output signals to indicate that an address is being reserved

during a load operation, and to indicate that a conditional store is taking place.

Conclusion
It’s possible that more ports would be required in the system. For instance, the system may also

be interfaced to an EPP parallel port for diagnostic purposes. More CPU cores might be present

in the system.

Parameters
 Default Description

NAR 2 Number of outstanding address reservations possible

AMSB 28 Most significant address bit

C0W 128 Data width for channel zero

C1W 128 Data width for channel one

C2W 32 Data width for channel two

C3W 16 Data width for channel three

C5W 64 Data width for channel five

C7W 128 Data width for channel seven

STREAM0 TRUE Use streaming read cache instead of common cache for channel 0

STREAM1 FALSE Use streaming read cache instead of common cache for channel 1

STREAM2 FALSE Use streaming read cache instead of common cache for channel 2

STREAM3 TRUE Use streaming read cache instead of common cache for channel 3

STREAM4 FALSE Use streaming read cache instead of common cache for channel 4

STREAM5 TRUE Use streaming read cache instead of common cache for channel 5

STREAM6 FALSE Use streaming read cache instead of common cache for channel 6

STREAM7 FALSE Use streaming read cache instead of common cache for channel 7

