Next186 FPGA processor features:

Instruction CPU T states:

Instruction

T States (Next186)
TStates(80186)

TSTates(486)
mov
R to R/M

1

2/12

1
mov
R/M to R

1

2/9

1
mov
Imm to R/M

1

12-13

1
mov
Imm to R

1

3-4

1
mov
Mem to Acc

1

9

1
mov
Acc to Mem

1

8

1
mov
R/M to SR

1

2/9

3/9
mov
SR to R/M

1

2/11

3
push
M

2

16

4
push
R

1

10

1
push
SR

1

9

3
push
Imm

1

10

1
pusha

8

36

11
pop
M

2

20

6
pop
R

1

10

4
pop
SR

1

8

3
popa

8

51

9
xchg
R/M with R

2

4/17

3/5
xchg
R with Acc

2

3

3
in
port

1

10

14
in
DX

1

8

14
out
port

1

9

16
out
DX

1

7

16
xlat

1

11

4
lea

1

6

1
lds

2

16

6
les

2

16

6
lahf

1

2

3
sahf

1

3

2
pushf

1

9

4
popf

2

8

9
add
R/M with R

1/2

3/10

1/3

add
R with M

2

3/10

2

add
R/M with Imm

1/2

4/16

1/3

add
 Acc with Imm

1

3/4

1

adc
R/M with R

1/2

3/10

1/3

adc
R with M

2

3/10

2

adc
R/M with Imm

1/2

4/16

1/3

adc
 Acc with Imm

1

3/4

1

sub
R/M with R

1/2

3/10

1/3

sub
R with M

2

3/10

2

sub
R/M with Imm

1/2

4/16

1/3

sub
 Acc with Imm

1

3/4

1

sbb
R/M with R

1/2

3/10

1/3

sbb
R with M

2

3/10

2

sbb
R/M with Imm

1/2

4/16

1/3

sbb
 Acc with Imm

1

3/4

1

cmp
R/M with R

1/2

3/10

1/3

cmp
R with M

2

3/10

2

cmp
R/M with Imm

1/2

4/16

1/3

cmp
 Acc with Imm

1

3/4

1

and
R/M with R

1/2

3/10

1/3

and
R with M

2

3/10

2

and
R/M with Imm

1/2

4/16

1/3

and
 Acc with Imm

1

3/4

1

or
R/M with R

1/2

3/10

1/3

or
R with M

2

3/10

2

or
R/M with Imm

1/2

4/16

1/3

or
 Acc with Imm

1

3/4

1

xor
R/M with R

1/2

3/10

1/3

xor
R with M

2

3/10

2

xor
R/M with Imm

1/2

4/16

1/3

xor
 Acc with Imm

1

3/4

1

test
R/M with R

1/2

3/10

1/2

test
R with M

2

3/10

1

test
R/M with Imm

1/2

4/10

1/2

test
Acc with Imm

1

3/4

1

inc
M

2

10

3

inc
R

1

3

1

dec
M

2

10

3

dec
R

1

3

1

neg
M

2

3

3

neg
R

1

3

1

not
M

2

10

3

not
R

1

3

1

aaa

1

8

3

daa

1

4

2

aas

1

7

3

das

1

4

2

cbw

1

2

3

cwd

1

4

3

(i)mul
R8

2

(25)26-28

13-18
(i)mul
M8

2

(31)32-34

13-18
(i)mul
R16

3

(34)35-37

13-26
(i)mul
M16

3

(40)41-43

13-26
imul
R16, R16/M16, imm
2

22-25/29-32

13-26
(i)div
R8

(10-13)10

(44-52)29

(19)16
(i)div
M8

(10-13)10

(50-58)35

(20)16
(i)div
R16

(18-22)18

(53-61)38

(27)24
(i)div
M16

(18-22)18

(59-67)44

(28)24
aam

12

19

15

aad

4

15

14

sh/sa
R8 , 1

1

6

3

sh/sa
M8 , 1

2

18

4

sh/sa
R16 , 1

1

6

3

sh/sa
M16 , 1

2

18

4

sh/sa
R8 , CL/n

1

5+n

3/2
sh/sa
M8 , CL/n

2

17+n

4

sh/sa
R16 , CL/n

1-2

5+n

3/2
sh/sa
M16 , CL/n

2-3

17+n

4

rol/r
R8 , 1

1

6

3

rol/r
M8 , 1

2

18

4

rol/r
R16 , 1

1

6

3

rol/r
M16 , 1

2

18

4

rol/r
R8 , CL/n

1

5+n

3/2

rol/r
M8 , CL/n

2

17+n

4

rol/r
R16 , CL/n

1-2

5+n

3/2

rol/r
M16 , CL/n

2-3

17+n

4

rcl/r
R8 , 1

1

6

3

rcl/r
M8 , 1

2

18

4

rcl/r
R16 , 1

1

6

3

rcl/r
M16 , 1

2

18

4

rcl/r
R8 , CL/n

1-4

5+n

8-30

rcl/r
M8 , CL/n

2-5

17+n

9-31

rcl/r
R16 , CL/n

1-4

5+n

8-30

rcl/r
M16 , CL/n

2-5

17+n

9-31

rep

1

2

0

movs

2

14

7
cmps

3

22

8

scas

2

15

6
lods

2

12

5

stos

1

10

5
ins

2

8

17
outs

2

7

17
rep movs

max(2*n,1)

8+8*n

7*n

rep cmps

max(3*n,1)

5+22*n

8*n

rep scas

max(2*n,1)

5+15*n

6*n
rep lods

max(2*n,1)

6+11*n

5*n
rep stos

max(n,1)

6+9*n

5*n
rep ins

max(2*n,1)

8+8*n/14

17*n
rep outs

max(2*n,1)

8+8*n/14

17*n
call
near rel16

1

14

3
call
near R/M

1/2

13/19

5

call
far M

4

38

17

call
far imm

3

23

18

jmp
near rel8/rel16

1

13

3

jxx

1

13/4

3/1

jmp
near R/M

1/2

11/17

5

jmp
far M

3

26

13
jmp
far imm

2

13

17
loop

1

15/5

6/2

loopz

1

16/6

9/6

loopnz

1

16/6

9/6

jcxz

1

16/5

8/5

retn
/+SP

2

16/18

5

retf
/+SP

3

22/25

13/14
iret

4

28

15

enter (level param always 0)
3

15

14

leave

2

8

5

clc

1

2

2
cmc

1

2

2

stc

1

2

2

cld

1

2

2

std

1

2

2

cli

1

2

5

sti

1

2

5

int

6

47

30
int3

6

45

26
into

6/1

48/4

28/3
bound

4 (noj)

33-35

7 (noj)
hlt

1

2

4
wait (nop)

1

6

1-3
lock

1

2

1
esc

1 (+int7)

6

-
nop

1

3

1

------------------------------ CE - input ------------

Clock Enable.
CE is sampled on each CLK pos edge. This way a possible design can clock the processor at a higher than supported frequency, and slow it down with CE.

------------------------------ RESET – input ------------

Reset request is synchronized with CLK (when CE = 1). The RESET cycle is started the next CLK pos edge, and it takes 4 T states. After RESET, the following registers are initialized:

STATUS
: 0002H

IP
: 0000H

CS
: FFFFH

DS
: 0000H

ES
: 0000H

SS
: 0000H

------------------------------ NMI – input ------------
NMI is synchronized with CLK pos edge and accepted at the end of each instruction (including block instructions). It takes 5 T states until interrupt handler (far ptr [8]) begins execution.

NMI is pos edge detected, and may be accepted even after the NMI line becomes 0.

NMI is not accepted immediately after an instruction which changes SS (POP SS, MOV SS,…) or after prefix instructions.
------------------------------ INTR- input ------------

INTR is accepted at the end of each instruction (including block instructions). It takes 6 T states, until interrupt handler begins execution. During the first T state, the INTA line becomes 1, allowing the interrupt vector to be placed on the data bus.
INTR is level detected, so it must stay 1 until INTA becomes 1.

INTR is accepted only IF=1.

INTR is not accepted immediately after an instruction which changes SS (POP SS, MOV SS,…), after STI or after prefix instructions.

------------------------------ HALT – output ------------

HALT is 1 after the HLT instruction is performed
------------------------------ MREQ – output ------------

MREQ is 1 when CPU reads/writes memory.
CPU reads memory when MREQ = 1 and WR = 0, and writes memory when MREQ = 1 and WR = 1.

------------------------------ IORQ – output ------------

IORQ is 1 when CPU reads/writes I/O ports

CPU reads I/O when IORQ = 1 and WR = 0, and writes I/O when IORQ = 1 and WR = 1.

------------------------------ WR – output ------------

WR is 1 when CPU writes memory or I/O port.
------------------------------ PUSH SP ------------

PUSH SP instruction will push on stack the value of SP before decrementing it (fix the 8086-80186 bug), behaving like 286+
------------------------------ Write at 0ffffh offset ------------

When a word write is performed at offset 0FFFFh in a segment, the CPU will write one byte at offset FFFFh, and the other at offset 10000h (one byte beyond the end of the segment).
Interrupts:

The interrupt service priority is the following:

1 – Internal interrupt / exception

2 – NMI

3 – INTR

4- TRAP

The REP block instructions can be interrupted by NMI, INTR, TRAP.

The return address on the stack is the address of the repeated instruction itself (including all prefixes). This allows fully resume of repeated instruction after interrupt, with no other precautions.
After an interrupt/exception is accepted, the TF and IF flags are cleared (after they are pushed on stack).
No interrupt is accepted after a prefix, or after an instruction which modifies SS register.
Divide Error Exception (INT 0)
This exception occurs whenever you attempt to divide a value by zero or the quotient does not fit in the destination register when using the div or idiv instructions.

Note: Because the division takes place directly in (DX)AX registers, it is possible the dividend value (DX)AX to be altered when INT0 handler is called.
The return address on the stack points at the next instruction after the divide instruction, like it is the case for the 8086, 8088, 80186 and 80188 processors (beginning with 80286 the return address points at the beginning of the divide instruction - including any prefix bytes that appear).
Single Step (Trace) Exception (INT 1)
The single step exception occurs after every instruction if the trace bit in the flags register is equal to one. Debuggers and other programs will often set this flag so they can trace the execution of a program.
When this exception occurs, the return address on the stack is the address of the next instruction to execute. The trap handler can decode this op-code and decide how to proceed.

Generally, a single step exception handler should preserve all 80x86 registers and other state information.

The single step interrupt (type 1) is not generated after prefix instructions or after instructions which modify the SS register.

Overflow Exception (INT 4/INTO)
The overflow exception, like int 3, is technically a trap. The CPU only raises this exception when you execute an INTO instruction and the overflow flag is set. If the overflow flag is clear, the INTO instruction is effectively a NOP, if the overflow flag is set, into behaves like an int 4 instruction.
The return address on the stack is the address of the next instruction after into. Generally, an overflow handler does not return to that address. Instead, it will usually abort the program or pop the return address and flags off the stack and attempt the computation in a different way.

Bounds Exception (INT 5/BOUND)
Like into, the bound instruction will cause a conditional exception. If the specified register is outside the specified bounds, the bound instruction is equivalent to an int 5 instruction; if the register is within the specified bounds, the bound instruction is effectively a nop.
The return address that bound pushes is the address of the bound instruction itself (including all prefixes), not the instruction following bound. If you return from the exception without modifying the value in the register (or adjusting the bounds), you will generate an infinite loop because the code will re-execute the bound instruction and repeat this process over and over again.
Invalid Opcode Exception (INT 6)
The processor raises this exception if you attempt to execute an op-code that does not correspond to a legal 80186 instruction. It also raise this exception if you attempt to execute a bound, lds, les, lidt, or other instruction that requires a memory operand but you specify a register operand in the mod/rm field of the mod/reg/rm byte.
The return address on the stack points at the illegal op-code (including all prefixes). By examining this op-code, you can extend the instruction set of the 80x86. For example, you could run 80486 code by providing subroutines that mimic the extra 80486 instructions (like bswap, cmpxchg, etc.).
Coprocessor Not Available (INT 7)
The processor raise this exception if you attempt to execute an FPU (or other coprocessor) instruction. You can use this exception to simulate the coprocessor in software.
On entry to the exception handler, the return address points at the coprocessor op-code (including all prefixes) that generated the exception.
