
Onchip Interconnect Exploration for Multicore
Processors Utilizing FPGAs

Graham Schelle and Dirk Grunwald
Deptartment of Computer Science
University of Colorado at Boulder

Boulder, CO

Dual core microprocessors are currently available and
higher processor-count architectures will dominate the mul-
ticore market. A complex part of these higher order multi-
core designs will be the interconnection scheme that exists
onchip and how exactly that interconnection is best used
and configured. While FPGAs currently support a variety of
onchip bus interconnects, there is a gap in the tools to provide
Network on Chip (NoC) exploration. A Network on Chip is a
onchip packet switched network that is used for computational
elements (typically standard processors) to communicate with
each other. In this paper, we present our NoC emulation
tool (NoCem) and provide an example memory architecture
exploration platform that can be created.

I. I NTRODUCTION

Dual core processors are available from a variety of major
vendors and provide many new research challenges. Notably,
multicore processor design places a high importance on onchip
and offchip communication, while the processors themselves
need little modification from standard processor design. How-
ever, typical SMP (Symmetric Multiprocessing) challengesare
present including cache coherency, process scheduling, and
load balancing. The underlying architecture to support this
communication is currently done using buses and switches.
The communication fabric is utilized for memory, I/O, and
processor-to-processor communication, all bottlenecks that
cannot be ignored. Therefore, exploring the architecture of
the onchip interconnect is a paramount concern for processor
designers.

A large body of research predicts that packet switched net-
works will be necessary to replace buses for onchip commu-
nication [1], [2], [3]. With dual core designs currently on the
market, onchip buses work and scale perfectly well. However,
as more cores are added and clock speeds increase, single
bus designs cannot support cross chip communication [4], [5].
Wire delay in high speed clock domains will dominate the
timing budget, leading to wires that cannot reach across the
chip in a single cycle. With this observation, pipelined wires
and routed switching fabric will arise.

Two types of overhead occur when using a Network on
Chip. First, communication latency is increased as components
are forced to use a network in order to communicate. Often,
NoCs provide fast and slow communication channels, depend-
ing on how far data must travel. Additionally, this latency is

Fig. 1. Block Diagram of Processors Connected to NoCem

often deterministic, simplifying communication protocols. The
second overhead comes from using transistors to implement
the NoC. This overhead is justified by viewing transistors as
“free”, due to the exponential density increase seen in the
scaling process. These NoCs will scale with higher numbers
of chips on a single die and provide a higher bandwidth
communication medium.

For researching multicore processor architecture, modern
FPGAs have proven to be a valuable platform. For example,
the largest Xilinx Virtex4 FPGAs hold up to 2 embedded
PowerPC processors and a user can instantiate multiple soft
processors in a design. For soft processors, the Xilinx Microb-
laze is a 32-bit Harvard RISC architecture. Accompanying
these embedded and soft processors are a variety of buses
and peripherals that can be utilized to communicate between
processors and memories. With this base, many aspects of
multicore architectures can be tested and explored. However,
a NoC emulation tool does not exist that can be configured and
quickly modified for a variety of testing. NoC implementations
on FPGAs do exist [6], [7], but are often times nonsyn-
thesizable, proprietary, or specific to an application utilizing
it. NoCem (NoC Emulator) is a tool that is configurable
and can quickly be modified to provide a variety of NoC
implementations for use in multicore processor research.



II. NOCEM DESCRIPTION

NoCem design goals: NoCem conforms to several goals
in creating a tool that can emulate a variety of NoC configu-
rations that is easily attached to current soft and embedded
processors. These goals and how they are met are briefly
enumerated here.

• Ease of configuration. This is done using VHDL generics
and identifying what configurations are useful. NoCem
currently allows configurations in terms of data width,
network topology, channel FIFO depth, and packet length
among other derivative parameters.

• Modularity of design. The NoC itself is modularized into
channels and nodes. The nodes consist of a switching
fabric and arbitration blocks. These blocks conform to
simple interfaces and be swapped out with more complex
internals if needed.

• Common External Interface. Each access point into the
NoC has a similar interface regardless of the network
internals. This will allow easy integration of the NoC into
existing tools to connect FPGA logic to the processors.

NoCem Interface: The NoCem interface is very similar to
that of a FIFO. Depending on the configuration of the NoC,
the same lines are used for different purposes. NoCem does
have a bus network configuration, though the standard Xilinx
bus architectures are presumably more complete and EDK
provides better tools to use them. The interface for both egress
and ingress paths contain:

• data path:Datalines are connected to the channel FIFO
for the access point into the NoC. Data is read or written
using standard FIFO read and write enables.

• packet control path:Packet control is written to the chan-
nel FIFO for the access point into the NoC. Packet control
content is dependent on the network itself. Typically,
it will contain the packet header information such as
source address, destination address, packet length, and
other metadata. This information is used by the internal
network to route the packet. NoCem currently supports
destination based deterministic routing, but this can be
extended in future versions. The only current restriction
is the necessity for a destination address in the first word
of the packet control. This restriction allows for fast
routing, but NoCem could be extended to overcome this
limitation.

• channel metadata path:These lines are used to arbitrate
and grant access to the NoC by an access point. In the
simplest case, these lines consist of various FIFO status
signals (e.g. almost empty/full thresholds).

This interface hides any underlying network configurations
that may exist. Only modifying the datawidth or packet control
structure will require outside modifications to interface with
NoCem.

Connection to Processors: NoCem is intended
for Xilinx FPGAs and provides access point bridges
(noc2proc<bridgename>) to both the PLB and OPB
buses. These buses then connect to the embedded PowerPC

Fig. 2. Modular design of NoC nodes. Each node has an access point and
a north, south, east, and west channel FIFO.

and soft Microblaze processors. These bridges are easily
integrated into Xilinx’s EDK software, where the processors
can be instantiated and connected to the NoC. Bus to NoC
communication and vice versa is done using simple memory
mapping of addresses which is the standard for Xilinx EDK
projects. Figure 1 shows a block diagram of this bridging. An
accompanying software driver is used to read and write the
NoC from the processor. For sending a packet, the processor
notifies the bridge of the packet destination and length.
The processor can then write the packet into the NoC. For
receiving a packet, the bridge interrupts the processor and
allows the processor driver to “upload” the packet into the
processor’s memory space. A more complicated buffering
and aggregation scheme could be added to NoCem, only
requiring modification of the bridges themselves.

The noc2proc bridges can handle both the PLB and OPB
datawidths. Both buses have a 32-bit address space, but the
OPB and PLB have a 32-bit and 64-bit datawidth respectively.
Since both use Xilinx’s IPIF (IP Interface), this results inonly
minor differences in actual code.

Implementation: NoCem is implemented in standard
VHDL with heavy use of generics throughout the code base To
use with Xilinx’s soft and embedded processors, we integrate
NoCem and the accompanying noc2proc bridges into an EDK
project. Using an EDK project requires some generation of
files and metadata, but we use scripts wherever possible. An
instantiation of NoCem can be used natively in any project
as well, bypassing the scripts and bridges. However, for
multiprocessor systems, integration into an EDK project is
often a necessity. NoCem was created and simulated using
Xilinx ISE 7.1.4, Xilinx EDK 7.1.2, and Mentor Graphics
Modelsim 6.1.

NoCem was implemented with extensibility in mind. Fig-
ure 2 shows the block diagram of a common node in any



TABLE I

NUMBER OF LUTS USED BYNOCEM.

NoC
Dimensions

Datawidth LUTs xc2vp30 LUTs
used(%)

2x2 16b 4,086 14%
3x3 16b 11,693 42%
4x4 16b 21,570 78%
2x2 32b 5,822 21%
3x3 32b 16,394 59%
4x4 32b 34,370 125%

Network on Chip. Typically there are 5 entry points into the
node (North, South, West, East, Access Point). We did not
consider other node configurations (e.g. hexagonal networks
have previously been suggested for parallel processing [8]).
The channel FIFOs transmit and receive data and meta-
data to and from the node. How and what is transmitted
is modularized to involve only the arbiter and the channel
FIFO’s channelmetadata signals (not shown in figure). The
switch itself is an all-to-all mux that allows multiple paths of
communication simultaneously. Any of these components can
be switched out to add various NoC concepts (virtual channels,
QoS, reservation systems) without affecting the remainderof
the system.

The noc2proc bridges are stored as a Xilinx EDK peripheral,
which consists of a variety of code and metadata files. Even
though the bridges share almost identical code sources, they
are kept separate for easy integration into EDK projects.
Accompanying software drivers have been created to do simple
packet receiving and transmitting.

Performance and Functional Measurements: NoCem
supports buswidths up to 256b, but the larger the datawidth,
the more FPGA fabric required to route wires and registers.
Table I shows how for a 16b and 32b datawidth the size of
NoCem increases. For a Virtex-II Pro xc2vp30, the percentage
of fabric used can be seen. We chose to look at the xc2vp30,
as it is the FPGA used in Digilent’s XUP (Xilinx University
Program) board [9] and Nallatech’s XtremeDSP board [10].
These are two popular platform FPGAs and ones we possess.
Interestingly, a 4x4 mesh with 32b lines cannot fit on this part.
Of course, larger FPGAs can support this number of LUTs and
even larger NoCs.

Currently NoCem uses no onchip BRAMs for buffering
purposes on channel FIFOs, which could be seen as a way
to alleviate LUT usage. This design decision was made for
several reasons. Primarily, we wanted to allow for BRAM to be
used for processors’ onchip caches allowing for that valuable
resource to be used for various memory research. Secondly,
using BRAM for a channel FIFO is probably overkill, as each
BRAM holds 2KB, there really is no need for that much in-
network buffering on a per channel basis. The Xilinx provided
LUT-based FIFOs can be configured to a variety of lengths and
widths. This flexible FIFO structure allows for more complete
onchip interconnect experimentation. For example, this flexi-
bility in FIFO length could be used to confirm simulated NoC
buffer sizes and its effect [11]. Delay is minimized using First-

Fig. 3. Example Memory Exploration Platform Utilizing NoCem

Word-Fallthrough FIFOs, which minimize the delay in valid
data appearing on outputs of the channel FIFOs.

With all the configurations, the highest sustainable clock-
speed is consistently 140-150 MHz. This number would of
course change depending on what is attached to NoCem. The
clock used by NoCem is typically driven from the PLB or
OPB generated buses, which is part of the noc2proc bridge
interface.

Some latency is added in the bridging between the NoC and
the PLB or OPB buses. While the bridging operations add a
few cycles of delay in handshaking, it is unavoidable. Bus
arbitration with other peripherals competing for the bus may
also add nondeterministic delays. For this reason, extra bus-
intensive peripherals should be avoided on buses communicat-
ing with NoCem if performance measurements are being taken
involving the noc2proc bridge. Memory operations for data
and instructions are a notable example of this observation,but
cannot be avoided in some configurations. Various caching and
alternative bus schemes can be used to alleviate these shared
medium costs. Specifically, the PowerPC and Microblaze
processors allow caches tied directly to the processor (i.e. only
using bus for cache misses and not cache hits), and other buses
such as the OCM can be used for processor memory.

III. EXAMPLE MEMORY ARCHITECTUREEXPLORATION

The Microblaze Processors can be configured to use onchip
BRAM (Block RAM) as cache. One aspect of multicore
processor research is to examine the variety of cache con-
figurations that can exist onchip and how best they are laid
out. This is an important area to examine as with the advent
of NoCs, there are even more parameters to test in architecture
exploration. For example, multicore research in [12] looksat
how best to distribute cachelines in terms of possible process
migrations, while other work looks at cache location and size
tradeoffs over traditional interconnect architectures [13].



Our created platform is shown in figure 3 to examine cache
configurations over NoC architectures. We took our existing
NoCem tool, extended the bridge to handle memory requests,
attached BRAM to the local node, and inserted the new code
into a Xilinx EDK project. The steps to create this architecture
are listed here to show how NoCem is used as a foundation
to multicore processor research. The most time consuming
aspects of the design are integrating NoCem into the EDK
project flow, not configuring NoCem itself.

1) Set NoCem generics to provide a 2x2 mesh network
topology with 4B words, with channel FIFOs of depth
16.

2) Create cache service layer that will sit between NoC and
processor to handle local cache hits and service network
and processor cache misses.

3) Create an EDK project to generate 4 Microblaze pro-
cessors each on a separate OPB bus with a variable
amount of L1 cache. Each OPB bus is then attached to
a noc2procopb bridge. The EDK metadata files bridge
for this exploration had to be modified slightly to be
identified as a memory peripheral.

4) A toplevel file is needed to include the EDK project, the
NoCem VHDL code, and our created L2 cache. This
can be done using the Xilinx EDK or ISE tool flows.
From either tool flow, a bitstream can be created and
downloaded onto the FPGA.

In order to run a variety of tests, the NoC itself can quickly
be modified by changing toplevel generics, as the interface
into the NoC is held constant regardless of the underlying
Network. The actual cache configuration of the entire chip
takes reworking depending on what is being modified (shared
vs. private, cache sizes symmetric vs. non-symmetric), butthis
is of course independent of the NoCem tool. The research goal
of this example is to examine best ratios of memory in L1, L2
(shared or private) caches. The results of this explorationwill
be reported in future work, but here we present this example
to show the usefulness of the NoCem tool.

IV. CONCLUSIONS

We have presented a tool that allows multicore processor
designers the ability to treat NoCs as a first class citizen
in architecture exploration. By providing common interfaces,
modular components, and ease of parameterization, NoCem is
a valuable tool in utilizing FPGAs to do multicore processor
research. NoCem is easily extensible and future work will add
further NoCem configurations, increasing its usefulness tothe
research community.

REFERENCES

[1] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N.Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R. Moore,
“Trips: A polymorphous architecture for exploiting ilp, tlp, and dlp,”
ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 62–93, 2004.

[2] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: a computational fabric for software circuits
and general-purpose programs,” inMicro, IEEE, vol. 22. IEEE
Computer Society Press, 2002, pp. 25–35.

[3] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for
gigascale systems-on-chip,” inCircuits and Systems Magazine, vol. 4,
no. 2. IEEE, 2004, pp. 18–31.

[4] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” inProceedings of the Design Automation Conference,
Las Vegas, NV, June 2001, pp. 684–689.

[5] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist, “Network on chip: An architecture for billiontransistor
era,” in Proceeding of the IEEE NorChip Conference, November 2000.
[Online]. Available: citeseer.ist.psu.edu/hemani00network.html

[6] L. Natvig, “High-level architectural simulation of thetorus routing chip,”
in Proceedings of 6’th Int’l Verilog HDL conference (IVC’97), 1997, pp.
48–55.

[7] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection networks enable fine-grain dynamic multi-tasking on
fpgas,” inFPL ’02: Proceedings of the Reconfigurable Computing Is Go-
ing Mainstream, 12th International Conference on Field-Programmable
Logic and Applications. London, UK: Springer-Verlag, 2002, pp. 795–
805.

[8] B. Parhami and D.-M. Kwai, “A unified formulation of honeycomb and
diamond networks,”IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 1,
pp. 74–80, 2001.

[9] “Virtex-ii pro development system,” http://www.digilentinc.com/info/
XUPV2P.cfm.

[10] “Xtremedsp kit-ii,” http://www.xilinx.com/ipcenter/dsp/developmentkit.
htm.

[11] “A network on chip architecture and design methodology,” in ISVLSI
’02: Proceedings of the IEEE Computer Society Annual Symposium on
VLSI. Washington, DC, USA: IEEE Computer Society, 2002, p. 117.

[12] P. Michaud, “Exploiting the cache capacity of a single-chip multi-
core processor with execution migration,” inHPCA ’04: Proceedings
of the 10th International Symposium on High Performance Computer
Architecture. Washington, DC, USA: IEEE Computer Society, 2004,
p. 186.

[13] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-
core architectures: Understanding mechanisms, overheadsand scaling,”
SIGARCH Comput. Archit. News, vol. 33, no. 2, pp. 408–419, 2005.


