
NoCem User Guide and Release Documentation

Graham Schelle and Dirk Grunwald

April 5, 2007

1 Introduction

NoCem is an integrated emulation environment for Network on a Chip research. Network on Chips are used
for processing elements on a single die to communate over a packet switched network. This is in contrast to
the standard bus protocols used today that have the same scaling issues seen with any bus architecture.

NoCem is implemented as an open source NoC emulator that allows a variety of configurations in terms of
network configurations, buffering schemes, and arbitration logic. The complete enumeration of parameters
will be described in this document. NoCem is targeted for Xilinx FPGA platforms and written in VHDL
heavily using generics and generate statements to create full NoC designs.

This project is protected under a GNU General Public License. More information about this license can be
found at: http://www.gnu.org/copyleft/gpl.html.

2 Release Directory Structure

This release contains the source code for NoCem. The directory structure is as follows:

• ./VHDL The source code for NoCem. This includes all the vhdl files needed for generating NoCem
network on chips.

• ./doc This document and an accompanying publication from WARFP2006 where NoCem was first
presented are in this folder. The GNU GPL is also included in this folder.

• ./sim This folder contains a testbench wrapper around NoCem that can be used to test the system.
The testbench will work as is if you wish to initially test the nocem source code.

• ./bridge The processor bridge is included in this folder. This VHDL module can be used to connect the
NoC up to a Xilinx OPB or PLB bus which in turn would be used to connect with either the Microblaze
or PowerPC processors available on Xilinx FPGAs. We do not include the actual IPIF module, due
to licensing constraints, but it is fairly intuitive from the interface to generate that component using
Xilinx EDK tools.

3 Configuration Options

NoCem is configurable on a variety of parameters that are modified in a single package file nocem pkg.vhd.
These configuration options are shown in table 1 (no processor attached to NoC) and table 2 (with processors

1



Table 1: Configuration Parameters and Possible Values (with no microprocessor attached).
Parameter Valid Values
Microprocessor Datasize (bytes) N/A
NoC dataword size 1-256 bits
Packet Control word size 1-256 bits
Packet Length 2, 4, 8, 16 datawords
Virtual Channels Y/N
Number VCs 2, 4
Channel FIFO length 2, 4, 8, 16
Topology Mesh, torus, double torus
QoS N
Arbitration RoundRobin (not timesliced)
Packet Length 2, 4, 8, 16
Grid Configuration Rectangle or Square
Peripheral Bus N/A
Processor Type N/A

Table 2: Configuration Parameters and Possible Values (with microprocessor attached).
Parameter Valid Values
Microprocessor Datasize (Bytes) 4
NoC dataword size 1, 2, 4 bytes
Packet Control word size 1-256 bits
Packet Length 2, 4, 8, 16 datawords
Virtual Channels Y/N
Number VCs 2, 4
Channel FIFO length 2, 4, 8, 16
Topology Mesh, torus, double torus
QoS N
Arbitration RoundRobin (not timesliced)
Packet Length 2, 4, 8, 16
Grid Configuration Rectangle or Square
Peripheral Bus OPB, PLB
Processor Type Microblaze, PPC

attached to NoC). Setting these parameters is all that is necessary to change the underlying NoC. No hand
modifications to the actual code is necessary.

3.1 Qualifying NoCem Constraints

Many constraints are in place due to how large a NoC can grow (i.e. how much logic is required to implement
them) on a FPGA. Large number of virtual channels can cause the design to explode in size, creating designs
that do not fit on modern FPGAs. Some of these results are reported in [SG06]. Packet lengths are typically
restricted for the same reason. Each node has 5 outgoing channels and increasing FIFO sizes again causes
the design to become too large. LUT-based FIFOs are used (to save BRAM for other purposes) and use a
large deal of logic for larger FIFO lengths. Other constraints unrelated to design size are discussed below:

Processing Element Datasize. For bridging to a processor, both the powerPC and Microblaze processors
only accept 4B datawords. Therefore, that datawidth is set. With only dedicated logic connection to the

2



Table 3: NoCem Ports.
Port Direction Description
arb req in request to write to the NoC
arb cntrl in in communicates virtual channel information, unused

in non-VC designs
arb grant out granting access to the access point, analogous to

a Read Enable
arb cntrl out out communicates virtual channel information, unused

in non-VC designs
datain in data coming in from access points
datain valid in data coming in from access points is valid
datain recvd out data coming in is accepted by NoC
dataout out data going to access points
dataout valid out data going to access points is valid
dataout recvd in data going to access points is accepted by access

point
pkt cntrl in in pkt cntrl coming in from access points
pkt cntrl in valid in pkt cntrl coming in from access points is valid
pkt cntrl in recvd out pkt cntrl coming in is accepted by NoC
pkt cntrl out out pkt cntrl going to access points
pkt cntrl out valid out pkt cntrl going to access points is valid
pkt cntrl out recvd in pkt cntrl going to access points is accepted by ac-

cess point
clk in system clock
rst in system reset

NoC, there is no restriction on datawidth.

Topology. NoCem only supports the traditional topology schemes. No 3D torus or hexagonal configurations
were considered.

Varied Arbitration and QoS. These aspects of a NoC were left out, yet can be added within switching
nodes.

4 NoCem Interface

NoCem masks away a great deal of the underlying protocols and networking that occur. This section describes
the ports and signaling necessary to interface with NoCem. Table 3 shows the port listing for NoCem

The ports mask away a FIFO interface that connects to the channel FIFO. The arb cntrl in and arb cntrl out
signals are used to mux data in and out of the various virtual channels. The virtual channels also communicate
to the access point when they have become deallocated (i.e. the packet has wholly been read out of the virtual
channel.

4.1 Packet Format

Currently, the only needed metadata to send with packets are a SOP (start of packet), EOP (end of packet),
and the destination address. These fields are listed out in pkg nocem.vhd. Other metadata can be added and

3



Figure 1: NoCem Timing Diagram – an Access Point Sending a Packet to the NoC

sent with packets, but the 3 named fields above are needed within NoCem to route packets.

Specifically, other metadata can be sent modifying the pkt cntrl dataword structure in pkg nocem.vhd. The
additional metadata will not be touched by the underlying NoC architecture or control.

4.2 Writing a Packet to NoCem

The access point is required to keep track of virtual channel state, which is communicated by the arb cntrl *
signals. The channel FIFOs connected to access points can each hold an entire packet per virtual channel.
With that information, writing a packet to NoCem only requires a free virtual channel and the data to write.
Figure 1 shows a timing diagram for sending a packet to NoCem.

4.3 Reading a Packet From NoCem

The access point must pull packets from NoCem for processing. This is done using the datain recvd and
pkt cntrl recvd signals to take data from the NoC. Keeping track of the virtual channel state for packets
traveling to the access points can be done using the arb cntrl signals. Figure 2 shows a timing diagram for
reading a packet from NoCem.

5 NoCem Architecture

NoCem consists of building blocks that linked together create a fully functioning Network Switched Archi-
tecture. At the base level, a NoC consists of switching nodes and channels that connect those nodes.

The channels have a common interface into the switching nodes and can easily be connected (see ic pkt nocem.vhd).
There is some complexity in light of virtual channels, but this is only apparent on the interface to NoCem
external ports.

4



Figure 2: NoCem Timing Diagram – an Access Point Receiving a Packet from the NoC

The nodes themselves consist of a virtual channel allocator vc node vc allocator and a switch allocator
vc node ch arbiter. In a NoC with no virtual channels, a switch allocator is the only component in a node.

5.1 The Channel

A channel is truly a series of FIFOs going to and from the nodes. However, when virtual channels are
introduced, a controller is needed for each virtual channel. In a simple single FIFO physical channel imple-
mentation, the nodes themselves can manage and snoop on packet movement and make routing decisions.
With virtual channels, it is traditional to make the collection of virtual channels look as if it is one physical
channel. Therefore, each virtual channel has a controller that does virtual channel and switch allocation
tasks.

5.2 Channel Control

In order to connect these components easily, common interfaces are created that can connect the channel to
a node. This interface is called the channel cntrl path and is a sideband path to the normal datapath. The
channel cntrl path communicates a variety of information to a node such as virtual channel requests and
switch allocation requests.

With a 4-virtual channel per physical channel implementation, a 52b signaling line is needed per physi-
cal channel. While the typical read and write enable signaling is needed, virtual channel allocation and
switch allocation signals are also needed. For both cases, the addition of pipelined switching requires more
information.

5



5.3 Pipelining In a NoCem Node

Clearly, without pipelining, there exists a large amount of muxing and demuxing to communicate information
in an all-to-all fashion. The switch itself without virtual channels is truly a 5-to-5 switch. Adding 4 virtual
channels on a per channel basis, the switch grows to a 20-to-20 switch. In initial prototypes of this size NoC, a
Virtex-II architecture could only support a 6 MHz clockspeed. This speed is unacceptable to communicating
with OPB and PLB buses that can run up to 100 MHz. Therefore, using minimal pipelining within the switch
and the channels, the sustainable clockspeed reaches upto 100 MHz, depending on the number of nodes and
virtual channels in the NoC.

Pipelining does add complexities to switching decisions. A decision made 2-3 clock cycles before the decision
is actually executed may not be correct at execution time. For example, on clock cycle 1, a decision is made
to read data from a virtual channel coming in from the east physical channel. On clock cycle 2, that same
virtual channel is read from, emptying out the FIFO. on clock cycle 3, the switch attempts to read data from
an empty FIFO, causing no data to be written into an egress virtual channel. With this example in mind, it
is clear that decisions made earlier in time need to be re-examined at execution time.

We accomplish this in NoCem by canceling decisions at execution time based on the CURRENT state of
virtual channels. Another option would be to keep a queue of decisions and cancel them dynamically as
conflicts arise. However, to do so is a rather complex process and changes depending on the pipeline depth
and requires state from the virtual channels (i.e. their data counts for this and successive clock periods).
Pipelining is necessary to increase sustainable clockspeed and a decision making policy was decided that was
simple, yet supported any depth of pipelining.

6 Processor Bus Bridges

NoCem can bridge to either the PLB or OPB buses. These buses are attached to either PowerPC or
Microblaze processors found on Xilinx FPGAs. The technical details of the bridges are discussed here. The
same bridge is used for either bus specification, but uses a different IPIF connection to interface with the
difference buses. This is done by pulling out all the needed IPIF signals into the bridge and letting the bridge
itself manage the signaling. It is highly recommended that the user look through noc2proc bridge2.vhd. The
code is heavily commented.

The bridge noc2proc <plb,opb> are the IPIF blocks that simply pull out all the Bus2IP * and IP2Bus *
signals. These signals are then attached to a single noc2proc bridge (noc2proc bridge2). This bridge contains
an ingress and egress packet buffer and communicates directly to the NoC.

6.1 Processor –> NoC flow

The processor writes to a set address offset with packet length (in bytes) and destination specified (0x0).
Then the processor writes the data to another address offset (0x4). The noc2proc bridge is able to take the
data and inject it into the packet buffer. Once the packet buffer has a full packet, it is written out to the NoC.

6.2 NoC –> Processor flow

The noc2proc bridge pulls a packet from the NoC and stores it in a packet buffer. The Processor will
continually poll the noc2proc bridge for new packets at offset (0x80). When a packet is ready, the processor

6



will receive a packet length (non-zero value), that tells the processor that a packet is ready. Then the
processor can at any point read the packet out from offset (0x84).

6.3 Polling versus Interrupt Based

The current version of the bridge is polled in order to push packets TO the processor. The ability to
interrupt the processor is available and is currently commented out in noc2proc bridge2.vhd. We found the
polling version to be more efficient and allow more flexibility in EDK designs. More specifically, using the
PowerPCs exception table and initialization code typically requires offchip memory.

7 How to Begin Using NoCem

This section details how to best start using NoCem.

• Simulate NoCem. Using the testbench.vhd file found in the ./sim directory, a Modelsim simulation
can be ran showing the functionality of NoCem.

• Modify NoCem. In pkg nocem.vhd, there are multiple parameters that can be changed and mod-
ified to change the behavior of NoCem. This is a good place to start experimenting with NoCem’s
reconfigurability. The naming system should be self explanatory.

• NoC to Processor Integration. We can not ship Xilinx IP with NoCem. There is only one block
in NoCem that requires the standard Xilinx Coregen licenses that come with Xilinx ISE, but can be
avoided using IP we created (less efficient implementaiton however).

Using Coregen, the user can then create a 32b wide FIFO that must have First-Word-Fallthrough
enabled. In the design, a fifo32.vhd file is absent. I have fully tested the design with a BRAM im-
plementation of that FIFO. If this is not possible, fifo gfs.vhd is a LUTRAM-based FWFT FIFO
implementation that I created.

Using the bridges as EDK peripherals, NoCem can be connected to an EDK project. There is no best
way to do this, but we use an EDK project and export it to ISE, where the noc2proc bridge2.vhd is
connected to the processor and NoCem itself.

References

[SG06] Graham Schelle and Dirk Grunwald. Onchip interconnect exploration for multicore processors utiliz-
ing fpgas. In 2nd Workshop on Architecture Research using FPGA Platforms, 2006.

7


