| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T H.264

TELECOMMUNICATION (05/2003)
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

Advanced video coding for generic audiovisual
services

ITU-T Recommendation H.264

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100-H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES
General H.200-H.219
Transmission multiplexing and synchronization H.220-H.229
Systems aspects H.230-H.239
Communication procedures H.240-H.259
Coding of moving video H.260-H.279
Related systems aspects H.280-H.299
Systems and terminal equipment for audiovisual services H.300-H.349
Directory services architecture for audiovisual and multimedia services H.350-H.359
Quality of service architecture for audiovisual and multimedia services H.360-H.369
Supplementary services for multimedia H.450-H.499
MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500-H.509
Mobility for H-Series multimedia systems and services H.510-H.519
Mobile multimedia collaboration applications and services H.520-H.529
Security for mobile multimedia systems and services H.530-H.539
Security for mobile multimedia collaboration applications and services H.540-H.549
Mobility interworking procedures H.550-H.559
Mobile multimedia collaboration inter-working procedures H.560-H.569
BROADBAND AND TRIPLE-PLAY MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610-H.619

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation H.264

Advanced video coding for generic audiovisual services

Summary

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.

This Recommendation represents an evolution of the existing video coding standards (H.261, H.262 and H.263) and it
was developed in response to the growing need for higher compression of moving pictures for various applications such
as videoconferencing, digital storage media, television broadcasting, Internet streaming and communication. It is also
designed to enable the use of the coded video representation in a flexible manner for a wide variety of network
environments. The use of this Recommendation allows motion video to be manipulated as a form of computer data and
to be stored on various storage media, transmitted and received over existing and future networks and distributed on
existing and future broadcasting channels

Source

ITU-T Recommendation H.264 was approved by ITU-T Study Group 16 (2001-2004) under the ITU-T
Recommendation A.8 procedure on 30 May 2003.

This edition includes the modifications introduced by ITU-T Rec. H.264 (2003) Corrigendum 1 approved by ITU-T
Study Group 16 (2001-2004) under the ITU-T Recommendation A.8 procedure on 7 May 2004.

ITU-T Rec. H.264 (05/2003) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database.

© ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. H.264 (05/2003)

CONTENTS

Page
Foreword xiii
0 Introduction xiv
0.1 PFOIOGUE ...t ettt ettt a ettt n ettt e ettt neenae e Xiv
0.2 PUFPOSC......ooeei ettt et e e e et e ettt e skt e et e e s tb e e eab e e et b e e ab e et b e e tb e e kb e e tt e e etbeeetbeeatbeentreeatbeentaeeetbeenaeentes Xiv
0.3 APPIICATIONS ...ttt ettt et e et e et e et e e st e e e sb e e eab e e eabeenabeessbeensseessbeensseessbeensseensbeenaeenees Xiv
0.4 Profiles QId LEVels..............c.ccooouiiieiiieiieiieieee ettt ettt ettt ae bt bbbt te e be s enees Xiv
0.5 Overview of the deSin CRATACIETISHICSc..ccveveeeiiieeeeeeie et ettt ettt et saesteebe s e sbeesbeesseeraeenees xv
0.5.1 PrediCtiVe COMIME ..oviiiieiieiieie ettt ettt et e st e bt et e esbeesaesaeesae e seesseesseessessaessaessasssesaesseensennsennns XV
0.5.2 Coding of progressive and interlaced VIACO.........ccueeieriiriiiiiie e XV
0.5.3 Picture partitioning into macroblocks and smaller Partitions............ccecceeevereererieerieseese e eeeeseeenes XV
0.5.4 Spatial redundancy TEAUCTION.c.eeiuiicieiieiieriieie ettt et ettt et e e et e te e teesaeesaesseenseenseensesnnesnnenns XVvi
0.6 How 10 read thiS SPECIfICALIONccooiieiee ettt ettt ettt et e et e et e eneenaeenees XVvi
1 Scope 1
2 Normative references 1
3 Definitions 1
4 Abbreviations 8
5 Conventions 9
5.1 AVIERINEIIC OP@FALOTS ..ottt ettt et a ettt et e e ekt e ke et e eee e e e e et e ene e ae e ne et e st e eneenneens 9
5.2 LOGICAL OPEFALOFS ...ttt ettt etttk ekttt eae e e e et ene e ae e ettt nteeneenneen 9
5.3 RelUIONAL OPEFATOTS ...ttt ettt et ettt et e et e e tteeabe e e asaeanbaeensbeestaeansaeensaeenseeennes 10
5.4 BUE-WISE OPE@FALOFS ...c.veeeeveeeeeeeie et eete ettt e et e et e et e et e s st e e e ab e e s ab e e e sbeestb e e sbeestseessseentaeansaeensseansaeensaeenseeentes 10
5.5 ASSIGNIMENE OPEFALOFS ...ttt ettt ettt et oot e et e et e et e m et ee e et et et et e et en e ene e et e nneene s 10
5.6 RANZGE MOIALIOMN ...ttt ettt e e e et e st ettt e et e ettt e steeateeenseeenteeensteentaeenseeenseeenseeennes 10
5.7 MaRemMQICAL fUNCIIOMSc..ccveeieeieeeieeie et et ettt ettt ae ettt e et e essesbeesbeesbeetaessaesbeessesssesaaesaeeeseenseenns 10
5.8 Variables, syntax elements, And [ADIESc.ccocoevvuiiiieeiieieeieee ettt ettt 11
5.9 Text description Of I0GICAL OPEFALIONScccouevuiriiiiiiiiiie ettt 12
S.10 PFOCESSES ..ot ettt ettt ettt ekttt ettt ettt e b e e bbbt ettt e a e et e et e et e neeennes 13
6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 13
0.1 BIISIFEAM JOFMALS ..ottt ettt et ettt e e e e s e e seesaeebeenseesseesseetseesaesseebeesseenseennes 13
6.2 Source, decoded, and OUIPUL PICIUTE JOFIALSc..ccoovveveiciiiiieeiiesie et ee ettt beebeeseenseenees 13
6.3 Spatial subdivision Of PiCHUTes ANA SIICEScccocvueiieiiiiiieiieeieee ettt ettt be e 15
6.4 Inverse scanning processes and derivation processes for NeighDOUFSc.ccocooevioieiinininiiniiniicceee, 16
6.4.1 Inverse MacrobloCk SCANNING PIOCESS......cc.vecvieieriietieieeiesiesteeteeteseeseeeteestesseesseeseesseessessaenseeseesesnsesnns 16
6.4.2 Inverse macroblock partition and sub-macroblock partition Scanning pProcess...........cereeevereereeereeseeneeenns 17
6.4.2.1 Inverse macroblock partition SCANNING PIOCESS ...ccverueeruierurereeeieriienteerteeeeeeeesteeeeeneeeseesseeseensesneenseensens 17
6.4.2.2 Inverse sub-macroblock partition SCANNING PIOCESScerueerurrurreerierireeeeeeenteeneeeeeeseesseeseensesseesseensens 18
6.4.3 Inverse 4x4 luma bloCK SCANNING PrOCESSueeuiertietieieeiieitiente et eteeeee st et ete et e stee et e e eneesseenseeseeeeeneeenes 18
6.4.4 Derivation process of the availability for macroblock addresses............ooerererenenineiieeeeeeeeee 18
6.4.5 Derivation process for neighbouring macroblock addresses and their availability...........ccccceoeieierenenne. 19
6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames 19
6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions.............ccceeeeeevereecieeeeneenenne 20
6.4.7.1 Derivation process for neighbouring macroblOCKSccceeoiiviiiiiiiienieiieieeeee e 21

6.4.7.2 Derivation process for neighbouring 8x8 luma block..........cccveviriiirieriiieieeeee e 21
6.4.7.3 Derivation process for neighbouring 4x4 Tuma blocKScceevieeiirieniieiieiieeeee e 22
6.4.7.4 Derivation process for neighbouring 4x4 chroma blocksccoecvrierieriieciinienieeee e 22
6.4.7.5 Derivation process for neighbouring Partitions............ceeceeieriereerieeieniere et eeee e ee e seeenaeas 22
6.4.8 Derivation process for neighbouring loCationsc.cevierieriiiiniee e 24
6.4.8.1 Specification for neighbouring luma locations in fields and non-MBAFF framescccccervrceenueennen. 24
6.4.8.2 Specification for neighbouring luma locations in MBAFF framesccccooeevieiiieneiineiec e 24
7 Syntax and semantics 27
7.1 Method of describing Syntax in tabular fOFM.................cccccocoviiiiiiiiiiiiiiiieiieeeee et 27
7.2 Specification of syntax functions, categories, And deSCrIPIOFScccoomvuiiiiiiiiiiiieee et 28
7.3 SYREAX G0 EADUIAE fOFT ... ettt et ettt ettt et n e ne e et ee e ae e 30
7.3.1 INAL UNIE SYNEAX . .viitientieieeiieetieeteesteeteete s te st e e et eteeeeeseesaee st emteeseeeseeeseenseemseemsesseeseeeaseenseanseenseenseeneesneenneas 30
7.3.2 Raw byte sequence payloads and RBSP trailing bits SYNtaxcccceererereneneeenceeeieeeeeee e 31
7.3.2.1 Sequence parameter Set RBSP SYNTAX.......cccuiiiiiiiiiiriiiieiie ettt 31
7.3.2.2 Picture parameter Set RBSP SYNTAX.......cccuiiiiiiiiiiiiiiieestes ettt 32

ITU-T Rec. H.264 (05/2003) iii

7.3.2.3 Supplemental enhancement information RBSP SyNtaX...........cccccveviiiirienieiieiesieeeieeeeeee e 33

7.3.2.3.1 Supplemental enhancement information MesSAZE SYNAXccveeverrerererurereereenieeeeeeenseesseesesnessees 33
7.3.2.4 Access unit delimiter RBSP SYNTAXc.cccoiriiiiiiieieeieiieieeieseese ettt sttt e e nneessaesnees 33
7.3.2.5 End of sequence RBSP SYNTAX.......cociiiiiiiiieie ettt sttt ettt s ettt e eneeeneeeneenneas 33
7.3.2.6 End of stream RBSP SYNEAX.......ccoiiiiiiiiiiii ettt sttt et ee ettt ene e neeeneas 34
7.3.2.7 Filler data RBSP SYNAXcciiiiiiiiiiieie ettt ettt ettt ettt e e st e s et e et eeeemeesseenteeneeenteeneesneenneas 34
7.3.2.8 Slice layer without partitioning RBSP SYNtaX.........ccccoiriiiiiiiiiiieieeee et 34
7.3.2.9 Slice data partition RBSP SYNtAXc..coouiiiiiiiiiiiiieieeee ettt st 34

7.3.2.9.1 Slice data partition A RBSP SYNEAX.......ccueiieriiiieiiriieere ettt st 34

7.3.2.9.2 Slice data partition B RBSP SYNTAX.......cccccuiviiiriiriiiiiiieieeie sttt ste e see e seesee e esseesseesnees 34

7.3.2.9.3 Slice data partition C RBSP SYNTAX.......cccccuiriiiiiieiiiieiieieete sttt eie e saeevesee e saeesseeseenseesseessees 35
7.3.2.10 RBSP slice trailing DitS SYNTAXcccvecuerierrierieereiiesiesteetesteseesteesseeseesseesseesseessesssesseessesssesssesssesseessees 35
7.3.2.11 RBSP trailing DitS SYNTAXc.eecuieieriiesieeiieierteteeteeeeseesteetesaeseeesseesessaesseesseesseensesseenseanseansesssesseesses 35

733 STCE REAACT SYNTAX ..e.evieieiieiieii et ettestee et ettt e et etesaesseessee st enseeseesseesseenseenseessesseansaesseenseensesnsennsennns 36
7.3.3.1 Reference picture list reordering SYNIAXcccveevieruerierierieeieseeseeseeseestesseesseesessresseesseessesssesseesseesses 37
7.3.3.2 Prediction Weight table SYNTAKcc.eeiuiiieiieiieie ettt ettt st e et sae et e et e s s e see et e eneeeneesneeeneas 38
7.3.3.3 Decoded reference picture Marking SYNEAX..........eeueerueerueesieeiestierieenieeteeeeeseeesteeeeeneesseeseeeneeeneesneesseennens 39

734 SHCE AALA SYINEAX ..euteruieiiieitiett ettt ettt et et e et e e bt e te e et s aeesaeesa e e st e et eneeesee st enseenteenseeseeeseenseenseenseeneeenes 40

7.3.5 MACTODIOCK TAYET SYIMEAX.....ueeueeieteite ettt ettt sttt ettt et e et est et et et e et e ebeebeeaeeseeneens e eeteabesseeseeneansenseneas 41
7.3.5.1 Macroblock Prediction SYNEAX.......c.eeieierierierterteete ettt et eeee et e e st ste bttt ese et esteneesaestesaeebesneeseeseeneenseneens 42
7.3.5.2 Sub-macroblock Prediction SYNEAXccecierieriererieeete ettt ieieie ettt ettt e e see st e e etesae st enee e eneeneens 43
7.3.5.3 ReSIAUAL data SYNTAX ...cviiiiiiieiieiieie ettt ettt et e et e e aestaeste e seesbeesaessaesseesseenseesseesseessenssensaenseas 44

7.3.5.3.1 Residual block CAVLC SYNAXc..cccverieriieiieiiesiietieteetesttesteesessesseesseessesssesseesseessesssesseesseessesssees 45

7.3.5.3.2 Residual block CABAC SYNTAX........ccuerieriieiieieriieniieieetesitesseesseseesseesseesseessesseesseesseensesssesseensesses 46

7.4 SOIIANLICS ..o eeie e et e et e ettt e e ettt e e e ats e e e e atb e e e eatb e e e e abaeeeestseeeenebeeeenaaaeeeeatbeeeenreeeeennees 47

7.4.1 INAL UNIE SEIMANTICS ..euveviieeiieiienientente sttt ettt ettt sttt eet et et et e st e s besbeebeebtes s et et e besbeebeebeeneeneensenee 47
7.4.1.1 Encapsulation of an SODB within an RBSP (informative)cccecceeoiirienieiieieeieeeeee e 49
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences.................... 50

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activationccccocceeveveereenenes. 50

7.4.1.2.2 Order of access units and association to coded video SEqUENCESc.eeverreerieierierieereieesreeve e 51

7.4.1.2.3 Order of NAL units and coded pictures and association t0 aCCess UNILSc..ccverveerveererreerreenennens 51

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picturecceceeeereeieiienieienieneseeenne. 52

7.4.1.2.5 Order of VCL NAL units and association to coded piCtures...........cceecververreeriercieseenieereseeseeesseennns 53

7.4.2 Raw byte sequence payloads and RBSP trailing bits SEmManticscceeevereereeriirciereenieeeeeiese e eeeeseeenns 53
7.4.2.1 Sequence parameter set RBSP SEMANTICSc.ccveiiiiiiiiiiiieiieieeie ettt er e eeaessaeseenees 53
7.4.2.2 Picture parameter Set RBSP SCMANTICSeeuvieiiiiieiieieeieieeie ettt sttt et enseenaensaennees 56
7.4.2.3 Supplemental enhancement information RBSP SEmManticsccecveeuerienieniinienieniee e 58

7.4.2.3.1 Supplemental enhancement information message SEMANLICS..........ccervervrerrereereesieneesreeseeesesnennees 58
7.4.2.4 Access unit delimiter RBSP SEMANTICSc.coouiiiuieiieieiieieee ettt 58
7.4.2.5 End of sequence RBSP SEMANTICS........cueiiiruiiiiieiieieetiestt ettt sttt seee sttt et e e e eneesseenneas 58
7.4.2.6 End of stream RBSP SEMANTICS.cccueiiiiiiiieit ettt ettt se et teeneeeseenneas 58
7.4.2.7 Filler data RBSP SEMANTICS.ceutitiiuiiuieieieteie sttt ettt ettt et sttt sttt et es b e e e seebesaeebesbeeseeneeneensennens 59
7.4.2.8 Slice layer without partitioning RBSP SEMaNtiCsccceeieirieieiierieieie et 59
7.4.2.9 Slice data partition RBSP SEMANtICS.......cc.cociiiiiriiiieiieieeie ettt eesae s e sreesseessaesseensees 59

7.4.2.9.1 Slice data partition A RBSP SEMANTICSccceerieriirieiieiiieiieie et eee st seesaeese e e sseesseesne s 59

7.4.2.9.2 Slice data partition B RBSP SEMANTICSc.eccviiiiriieiiiieiieiiieie ettt sreesseeeesteesseessesssessaessees 59

7.4.2.9.3 Slice data partition C RBSP SEMANTICSccveecveriirriieieiieiiesieeie e sieenteeeeeeteeeeeeeeesseeseesesesenseensees 59
7.4.2.10 RBSP slice trailing bits SCMANLICS.ccveerveeruerriertieiertestesteesaesteseesseeseeseesseesseensesssesseasseessesssesseesses 60
7.4.2.11 RBSP trailing bitS SCMANTICSvertieriieiieieeietieieeiestesteeteeaeseesseesseesaesseesseeseensesssenseanseensesssesseesses 60

743 SliCE NEAART SEIMANTICSeeiieieiiieiiieeie ettt ettt ettt ettt ae e st e et et e e et e esee st e bt eneeeseeeseesseenseeseeneeeneeenes 60
7.4.3.1 Reference picture list reordering SEMANLICSc.eeueerierierieieeie et et eee et seeeeeeaeesee et e eneeeneesseenneas 65
7.4.3.2 Prediction weight table SEMANTICS.c.eeiiruieiieiieieet ettt ettt et et e st et e e eneeeseenneas 66
7.4.3.3 Decoded reference picture marking SEMANTICScecueruerieriieriierieiie e ntce ettt etee st et et eereseeesbeesaeas 67

744 SHCE dAtA SEIMANTICSeeeeeiietieie ettt ettt ettt st e st e ettt satesbe e bt enbeeabeebeesbeesbe e beenbeeneeeneesaee 69

7.4.5 MaCTODIOCK 1AYET SEIMANTICScviveeeitietieiieiieieie ettt ettt et et et et e teseeebesaeeseeseensenseaseatesbesbeeneeneenseneeneas 70
7.4.5.1 Macroblock prediCtion SEMANTICScvecvierveeieiiereerieeieeteseesteesteeseeeesseesseeseesseessesssesseesseessesssesseessees 76
7.4.5.2 Sub-macroblock prediction SEMANTICSc..ccverieriierierieiiereeseeteereeeesreesseesseesseessesseesseesseessesssesseesses 76
7.4.5.3 Residual data SEMANTICSce.uertiriiriiitietieieeiiet ettt ettt et ettt besb e bt et e s et e te st bt ebe et ennenaens 79

7.4.53.1 Residual block CAVLC SEMANTICS. ...cc.erueruiruiriiriiiieieiententente sttt ettt st et sbe e sbe e eeeeaeenees 79

7.4.53.2 Residual block CABAC SEMANLICSccueeueruerueriiiieieienieniesteeiesie ettt ettt st enees 80

8 Decoding process 80
8.1 NAL URIt ACCOTING PIOCESS ..ottt ettt et ettt et b et e s e e st e ssa e beenseessesaeeeneeeseenseenes 81
8.2 SliCE ACCOAING PFOCESS..........c..ocoeeeieiiieieeie ettt ettt ettt b ettt e et e sb e e b e e s e ssseeteeeneeeseese e 82

v ITU-T Rec. H.264 (05/2003)

8.2.1 Decoding process for picture OTder COUNL...........cccuerierieerierie et eeeeee sttt eeee e e e esessaesseeseensesnseenns 82

8.2.1.1 Decoding process for picture order COUNt tyPe 0ceecverierieiiirierieriieie ettt eae e sseennees 83
8.2.1.2 Decoding process for picture order COUNt type 1cceveierierieiiieieriereee et 84
8.2.1.3 Decoding process for picture order COUNt tyPEe 2ocueeeeruieriieiiieierieie ettt enee e eneas 85
8.2.2 Decoding process for macroblock to SIiCe Sroup MaApPcevueevirierierieieeierieee e e 86
8.2.2.1 Specification for interleaved Slice Sroup MAP LYPE....ccueerurrierrieriieiieieeierteee ettt eneas 87
8.2.2.2 Specification for dispersed slice Sroup MaP tYPE ...cc.evveeueruiruiriiieiieieee ettt see e e 87
8.2.2.3 Specification for foreground with left-over slice group map typeccoeeeeerieriererenieneeeeeeeeeeeeeene 87
8.2.2.4 Specification for box-out SliCe Sroup MAP LYPES.ccueruerueririieiieiieiieieieie ettt ettt see e seeeens 88
8.2.2.5 Specification for raster scan SIiCe Zroup MAP LYPES ...cveereereerreerrierieeierreesreereesesreesseeseesesssesseessesssessees 88
8.2.2.6 Specification for wipe SIiCe Zroup MAP tYPES ...vevveerrieruirierierriereeteereesteeseereeseesseesseessesssesseesseessesssessees 88
8.2.2.7 Specification for explicit SIICE ZroUP MAP tYPEC......eeierrierrieiierieriieiiereetesreereereereesreeseessessaesseesesseessens 89
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 89
823 Decoding process for slice data partitioning............cccveeverierieriieiieeieseeeeeteseeseeeee e seesseeaesaesseensesnseenns 89
8.2.4 Decoding process for reference picture lists CONSIIUCTIONc.eervievirieriieiieie et e et 90
8.2.4.1 Decoding process for PICtUre MUMDELS.c.coieitieiiieiieie ettt ettt et e et eneeeneeeneesseenneas 90
8.2.4.2 Initialisation process for reference Picture LSScccoeriirierierieiieiere e 91
8.2.4.2.1 [Initialisation process for the reference picture list for P and SP slices in frames...........ccccceceeeenen. 91
8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields........c...ccceveveeurennen. 92
8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames...........cccccceeveevieeiieeeneenenen. 92
8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields..........cccoceevvieveivienicieieenennn. 93
8.2.4.2.5 Initialisation process for reference picture lists in fieldS..........ccoovveviircieiiieniieiiiiesee e, 94
8.2.4.3 Reordering process for reference PICture LiSS........ccueiierieriiiiieiierieere et eeeeeesteereere st sreesbeesseesaesseesseas 94
8.2.43.1 Reordering process of reference picture lists for short-term picturescccceceveeerercnerceeeeenne. 95
8.2.4.3.2 Reordering process of reference picture lists for long-term picturesc.oceevveceervenieesienveneennens 96
8.2.5 Decoded reference picture Marking PrOCESScc.veevieeverierieriieieeiesieseeerteeteeeeseeesteeneeensessaesseenseesesnsesnns 96
8.2.5.1 Sequence of operations for decoded reference picture marking proCessceeceerueeeereereeesueeseeseennns 97
8.2.5.2 Decoding process for gaps in frame NUML..........coociiriiiieiieiieie et eees 97
8.2.5.3 Sliding window decoded reference picture marking process..........cooverierieiinienieiieeeeseeseeee e 98
8.2.5.4 Adaptive memory control decoded reference picture marking processccoceveeereeeeieneesiesieneseneeas 98
8.2.5.4.1 Marking process of a short-term picture as “unused for reference”............ccceeereienenenenenencene 98
8.2.5.42 Marking process of a long-term picture as “unused for reference”............ccoceeerieiiiiniieienceieee 98
8.2.5.43 Assignment process of a LongTermFrameldx to a short-term reference picture...........cccceceeveeueenee. 99
8.2.5.4.4 Decoding process for MaxLongTermFrameldX..........cccccvvvviriinieniiiniieieeieseeieee e 99
8.2.5.4.5 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indiCes”..........cceecvirierieriieiiniesiee e 99
8.2.5.4.6 Process for assigning a long-term frame index to the current picture............ccocevevenerenerceeenenne. 99
8.3 INIFA PPEdiCiON PFOCESS.......c..c..couiiiiiiiiieiiieeeee ettt ettt 100
8.3.1 Intra_4x4 prediction process for luma SAMPIEScceeiieiiriiiiieiiese e 100
8.3.1.1 Derivation process for the Intradx4PredMode..........cccoeiiiriiiieiiiiieeeeee e 101
8.3.1.2 Intra 4x4 sample PrediCtioncocieiieiirieiiee ettt ettt ettt ettt et e s s ae e e 102
8.3.1.2.1 Specification of Intra_4x4 Vertical prediction MOdeccecereeieiriieiiiiiese e 103
8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction Mode...........cccovereririniriiieee e 103
8.3.1.2.3 Specification of Intra_4x4 DC prediction MOAEccevverieriieriiiieriee e 103
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction mode..........cccccvevvvevveriieniecieeeennnne 103
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode............ccecvevvirveeneenrreiennnnnn. 104
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction modeccceveverierierincenieeeeeeee 104
8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction Mmodeccceeveeierienienercieneeeeeeeee 104
8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction modeccceeeerievieneniierieneee e 105
8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction modecccceveerieniiiinieniene e 105
8.3.2 Intra_16x16 prediction process for Tuma SAMPLEScceevirieiiinieie e 105
8.3.2.1 Specification of Intra_16x16_Vertical prediction MOde...........ccceeuerieiiererieiiereee e 106
8.3.2.2 Specification of Intra 16x16 Horizontal prediction mode..........c.cccooeeviiiiiiiniiiniiiiiiencec e 106
8.3.2.3 Specification of Intra_16x16_DC prediction MOAEccceeueeierieierieieie et 106
8.3.2.4 Specification of Intra_16x16_Plane prediction MOde...........ccoceeiiirieieiieieiee e 107
833 Intra prediction process for Chroma SAMPIEScceevvieriieeiiriieiieneesie ettt re e e sreebeeseseeesees 107
8.3.3.1 Specification of Intra_Chroma_DC prediction MOdecccveieriieriieiiiiieiiereeie et 108
8.3.3.2 Specification of Intra_Chroma_Horizontal prediction mode............ccceovevvieiircienieniiiieeeeie e 109
8.3.3.3 Specification of Intra_Chroma_Vertical prediction Mmode...........cccveveeriiriierienieeecie e 110
8.3.3.4 Specification of Intra_Chroma_Plane prediction Mmode.........c..ccuevieriieiieiienieniee et 110
8.34 Sample construction process for I PCM macroblocksccoeierieiiiriienieniieie e 110
8.4 INLEF PFOICIION PFOCESS ..o ettt ettt ettt e ekttt et et e st e e et e nae e et et eeneeeneenteens 110
8.4.1 Derivation process for motion vector components and reference indices............coecvevereereeneeseneeneene. 112

ITU-T Rec. H.264 (05/2003) v

9

vi

8.4.1.1
8.4.1.2

Derivation process for luma motion vectors for skipped macroblocks in P and SP slices.................... 113
Derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B_Direct 8x8........... 113

8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions...........c.cceeevevveverceeneenenne. 114
8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode ... 117
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction

1010 4[RO S RS RSRTSRPSRRT 118
8.4.1.3 Derivation process for luma motion vector PrediCtionc..cvevvveeveeieiierieenieeee e e 120
8.4.1.3.1 Derivation process for median luma motion vector predictionc.occeevveeveieereenieeeeseesreenenes 121
8.4.1.3.2 Derivation process for motion data of neighbouring partitions.............ceceeeereerierierierenesereseenes 122
8.4.1.4 Derivation process for Chroma mMotion VECIOTSccvieiieiirieriieiieieetiesie e evesee e esaeeaesae e esseeseeses 123
8.4.2 Decoding process for Inter prediction SAMPLES.........c.cecververeeriierieiieriese et sre e eeresree e eseesessaessees 123
8.4.2.1 Reference picture SEIECION PrOCESSeerveeverrereerreeteetertesseeseesteeseesseeseessesssesseesessesssesseesseessesseesses 124
8.4.2.2 Fractional sample interpolation PIrOCESS........eecierverieruieiieieeieteeteeteestesseeseesessaesseesseesesnnesseessesnsennes 125
8.4.2.2.1 Luma sample interpolation PrOCESS........ccverriererrrerierterteereeeteestesseesseeseassessaesseesseessesnsesseesseesseenes 126
8.4.2.2.2 Chroma sample interpolation PrOCESScceerverrierieriierieeteetesteesteeseetesaesseesseesesssesnesseesseensennns 128
8.4.2.3 Weighted sample prediction PIOCESSeeoveieereereerieeieeiiestt et ete et et ettt e e eseesseesaeeeeeneesneeseeeneeses 129
8.4.2.3.1 Default weighted sample prediction PrOCESS.ceevereierieriieieetierteeie et ettt e e ee s 129
8.4.2.3.2 Weighted sample prediCtion PrOCESS. ... cooueiieriereeieeieeiieste et eeee ettt et eeeeeee e seeeaeeeesneesaeeneeenes 130
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter

PFOCESS et eie e et e e et e et e et e et e e ke e e steeatb e aaseeea kb e easeeea ke e e n st e ea ke e e st e eat e e e a bt e enteeentaeentte e taeentte e taeentteenaeennee s 132
8.5.1 Specification of transform decoding process for residual blocks.........ccooereiiiiiiiniiiieeeee 132

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
TTIOME ..ttt ettt h bt sttt b e bbbt ekt et e bt eh e eh e e bt eh e e a e et e b eh e e bt e bt eh b et et e besheebeeneententens 133
8.5.3 Specification of transform decoding process for chroma samples.............ccoeeeveverieriicenieni e 134
8.54 Inverse scanning process for transform coeffiCientscceevvreieriierieriee e 135
8.5.5 Derivation process for the chroma quantisation parameters and scaling function..............ccoecveevervenenen. 135

8.5.6 Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock
117 81U 136
8.5.7 Scaling and transformation process for chroma DC transform coefficientsccccoecvreenieiieienieniens 137
8.5.8 Scaling and transformation process for residual 4X4 DIOCKS.........ceoveiieriiririiiiieeeeee e 137
8.5.9 Picture construction process prior to deblocking filter ProCessccceeerereririiinieieieieee e 139
8.6 Decoding process for P macroblocks in SP slices or SI macroblocks................cc.ccccvovcioiioniciiiiieice 140
8.6.1 SP decoding process for NON-SWitChiNG PICTUIESccveeieriieriiecieiiesiiereecteseesreeaeeseseeesseeseessesseesseessenns 140
8.6.1.1 Luma transform coefficient decOdINg PrOCESSccviiviriiriieriieieeiertete ettt ae e e 140
8.6.1.2 Chroma transform coefficient deCOdING PrOCESS........eevvieriiiriirierieriieieeeeeteeste e ere e sre e e e e saeseeenes 141
8.6.2 SP and SI slice decoding process for SWitChing PICtUIESc.eecverierierieriieiierieee et 143
8.6.2.1 Luma transform coefficient decOdINg PrOCESScvvverieriieriieierieritete ettt es 143
8.6.2.2 Chroma transform coefficient deCOdING PrOCESS.........eerveerirrrierierieriieie e eeteste ettt e e eae e e 143
8.7 DebIOCKING fIlteF DIOCESScceeiueeeieee ettt ettt et ettt et ae e et et et eeeeeaneeneens 144
8.7.1 Filtering process for BloCK @dZeSoouiiiiiuieieiieeeet ettt et ae s 147
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edgeccceccevieiieiinennnen. 148
8.7.2.1 Derivation process for the luma content dependent boundary filtering strengthccccoocereeenene 149
8.7.2.2 Derivation process for the thresholds for each block edgecccoeireririiiiiene e 150
8.7.2.3 Filtering process for edges with bS less than 4.............cccoecvieierieiieciieieeeeeer e 151
8.7.2.4 Filtering process for edges for bS equal t0 4cccveeieriieiiieiecieeeeeee e 152
Parsing process 153
9.1 Parsing process for EXp-GOIOMD COAESccouiouiiiiiiiiiiiiie ettt 153
9.1.1 Mapping process for signed EXp-Golomb COAEScceririiiiiiiiiiiiiieeiieeee e 155
9.1.2 Mapping process for coded block Patterncceiuiiiiiiieieeee e 155
9.2 CAVLC parsing process for transform cOEffiCient [eVels.................cccccovviviiiieiiiiiiieiiieieeee e 157
9.2.1 Parsing process for total number of transform coefficient levels and trailing onesc.ccocceevevenennens 157
9.2.2 Parsing process for level informationccieciiiiiiieriieiieieseee et ne s 160
923 Parsing process for run infOrmation...........c.ecveriieiiieierieriee ettt eaesseeneas 162
924 Combining level and run information..............ccieiieierieiiece ettt essaesseeneas 164
9.3 CABAC parsing process fOr SIICE Atcocoociiciiiiiiiiiiiiiiicee ettt 165
9.3.1 INIt1ALlISATION PIOCESS ...-vevveeietieteeeeeiteetee st et et eteeste e bt e teeseeeseeabe e seembeemeesaeesseenseeneeeneesseenseenseenseeneenseansean 166
9.3.1.1 Initialisation process for context Variables.coeeeiieiirierieiiee e 166
9.3.1.2 Initialisation process for the arithmetic decoding engine...............occeeeerieriiiirierieieee e 176
9.3.2 BiNATTZAION PTOCESS. ..eeuvvieerieireeitteeitteeiteesteesteestteesreestseessteeseeaseeaseessseeasseessseessseessseesssessseesssessnseensseens 176
9.3.2.1 Unary (U) DINAriZAtiON PIOCESSeeveeueeueeuietetenuerteatesteeseesteneesesseasesseesesseestaseensasesseasessesseeseeneansensensenes 178
9.3.2.2 Truncated unary (TU) DINAriZation PrOCESSccueueruerueruerierierieeteeteeteeeeeetereeseeseeseeetesaesseeseeneeneeneeneenes 178
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGKk) binarization processcceeververveecvervennnns 178
9.3.2.4 Fixed-length (FL) DiNarization PrOCESS........ccvevvieverierieerieetesaesteesseesesseeseesseessesssesseesseessesssesssessesssenss 179

ITU-T Rec. H.264 (05/2003)

9.3.2.5 Binarization process for macroblock type and sub-macroblock typecccevcverieiinienieiieieeee 179

9.3.2.6 Binarization process for coded BIOCk Pattern...........coecvvecueeierienieieee e 182
9.3.2.7 Binarization process for mb_qp deltaccoccieiiiiiiiieiieeeee e 182
933 DecOdiNg PIOCESS TlOW.....cciiiiieiieiieitt ettt ettt ettt et et ee st e sa e e et e et eneeenee et eeneeeneeeseesseennean 182
9.3.3.1 Derivation process fOr CLXIAX........oiiiiririiiii et sttt et s ae e ene 183
9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements.............ccceceeeereeneneennenns 185
9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag...........cccceoeniiininnne. 185
9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field decoding_flag.................. 185
9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type.........cccceeeerveeiieiienenienenennne. 186
9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded block pattern 186
9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp delta..........ccoevvervecrinrennns 187
9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx 11 187
9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11c..c...... 188
9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra chroma pred mode................ 189
9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded block flag........cc.cecuvrunnen. 189
9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin valuescocceevieiiniinieiieiinieeas 191
9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag,
last_significant_coeff flag, and coeff abs level minusl........c.ccoooiiiiiiiiiiiieeee e 191
9.3.3.2 ArithmeticC deCOING PIOCESS. ..c..eetiiiiriieriiertiertt ettt ettt ettt ettt st e b e et et s itesbeesbe e bt eatesaeeseeebeeneeens 192
9.3.3.2.1 Arithmetic decoding process for a binary deCiSIONccceeeeeieieiieniesieie e 193
0.3.3.2.1.1 State tranSTtioN PrOCESS. ...ueerrierieerrreerreerteeertreenseesteeesseesseesseessseesseessseesssesssesassssessesssseesssees 193
9.3.3.2.2 Renormalization process in the arithmetic decoding engine..............cccevveevrieerieveenieneerreeieseeeens 196
9.3.3.2.3 Bypass decoding process for binary deCiSIONSeceevvereierienieniieieriesteereeeeereesseeseeaesseeseeens 196
9.3.3.2.4 Decoding process for binary decisions before terminationc.cceeeverevereereeecieriereeseeeieseeeenns 197
934 Arithmetic encoding process (INFOIrMAIVE)c.eevviioierierieriiete ettt ettt ae e saesseeseenesnnesns 198
9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)cccceeververvenvereereeeseenennns 198
9.3.42 Encoding process for a binary decision (informative)ccoooeerieieioienieieere e 198
9.3.43 Renormalization process in the arithmetic encoding engine (informative).............cecceeveereerreneneennenne 199
9.3.4.4 Bypass encoding process for binary decisions (Informative)............ccoeeereriiriinienieseeesee e 200
9.3.4.5 Encoding process for a binary decision before termination (informative)............cccceeeeveerierienenenennnn 201
9.3.4.6 Byte stuffing process (INfOrmative)ccooiiriirieiiiiieiiesieeeeee ettt ettt 202
Annex A Profiles and levels 204
A.l Requirements on video decoder CApPADIlitycccccoooiiiiiiiiiiie ettt 204
A2 PFOJILES oottt ettt ettt ettt ae e ehe et e ettt ent e neenneeneens 204
A2l BaSEIINe PIOTILEeoiieiiieeiee ettt ettt ettt ettt ettt e et eeneeereenean 204
A22 A 3 T 02 (0 1 (OSSR 204
A23 EXtENA@A PIOTILE....cuviiiiiieiiciiietiete ettt ettt et e e s e s e e beesbeesbeetseessesbeenbeesseessenreenreas 205
A3 L@VOIS ..o et ettt et e e h e eat ettt ettt e et eneens 205
A3l Profile-independent 1eVEl LIMILS.........c.cccueeierieiiieiiciestieie ettt ste et steesteebe s e esaessaesseesseesaenseensens 205
A32 Profile-Specific IEVE] LIMILScccviiuieiieiieiecieetiee ettt ettt et et e s e steesbeesaessaesseesseesseesseessenssenseessens 207
A.3.2.1 Baseline Profile HMILSccecieiiieiieiieriieieeteeiesteesteeteete st esteesteeaeseeesaeesseessesssesseesseesseesseessesssesseesens 208
A.3.2.2 Main Profile IMILSoecieriieiiiiieiee ettt ettt e st s te s e e seesseeseesneesseenseenseenseensensaesseensenn 208
A3.23 Extended Profile LIMItScccooiiiiiiiiiiiiietiene ettt ettt 209
A3.3 Effect of level limits on frame rate (INfOrMAatiVe)ccvievuieiiiieeiiieciieeie ettt sre e erae v 210
Annex B Byte stream format 212
B.1 Byte stream NAL unit Syntax Qnd SCIMANLICSc.c.ccoeveeuieieeeeesieasseeteeieesseesseeseseaesteesseessessessaesaeesseanseenns 212
B.1.1 Byte stream NAL UNIE SYNEAXcecieeiieeieeieriietieieetesteesteesesteseesseesseessesssesssesseesseassesssessesssesssesssenseessees 212
B.1.2 Byte stream NAL UNit SEMANTICSecviervieieeietieieeiestesteesseesseeeeseesseesseeseessesseesseessesssesssesseessesssesseessens 212
B.2 Byte stream NAL unit deCOdING PIrOCESSccccicieiioiiiiiiiiiiiiit ettt 213
B.3 Decoder byte-alignment recovery (INfOFMALIVE).................coccuaeiiiiiieii ettt 213
Annex C Hypothetical reference decoder 215
C.1 Operation of coded Picture BUSFEr (CPB)cccooeiiiiiiiiiiieieet ettt ene 217
C.1.1 Timing Of DItSIrEAM AITIVAL......cccveiieiiieiieeie ettt ettt e s esre e beenteeneesseesseenseenseenseesaenseensens 217
C.1.2 Timing of coded PICtUIe TEMOVAL.........cciiiiieiieiieiieiieie ettt ee sttt et e teesteesaesseenseenseesaesseeneas 218
C.2 Operation of the decoded picture BUFEr (DPB)...........cccoceouiiiiiiiiiiiit ittt 219
C.2.1 Decoding of gaps in frame num and storage of "non-existing" framesccccoeveereeierieniieneeneeeeneen 219
C2.2 Picture decoding and OULPULoocuiiuiiiiei ettt sttt et et eae et e teeneeeneesseenneas 219
C.23 Removal of pictures from the DPB before possible insertion of the current picturecccooeeveennnnee. 219
C24 Current decoded picture marking and SEOTAZEcc.eeeriruieieieieereste sttt see e eenseeens 220
C.2.4.1 Marking and storage of a reference decoded picture into the DPBcccoocoiiiiiiniiiiiieeee 220
C.2.4.2 Storage of a non-reference picture into the DPB..........ccccoiiiiiiiiiiiiee e 220
C.3 BIISIF@AM CONfOTIMAICE...............ccuveeeeeieeieeise et et ettt ettt ebe s et e et e essebe e b e esbeesseesaesseenseessesaeesseeseenseenns 220

ITU-T Rec. H.264 (05/2003) vii

Cod DeCOACT CONOFIMANCE. ...ttt ekttt ettt ettt ettt ettt ne e 221

C4.1 Operation of the output order DPBi..........cc.oooiiiiioieieeee ettt nneas 222
C4.2 Decoding of gaps in frame num and storage of "non-existing" PiCtures..........cccceevververreeriercieseeseeneennes 222
C43 PACtUre AECOMINGueeeniieiei ettt ettt ettt st e s et e s et et e et enteentete et e eneeeneeeneenean 222
C44 Removal of pictures from the DPB before possible insertion of the current picturecccceeveveeneenee. 222
C4.5 Current decoded picture marking and SEOTAZEccueeruieiiieierieiiere ettt et eeeseeenaeas 223
C.4.5.1 Storage and marking of a reference decoded picture into the DPB............ccccooiiiiiiiniiiineeeee 223
C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB...........ccccoociiiiiiinininiee 223
C4.5.3 "BUMPINE" PIOCESS ... eeteentietieuteetteettenttentteteetesitesttesteesteesteeateeutesbee bt enteeatesstesbeesbeenbeentesatesaeenseenseenseans 223
Annex D Supplemental enhancement information 225
WD N 5 7y Lo T IRy USRS 226
D.1.1 Buffering period SEI MESSAZE SYNTAXccueeruiertieiieieetierteerteeteeteseeesteeseeeeeeseesseesseeseenteeseesseesseessesseenseas 227
D.1.2 Picture timing SEI MESSAZE SYNTAXccutirtiertietietiertienteete et ette st et et steseee st e et et sseesbee bt enteeaeesbeesbeenneas 227
D.1.3 Pan-scan rectangle SEI MESSAZE SYMEAXceoueruiriertiitietietietieiieiete e te ettt st ettt e st eneeseestesbeseesbeeneeneenans 228
D.1.4 Filler payload SET MESSAZE SYNMEAX ...c.eeruiruirtirtiriietieienieteteste sttt sttt et eneeeeseestestestesbesaeeseeneenseneeneensensenean 228
D.1.5 User data registered by ITU-T Recommendation T.35 SEI message Syntaxccoovevveevereerveeveneenneens 229
D.1.6 User data unregistered SEI MESSAZE SYNTAX........ccuiriirieriieirieieeiesieieetestesteesseeaeseeesseesseessesssesssessesssenns 229
D.1.7 Recovery point SET MESSAZE SYNTAXccvevuieriieiieiieiiestieteeteetesteesteesseessesseesseesseesseessesssesssessesssesssesssessees 229
D.1.8 Decoded reference picture marking repetition SEI message SyntaXccoccveeveeeveeienienieesienieneeneeeenenes 229
D.1.9 Spare picture SEI MESSAZE SYNEAXeecvieverieiieriietieiertesteseteaeeseseesseeseesesssessaesseesseesessesseesseenseensenns 230
D.1.10 Scene information SEI MESSAZE SYNEAXcc.eeruieriieiierieriiertierteeteetesseesteeteeaessaesseesseesseesesssesseesseessesnsenns 230
D.1.11 Sub-sequence information SEI MESSaZE SYNTAX......c.eecuiriirriertieiieieeieeteesteesieeteseesece e esee e eneeseeeseeeneeens 231
D.1.12 Sub-sequence layer characteristics SEI MmesSage SYNtaX........ccceeruerierierierieiieeienieeee e eece e eeeeneens 231
D.1.13 Sub-sequence characteristics SEI MESSAZE SYNTAX.....cueruerueruirtiriiiietieieieeee ettt ene e neas 231
D.1.14 Full-frame freeze SEI MESSAZE SYNMTAXeiuiruiriietiriietieiieieieteie e ste et see et et st eseese et eeeneentesseseeebeenseneeneas 232
D.1.15 Full-frame freeze release SEI MESSAZE SYNEAX.....c..couerueruirtiririietieieetieeeie e ee et ste et eeeeee e eneeeeneeneas 232
D.1.16 Full-frame snapshot SEI MESSAZE SYNAX.......ccceervieriierirrierriesieeiieteeseesseesseessessesseesseesseessesssesseesseessesssenns 232
D.1.17 Progressive refinement segment start SEI mesSSage SYNtaAX........ccvevveeevircieiierieeniieieiieseesteeeeeeeseeesseeseens 232
D.1.18 Progressive refinement segment end SEI MeSSAZE SYNtAX........ccvveriieiiriiiierieieeieceeeeesteeveeseeseeeseeeseens 232
D.1.19 Motion-constrained slice group set SEI MeSSaZe SYNTAXeevvieriirierieriieieiieseeieeee et eee e seee e eneens 232
D.1.20 Reserved SELMESSAZE SYNTAX.....ccueerrieeieriierieniierteeteeteseesseeseesseessesseesseesseesesssesssesseesseessesssesssesseessesssenns 233
D.2 SEIPAYIOGA SEMIANTICSoc.euiiiiiiiii ettt ettt ettt ettt et nae 233
D.2.1 Buffering period SEI MeSSage SEMANTICS.eecuieuiietiertietieieetesieestee st eseeeeeeeeesteeseeeneeeseeeseesseenseesesseenneas 233
D.2.2 Picture timing SEI MESSAZE SEMANTICSeeruiertieiieiiestiesteeieeteeiee st esteesteeeesaee et e et eneeeseesseenseeneeeneesseenneas 233
D.23 Pan-scan rectangle SEI meSSage SEMANTICSc.eeueeiertiertierieeie e sieesteeeeseeetee st et eneeeseesteeteeneeeneesseenneas 237
D.2.4 Filler payload SEI MESSAZE SEMANTICSeeueruiruietieiienieieiesiesteete sttt eteesteseeeeeestestesbesaeebesseeseeneeneenseneeneas 238
D.2.5 User data registered by ITU-T Recommendation T.35 SEI message semantics...........ccceeuereerereenenennnns 238
D.2.6 User data unregistered SEI MesSSage SEMANTICSccueruerueririietiiietieieiesie e ste et see ettt seesee e saesseseeneas 238
D.2.7 Recovery point SEI MESSaZe SEMANTICS........c.eecvieviriertieieeteeteseesteesseesesseesseesseesseessesseesseessesssesssesseessees 239
D.2.8 Decoded reference picture marking repetition SEI message semantics..........cveeveeeerreecreeveseeneesvesnennens 240
D.2.9 Spare picture SEI MESSAZE SEMANTICScveeveiieriieiieieiieseesteesteeteestesteeseeseessessaesseessessesssesseesseessesssenns 240
D.2.10 Scene information SEI MeSSAZE SEMANTICSccuveruieriieierieriieieeteeteseeseesteesesaesseesseesseenseessesssesseensenns 242
D.2.11 Sub-sequence information SEI MeSSage SCMANTICSccueevereerieerieeiereerieseerseeeeeeeseesseeseensessnessaenseens 243
D.2.12 Sub-sequence layer characteristics SEI message SemMAanticsccceevverierierienieieeierieeie e eeeeeeeneeas 245
D.2.13 Sub-sequence characteristics SEI message SEMANTICScecueeruereerierieriiiiesee e eee e eee e ee e eeeeseeeeeens 246
D.2.14 Full-frame freeze SEI MeSSAZE SEMANTICSc.eerureruieieeiientienieeieeiiesttesteeteetesseesseesseetesneesseesseenseeneeeneeens 247
D.2.15 Full-frame freeze release SEI MeSSAZE SEMANTICScc.evverueriiruietieiieiieieieierieiesie st sie et eeeeee e eneeneeneas 247
D.2.16 Full-frame snapshot SEI MeSSage SEMANTICSc.ceueeuieierieiierieierie et eieetteeee et seesteseesteseeeeeeseeneeneeeeneas 247
D.2.17 Progressive refinement segment start SEI message SEMAanticscocevvereerernienieiieneenieeieseenecenieeeene 247
D.2.18 Progressive refinement segment end SEI message SEMANtICSc.eccvevvereerieerieiiieieenieenieeeeeeeseeesseenens 248
D.2.19 Motion-constrained slice group set SEI Message SEMANTICSeevvierverierierieeienierieeeeeeeesseeseesnesseesseens 248
D.2.20 Reserved SEI MESSAZE SCMANTICSvvevieieiieriertiesiieteetesseesseeseessesssesssesseessesssesssesseesseessesssesssesseessesssenns 249
Annex E Video usability information 250
E 1l L IR 72 s ST 251
E.1.1 VUL PATAMETETS SYIEAXeeutiemiiiiientientietteteeiteettestee st e eteeatesstesaeesbeestee bt eaeeeseeebee bt enbeenbesebesatenbeenbesaaesaeenaee 251
E.1.2 HRD PArameLters SYINTAXveeevviereieeriieerieeeitieesiteesteeestreeteeesteeeteeesseesseessseessseessseessseesnseesnseesseessessnsessseens 252
E2 VUL SEMUARLICS ...ttt et ettt at ettt ettt ettt et e siee e 252
E.2.1 VUI Parameters SCIMANTICSveeververrrerieesreeteetesteesseesseeseassesssesseesseessesssesssesssesseesseesseessesssessenssesssesssessees 252
E2.2 HRD parameters SEMANLICS.ueiuverueerrerrieerertertterteeteesessaesseeseessesssessesseesssesseessesssesseesseessesssesssesseensens 261
viii ITU-T Rec. H.264 (05/2003)

LIST OF FIGURES

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame.............cccccceeeeneee. 14
Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields.c..cccccccrvererencn. 15
Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned into tWo SICES........ceeuievvirvierierieiiereee e 16
Figure 6-4 — Partitioning of the decoded frame into macroblock PaiIrs.ccceeieirieiiiieiieee e 16

Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock

PATTITION SCAIS.teueetiettete et ette et eete et enteeuee et ee st eabeeateeeeeesee st eneeeaeeeaeeeseenseemteemseesee s e enseeaseemseemeeeneeeseeseanseenseenseeneeaneas 17
Figure 6-6 — Scan for 4X4 TUMa DLOCKS.oecviriiiieiieieee ettt ettt e et e st e e e s esseesseenseenseennesnsesseenseansenns 18
Figure 6-7 — Neighbouring macroblocks for a given macrobloCKccuevieriirciiiieiieniieie et ens 19
Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames...........cccccoveriiinieieieneiceeeee 20
Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)cccceeveereeruennnns 21

Figure 7-1 — The structure of an access unit not containing any NAL units with nal unit type equal to 0, 7, 8, or in

the range Of 12 10 31, INCIUSIVE....c.eiiiieiieiieiecie ettt ettt et et e st et et e e se et e e seeaseesaesseesnsesseasseenseansennsesnsesnsensens 52
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrmMative)c..ccvevieriieriieieniiesieie et 101
Figure 8-2 —Example for temporal direct-mode motion vector inference (informative)ccoceeeeeeierieienineneneeeene 120
Figure 8-3 — Directional segmentation prediction (InfOrmative)ccooierieiiriinerieeee e 121

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation.cccceevvererineninenienenenceeeeceeeeen 126

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer

position samples A, B, C, and D.........cccoiiiiiiiieiee ettt sttt st eebe e aesnaeenee st enneenreens 128
Figure 8-6 — Assignment of the indices of dcY t0 Tumadx4BIKIAX.ccoccvieiirieriieiieieciere e e 133
Figure 8-7 — Assignment of the indices of dcC to chromad4x4BIKIAX.cceiiiiriiiiiiieeee e 134
Figure 8-8 — a) Zig-zag scan. b) FIld SCANc.oeouiiiiiiiiieiee ettt sttt e eees 135
Figure 8-9 — Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma

boundaries Shown With dashed [INES)c.cccuerieiiiiieeie ettt et besaesseesneesseenseenseens 145
Figure 8-10 — Convention for describing samples across a 4x4 block horizontal or vertical boundaryc..c.cceueuee. 148
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)ccooevevvevveceenvennnne. 166
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)...........ccocoeeeveerinirinnnienene 192
Figure 9-3 — Flowchart for decoding @ dECISIONcoueeitieiieiieieeieiieste ettt ettt e st e b e e eeteeneesneesnes 194
Figure 9-4 — Flowchart of renormaliZation............ccuieierieriieiieie ettt eee st steesseesaessaenseenseensesnsesneeses 196
Figure 9-5 — Flowchart of bypass deCOING PIOCESS.ueiiiriierieiierierieeieeteseesteesteeteesteseeesseesseessessaesssesseesesssesssesseesens 197
Figure 9-6 — Flowchart of decoding a decision before terminationccceoererereiieieieieee e 198
Figure 9-7 — Flowchart for encoding @ dECISIONeeuuiiuieiiieiiieieeie ettt ettt et et ss e bt et e ae e sneesee 199
Figure 9-8 — Flowchart of renormalization in the @nCOAETcoieiiieiiirienieieeeeeee e 200
Figure 9-9 — Flowchart Of PULBIt(B)cccooiiiiiiiiiieeieiieieeteee ettt sttt ettt e sbe e b e esbeesbessaebaesseessessaesseesnas 200
Figure 9-10 — Flowchart 0f enCOdINgG DYPaSS......ccueiuiruiiieieieiee ettt sttt eae ettt e te st seeebeeaeeseeneeneenes 201
Figure 9-11 — Flowchart of encoding a decision before terminationccoceeiueeierienienieieseieee e 202
Figure 9-12 — Flowchart of flushing at termination............c.ecverierieiieiierierit ettt te et beeaessaesseeseensesnnesneeses 202
Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checkscoceceeciiiiiinennnnnn 215
Figure C-2 — HRD BUFTEI MOAEL........oouiiiiiiieeee ettt et b et s et et et e b e beeseeneeneeneenes 216

Figure E-1 — Location of chroma samples for top and Dbottom fields as a function of
chroma_sample loc_type top field and chroma_sample loc_type bottom field...........cocooiiriiniiniiiiiiinee 258

ITU-T Rec. H.264 (05/2003) ix

LIST OF TABLES

Table 6-1 — ChromaFormatFactor VAIUESc.ccooiiiiiiiiciiiccee et 14
Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1 10 6.4.7.5......ccccvevverievieceeeeenieeeiens 20
Table 6-3 — Specification 0f MBAAAINccoiiiiiiiiiciecececee ettt ettt e et e e b e e b e s te e beebeesbeessesrsesseesseenreens 24
Table 6-4 - Specification of MBAAAIN ANd YMoiiiiiiiiie ettt ettt et e s e aeeeeens 26
Table 7-1 — NAL UNIt tYPE COURS ..ouvvirieiieiiiiieiietieteeteete st tes e esteetestessee st eseessesseasseasseenseassesssesseeseenseensesnsesnsesseenseensenns 48
Table 7-2 — Meaning Of PrIMAIY PIC_ LYPE ...ueruiereerrerieiierieerieetestesteesseeseesteeseesseeseessesssesseesseessesssesseessesssesssesssessesssesssenns 58
Table 7-3 — Name assoCIation t0 SIICE LYPEeeueeuteuieieieieiteeteete sttt ettt ettt sttt et ebe e s e st e st e e aesbesbeebeeseeneennensennens 60
Table 7-4 — reordering_of pic_nums_idc operations for reordering of reference picture listscccoeveveierieiieiinieninns 66
Table 7-5 — Interpretation of adaptive ref pic_marking mode flag..........cccoecierieiieiieieiieieeee e 67
Table 7-6 — Memory management control operation (memory management_control operation) values..............cc..c...... 68
Table 7-7 — Allowed collective macroblock types for SHCE LYPe.......coeriririiieieieeeee ettt 70
Table 7-8 — Macroblock tyPes fOr T SIICESo.uieiieeiieieiee ettt ettt et e be e te et eneesaeenseeseens 71
Table 7-9 — Macroblock type with value 0 fOr ST SIICESccveriieiiriieieiiete ettt se e seeesseesseeneeens 72
Table 7-10 — Macroblock type values 0 t0 4 for P and SP SHCES.......c.ieieiieriieiieiesieieeteseee et 73
Table 7-11 — Macroblock type values 0 t0 22 fOr B SHCESc.eeieieiiieieieee e 74
Table 7-12 — Specification of CodedBlockPatternChroma valuesccooceerieiiiieiienieeieree e 75
Table 7-13 — Relationship between intra_chroma pred mode and spatial prediction modes..........cccoecvveverieriiecieneennnns 76
Table 7-14 — Sub-macroblock types in P MacroblOCKS...........cceviiiiiiiiieiiciieieeteseee ettt se e seaesreesseenseens 77
Table 7-15 — Sub-macroblock types in B MacroblOCKSc.ciiiiririiieieieeee ettt 78
Table 8-1 — Refined SIiCe SrOUP MAP LFPEeeurieieerieetietiete ettt ettt ettt e sttt e et e ete e et et e esee e s e e teesseeseeseeneesmeesseenseenseans 86
Table 8-2 — Specification of Intra4x4PredMode[luma4x4BlkIdx] and associated Names...........cccceceeveevenuenenenenennenn 101
Table 8-3 — Specification of Intral 6x16PredMode and associated NAMESccevverierieriieieiienie et 106
Table 8-4 — Specification of Intra chroma prediction modes and associated NAMESccceeevieeerierrieiieieneenreeieeee e 108
Table 8-5 — Specification of the Variable COIPICttt e 114
Table 8-6 — Specification 0f PICCOAINZSLIUCH X)..veeverieiieiieieeie ettt ettt e ee sttt e etessaesteeseeaesseesseenseensesnsesnnenes 115
Table 8-7 — Specification of mbAddrCol, yM, and VertMVSCALEcc.eecverieriieiieiieiesieie ettt se e 116
Table 8-8 — Assignment of prediction Utilization flags.........c.ooueriiiiiiiii e 118
Table 8-9 — Derivation of the vertical component of the chroma vector in field coding mode............ccoccveivierrenrnnnne. 123
Table 8-10 — Differential full-sample Tuma 10CAtIONS.........c.cccverieriieiieie ettt e e seeae e ses 127
Table 8-11 — Assignment of the luma prediction sample predPartLX [Xi, YL] .oveeveeeerrierieenieriieieeieeieseese e eve e 128
Table 8-12 — Specification of mapping of idx to ¢; for zig-zag and field scan..............cccccoeviiiiiiinniiii, 135
Table 8-13 — Specification of QP¢ as a function 0f qPy......cooveiiiiiiiiee e e 136
Table 8-14 — Derivation of indexA and indexB from offset dependent threshold variables ot and B...........ccccoeveveenenene. 151
Table 8-15 — Value of filter clipping variable tc as a function of indexA and bSccoceiiniiinininiiee 152
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative) 154
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)............cceccerruerueenee. 154
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V) 155
Table 9-4 — Assignment of codeNum to values of coded block pattern for macroblock prediction modes 156

X ITU-T Rec. H.264 (05/2003)

Table 9-5 — coeff _token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)..........cecvrverireirnenne. 159

Table 9-6 — Codeword table for IeVE] PrefiX.......ccooiviiiiiiiieiieieeie ettt sbeebeesbessaesseenes 162
Table 9-7 — total _zeros tables for 4x4 blocks with TotalCoeff(coeff token) 1 t0 7cccoooeiiriniiiniiieeeee e 163
Table 9-8 — total_zeros tables for 4x4 blocks with TotalCoeff(coeff token) 8 to 15....cceiiiiiiiiiiiie e 163
Table 9-9 — total_zeros tables for chroma DC 2X2 BIOCKS........ccueiiiiiirieiieie ettt 164
Table 9-10 — Tables fOr TUN DEOTEcciiiiiieiiciicieceeee ettt teesbe e b e esbeesbessaesbaesseensesssesseeses 164
Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process...........c..c.cc...... 167
Table 9-12 — Values of variables m and n for ctxIdx from 0 £0 10.....c..cccooivinininiininiieecee e 168
Table 9-13 — Values of variables m and n for ctxIdx from 11 10 23ccoiiiiiinininiieeeee e 168
Table 9-14 — Values of variables m and n for ctxIdx from 24 t0 39........ccoiimiiiniriiiiniiiincrecceeece e 168
Table 9-15 — Values of variables m and n for c¢txIdx from 40 t0 53........ccviriiinirieiniiicrcerceeee e 169
Table 9-16 — Values of variables m and n for ctxIdx from 54 t0 59......cccoiiiiininininicceccee e 169
Table 9-17 — Values of variables m and n for ctxIdx from 60 t0 69.........ccccoiririninirininieeee e 169
Table 9-18 — Values of variables m and n for ctxIdx from 70 t0 104.........ccooeirineininieiincinctreeeceeeeeeeee e 170
Table 9-19 — Values of variables m and n for ctxIdx from 105 t0 165.......cccoiviriniiinineiiiiencieecrceceeeeeees 171
Table 9-20 — Values of variables m and n for ctxIdx from 166 t0 226........cc.cceriririiiiiieiiiiinieneneeseeeeee e 172
Table 9-21 — Values of variables m and n for ctxIdx from 227 t0 275c.ccoeiiriririiiiieicieceeese e 173
Table 9-22 — Values of variables m and n for c¢txIdx from 277 10 337cc.ccvioiiineininieiricineteeeetreeeeeeee s 174
Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398.......c.cceoiiiriininieiricc s 175
Table 9-24 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset.............ccceeeee.e. 177
Table 9-25 — Bin string of the unary binarization (infOrmatiVe).........c..cocerireririneneneeeeeet et 178
Table 9-26 — Binarization for macroblock types in I SHICEScvevieriiiiiiieiieiieeetee ettt e 180
Table 9-27 — Binarization for macroblock types in P, SP, and B SHCES........ccccciriiiriiiiiiiiieeeeeee e 181
Table 9-28 — Binarization for sub-macroblock types in P, SP, and B SIiCeSs.........ccceoirieiiiiiniiiieeeeeeeeee e 182

Table 9-29 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax
elements coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl184

Table 9-30 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,

significant coeff flag, last significant coeff flag, and coeff abs level minusl........cccccooivininiiniiiiiiincnincnne 185
Table 9-31 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX.........ccceceeeieiiiiiiiiiiniiiieiene 191
Table 9-32 — Specification of ctxBlockCat for the different BlOCKSccvevviiieiiieiieiiciicieceeceee e 191
Table 9-33 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldX..........cccceeeirvenirirnieneeenne 195
Table 9-34 — State transition tADIEc.ooioiiiiiiiiicee s 196
Table A-1 — LeVel LIMIES....cueiiuiriiiiiiicietieeece ettt ettt ettt a ettt a e b e s n bt nnes 207
Table A-2 — Baseline profile 16Vl lIMILS........cc.oiiiiiiiiieiiciccieceee ettt ettt et e eab et este e beebeesseennesneeeeas 208
Table A-3 — Main Profile 18Vel LMLcoouiiiieiieieeiiet ettt ettt ettt est e st e s st e be e neenteeneesneesnee 209
Table A-4 — Extended profile LeVEl LIMILSc.cccverieriieieiiesieie ettt ettt et e et essbeesaessaesseenseensesnnesnneses 209
Table A-5 — Maximum frame rates (frames per second) for some example frame SiZes.........ccoecveveereerieecierceeneenieenneee 210
Table D-1 — Interpretation Of PIC SEIUCEec.iitietiit ittt ettt ee ettt e et et et e st e e e teabeebeebesseeneeneeneenes 234
Table D-2 — Mapping of ct_type tO SOUICE PICTUIE SCAMeeruieruierieeiteiestteste et eteeeteesteeteesteeseesseeseenseeseesseenseeseeneesneesns 235
Table D-3 — Definition of COUNtING tYPE VAIUESocvieiviiiieiieiieieee sttt ettt ettt sseessaessaesseeseensesnnesnnenes 235
Table D-4 — scene_transition_ tYPE VAIUES.cvevvieriieiieieiieiteeteete et eteeeesteesteeseeaesseessaesseesseessasssesssesseessesssesssesssesses 242

ITU-T Rec. H.264 (05/2003) xi

Table E-1 — Meaning of sample aspect ratio INAICALOLecvereierieriieieeiert et eeeeee sttt eete st eeeseesseessaesseeseensesnaesneeses 253

Table E-2 — Meaning of VIAE0 fOIMALcccieviieiiiiiiiieiieiete ettt sttt ettt sbe e b e esbeesaessaesbeesseenseessesssenes 254
Table E-3 — COLOUL PIIIMATIIEScveevieiiereeitierieteeteesteeteesteesseeseeseesseessesssesseesseessesssesseessesssessssesseassesssesssesssesseessesssesssesses 255
Table E-4 — Transfer CharaCteriStICScueeiirieitieiiee ettt ettt ettt ettt et esae e et et e et e enteeseesseebeenseenseeneesneesaee 256
Table E-5 — MatrixX COCTIICIENEScueiutiuiiiitiriertist ettt ettt ettt ea ettt st b sbe bt et e e enee 257
Table E-6 — Divisor for computation of Atg apb(11) «oveeeviiiiiiiiiiiiiiiiiiiiiiiieecc s 259

xii ITU-T Rec. H.264 (05/2003)

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardisation Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardising telecommunications on a world-wide basis. The World Telecommunication Standardisation Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTCI.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC1/SC29/WGl11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

ITU-T Rec. H.264 (05/2003) xiii

0 Introduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.

0.2 Purpose
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

0.4 Profiles and levels
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

Xiv ITU-T Rec. H.264 (05/2003)

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.5 Overview of the design characteristics
This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. The algorithm is not lossless, as the exact source sample values are typically not preserved through the encoding
and decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding
algorithms (not specified in this Recommendation | International Standard) may select between inter and intra coding for
block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit
temporal statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit
spatial statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may
be specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a
transform to remove spatial correlation inside the transform block before it is quantised, producing an irreversible
process that typically discards less important visual information while forming a close approximation to the source
samples. Finally, the motion vectors or intra prediction modes are combined with the quantised transform coefficient
information and encoded using either variable length codes or arithmetic coding.

0.5.1 Predictive coding
This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.5.2 Coding of progressive and interlaced video
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture time.
Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are typically
coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame coding or
field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within a coded
frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion. Field
coding typically works better when there is fast picture-to-picture motion.

0.5.3 Picture partitioning into macroblocks and smaller partitions
This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size, using

ITU-T Rec. H.264 (05/2003) XV

motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of
a sample block can also involve the selection of the picture to be used as the reference picture from a number of stored
previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted values formed from
nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.5.4 Spatial redundancy reduction
This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.6 How to read this specification
This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E also form an integral part of this Recommendation | International Standard.

Annex A defines three profiles (Baseline, Main, and Extended), each being tailored to certain application domains, and
defines the so-called levels of the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery
of coded video as an ordered stream of bytes. Annex C specifies the hypothetical reference decoder and its use to check
bitstream and decoder conformance. Annex D specifies syntax and semantics for supplemental enhancement information
message payloads. Finally, Annex E specifies syntax and semantics of the video usability information parameters of the
sequence parameter set.

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

Xvi ITU-T Rec. H.264 (05/2003)

ITU-T Recommendation H.264

Advanced video coding for generic audiovisual services

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Normative references

The following Recommendations and International Standards contain provisions that, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardisation Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities

— ISO/IEC 11578:1996, Annex A, Universal Unique Identifier
— ISO/CIE 10527:1991, Colorimetric Observers

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

31 access unit: A set of NAL units always containing exactly one primary coded picture. In addition to the
primary coded picture, an access unit may also contain one or more redundant coded pictures or other NAL
units not containing slices or slice data partitions of a coded picture. The decoding of an access unit always
results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions
is non-zero.
33 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins

from a bitstream produced by an adaptive binary arithmetic encoding process.

34 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

3.5 arbitrary slice order: A decoding order of slices in which the macroblock address of the first macroblock of
some slice of a picture may be smaller than the macroblock address of the first macroblock of some other
preceding slice of the same coded picture.

3.6 B slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or
inter prediction from previously-decoded reference pictures, using at most two motion vectors and reference
indices to predict the sample values of each block.

3.7 bin: One bit of a bin string.

3.8 binarization: A set of bin strings for all possible values of a syntax element.

39 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

3.10 bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements

from the binarization of the syntax element.

3.11 bi-predictive slice: See B slice.

ITU-T Rec. H.264 (05/2003) 1

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.19.1
3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a
byte stream.

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a fop field.

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8§ bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture, but
not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data clement as represented in its coded form.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including
any subsequent /DR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame num syntax element, where the second field in
decoding order is not an IDR picture and does not include a memory management control operation syntax
element equal to 5.

ITU-T Rec. H.264 (05/2003)

3.32

3.33
3.34

3.35

3.36
3.37
3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48
3.49

3.50

3.51
3.52

3.53

3.54

3.55

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.
decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and derives decoded pictures from it.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains
a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of /uma samples and two corresponding arrays of chroma samples. A frame
consists of two fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame
macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame
may be frame macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of
a bitstream or a decoder.

I slice: A slice that is not an S7 slice that is decoded using prediction only from decoded samples within the
same slice.

ITU-T Rec. H.264 (05/2003) 3

3.55.1

3.56

3.57

3.58
3.59

3.60
3.61
3.62
3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

3.72

4

informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish
any mandatory requirements for conformance to this Recommendation | International Standard.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture containing only slices with I or SI slice types
that causes the decoding process to mark all reference pictures as "unused for reference" immediately after
decoding the IDR picture. After the decoding of an IDR picture all following coded pictures in decoding order
can be decoded without inter prediction from any picture decoded prior to the IDR picture. The first picture of
each coded video sequence is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.
intra prediction: A prediction derived from the decoded samples of the same decoded slice.
intra slice: See I slice.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, level is
the value of a transform coefficient prior to scaling.

list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list 0 (list 1).

list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picture list 0 (list 1).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol or subscript used for luma is Y or L.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear

light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead
of the symbol Y to avoid confusion with the symbol y as used for vertical location.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples. The division
of a slice or a macroblock pair into macroblocks is a partitioning.

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of
the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair
raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the
macroblock address of the corresponding top macroblock plus 1. The macroblock address of the top
macroblock of each macroblock pair is an even number and the macroblock address of the bottom macroblock
of each macroblock pair is an odd number.

macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (X, y). For
the top left macroblock of the picture (X,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1
for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is
incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

ITU-T Rec. H.264 (05/2003)

3.73

3.74

3.75

3.76

3.76.1

3.77

3.78

3.78.1

3.79

3.80
3.81
3.82

3.83
3.84
3.85
3.86

3.86.1
3.87
3.88
3.89

3.90

391
3.92

3.93
3.93.1

3.94

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding. The division of a sl/ice into macroblock pairs is a partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used
to provide emphasis.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in a reference picture.

must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an
informative context.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary non-
reference field pair.

non-paired reference field: A decoded reference field that is not part of a complementary reference field pair.
non-reference field: A field coded with nal _ref idc equal to 0.
non-reference frame: A frame coded with nal_ref idc equal to 0.

non-reference picture: A picture coded with nal ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

note: A term used to prefix informative remarks. This term is used exclusively in an informative context.
opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or inter
prediction from previously-decoded reference pictures, using at most one motion vector and reference index to
predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as
part of the defined term quantisation parameter.

parity: The parity of a field can be top or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.

picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set _id syntax element found in each slice header.

picture order count: A variable having a value that is non-decreasing with increasing picture position in
output order relative to the previous /DR picture in decoding order or relative to the previous picture
containing the memory management control operation that marks all reference pictures as “unused for
reference”.

ITU-T Rec. H.264 (05/2003) 5

3.95
3.96

3.97
3.98

3.99

3.100
3.101
3.102

3.103

3.104

3.105

3.106

3.107

3.108

3.109

3.110
3.111

3.112

3.113

3.114

3.115

3.116

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P slice.

predictor: A combination of specified values or previously decoded sample values or data elements used in the
decoding process of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all
macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary
coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc. rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of byfes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of
the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the
decoding process. See also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field or
field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded
frame are decoded. See also reference picture.

reference index: An index into a reference picture list.

reference picture: A picture with nal_ref idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of short-term picture numbers and long-term picture numbers that are assigned to
reference pictures.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two
reference picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B slice, with the other being
reference picture list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this

ITU-T Rec. H.264 (05/2003)

3.117
3.118

3.119

3.120

3.120.1

3.120.2

3.120.3

3.121

3.122

3.123

3.124

3.125

3.126
3.127

3.128
3.129

3.130

3.131

Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as /:v, where / is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire
coded video sequences as determined by the content of a seq parameter set id syntax element found in the
picture parameter set referred to by the pic_parameter_set id syntax element found in each slice header.

shall: A term used to express mandatory requirements for conformance to this Recommendation | International
Standard. When used to express a mandatory constraint on the values of synfax elements or on the results
obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the
constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding
process that produces identical results to the decoding process described herein conforms to the decoding
process requirements of this Recommendation | International Standard.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this
Recommendation | International Standard.

SI slice: A slice that is coded using prediction only from decoded samples within the same slice and using
quantisation of the prediction samples. An SI slice can be coded such that its decoded samples can be
constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For the primary coded picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan
within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan
within the picture. The addresses of the macroblocks are derived from the address of the first macroblock in a
slice (as represented in the slice header) and the macroblock to slice group map.

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

slice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

SP slice: A slice that is coded using inter prediction from previously-decoded reference pictures, using at most
one motion vector and reference index to predict the sample values of each block. An SP slice can be coded
such that its decoded samples can be constructed identically to another SP slice or an S/ slice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix
to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a
new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL
units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit

ITU-T Rec. H.264 (05/2003) 7

3.132

3.133

3.134
3.135
3.136
3.137
3.138

3.139

3.140

3.141

3.142

3.143

3.144

3.145

4
4.1
4.2
43
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11
4.12

is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction.

switching I slice: See SI slice.

switching P slice: See SP slice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock
pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that lie within the
top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional firequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular two-
dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

Abbreviations

CABAC: Context-based Adaptive Binary Arithmetic Coding
CAVLC: Context-based Adaptive Variable Length Coding
CBR: Constant Bit Rate

CPB: Coded Picture Buffer

DPB: Decoded Picture Buffer

DUT: Decoder under test

FIFO: First-In, First-Out

HRD: Hypothetical Reference Decoder

HSS: Hypothetical Stream Scheduler

IDR: Instantaneous Decoding Refresh

LSB: Least Significant Bit

MB: Macroblock

ITU-T Rec. H.264 (05/2003)

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1

MBAFF: Macroblock-Adaptive Frame-Field Coding
MSB: Most Significant Bit

NAL: Network Abstraction Layer

RBSP: Raw Byte Sequence Payload

SEI: Supplemental Enhancement Information
SODB: String Of Data Bits

UUID: Universal Unique Identifier

VBR: Variable Bit Rate

VCL: Video Coding Layer

VLC: Variable Length Coding

VUI: Video Usability Information

Conventions

NOTE - The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin
from 0.

Arithmetic operators

The following arithmetic operators are defined as follows.

X

y

> 16)

x%y

Addition

Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

Multiplication

Exponentiation. Specifies x to the power of y.

In other contexts, such notation is used for

superscripting not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1

and —7/4 and 7/—4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

The summation of f(i) with i taking all integer values from x up to and including y.

Modulus. Remainder of x divided by y, defined only for integers x and y with x >=0 and y > 0.

When order of precedence is not indicated explicitly by use of parenthesis, the following rules apply

5.2

Logical operators

The following logical operators are defined as follows

x && y Boolean logical "and" of x and y

X |
!

x?

| v Boolean logical "or" of x and y

Boolean logical "not"

multiplication and division operations are considered to take place before addition and subtraction
multiplication and division operations in sequence are evaluated sequentially from left to right

addition and subtraction operations in sequence are evaluated sequentially from left to right

y:z Ifxis TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

ITU-T Rec. H.264 (05/2003) 9

5.3 Relational operators

The following relational operators are defined as follows

> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
== Equal to
I= Not equal to

54 Bit-wise operators

The following bit-wise operators are defined as follows

&

x>>y

x<<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value. When operating on a binary argument that contains fewer bits than another argument,
the shorter argument is extended by adding more significant bits equal to 0.

Arithmetic right shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift shall have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two’s complement integer representation of x by y binary digits. This function
is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift
have a value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows

++

Assignment operator.

Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

Decrement, i.e., x—— is equivalent to x = x — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent
tox=x+(-3).

Decrement by amount specified, i.e., x — 3 is equivalent to x = x — 3, and x —= (-3) is equivalent
tox =x—(-3).

5.6 Range notation

The following notation is used to specify a range of values

x =Yy ..z X takes on integer values starting from y to z inclusive, with X, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows

Abs(x)=) X 5 x>=0 (5-1)
-x ; x<0

Ceil(x) the smallest integer greater than or equal to x. (5-2)

Clipl(x)= Clip3(0, 255, x) (5-3)

10 ITU-T Rec. H.264 (05/2003)

X ; z<Xx
Clipd(x.y.2)={y ; z>y (5-4)

z ; otherwise

Floor(x) the greatest integer less than or equal to x. (5-5)

(a%(d /b)) *b; e==
InverseRasterScan(a, b, c,d, e)= (5-6)
(ald/b))*c; e==

Log2(x) returns the base-2 logarithm of x. 5-7)
Logl10(x) returns the base-10 logarithm of x. (5-8)
Luma4x4BlkScan(x,y)=(x/2)*4+(y/2)* 8+ RasterScan(x % 2,y % 2,2) (5-9)
Median(X,y,z)=x+y+z—Min(x, Min(y, z))—Max(x, Max(y,z)) (5-10)
. <
Min(x,y)=4° > *=°Y (5-11)
y 5 X>Yy
. >—
Max(x,y)=4° ° *7°¥ (5-12)
y 5 xX<Yy
RasterScan(x,y,ny) =x+y *ny (5-13)
Round(x) = Sign(x) * Floor(Abs(x)+0.5) (5-14)
Sign(x)=) I 5 x>=0 (5-15)
-1 ; x<0
Sqrt(x) = vx (5-16)
5.8 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

Square parentheses are used for indexing in lists or arrays. Lists or arrays can either be syntax elements or variables.
Two-dimensional arrays are sometimes also specified using matrix notation using subscripts for indexing.

ITU-T Rec. H.264 (05/2003) 11

NOTE — The index order for two-dimensional arrays using square parentheses and subscripts is interchanged. A sample at
horizontal position x and vertical position y in a two-dimensional sample array denoted as s[X, y] would, in matrix notation, be
referred to as sy,.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value
different than zero.

5.9 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
... as follows / ... the following applies.

If condition 0, statement 0

— Otherwise, if condition 1, statement 1

— Otherwise (informative remark on remaining condition), statement n

Each "If...Otherwise, if...Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If...Otherwise, if...Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If...Otherwise, if...Otherwise, ..." statements can be identified by matching "... as follows"

or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition Ob)
statement 0

else if (condition la || condition 1b)
statement 1

else
statement n

may be described in the following manner:

... as follows / ... the following applies.

— If all of the following conditions are true, statement 0
— condition Oa
— condition Ob

— Otherwise, if any of the following conditions are true, statement 1
— condition la

— condition 1b

— Otherwise, statement n

12 ITU-T Rec. H.264 (05/2003)

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:

When condition 0, statement 0

When condition 1, statement 1

5.10 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable.

The assignment of variables is specified as follows.

- If invoking a process, variables are explicitly assigned to lower case input or output variables of the process
specification in case these do not have the same name.

- Otherwise (when the variables at the invoking and specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring
relationships
6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as
the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This
sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL
units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes.
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique
start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the
byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is
specified in Annex B.

6.2 Source, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of three sample arrays, one luma and two chroma
sample arrays.

The variable ChromaFormatFactor is specified in Table 6-1, depending on the chroma format sampling structure. The
value of ChromaFormatFactor shall be inferred equal to 1.5, indicating 4:2:0 sampling. In monochrome sampling there is
only one sample array, which may nominally be considered a luma array. In 4:2:0 sampling, each of the two chroma
arrays has half the height and half the width of the luma array. In 4:2:2 sampling, each of the two chroma arrays has the
same height and half the width of the luma array. In 4:4:4 sampling, each of the two chroma arrays has the same height
and width as the luma array.

ITU-T Rec. H.264 (05/2003) 13

NOTE — Other values may be valid for future versions of this Recommendation | International Standard.

Table 6-1 — ChromaFormatFactor values

Chroma
Format ChromaFormatFactor
monochrome 1
4:2:0 1.5
4:2:2 2
4:4:4 3

This Recommendation | International Standard represents colour sequences using 4:2:0 chroma sampling. The width of
the luma sample array of each picture is an integer multiple of 16. The width of the chroma sample arrays of each
picture are an integer multiple of 8. The height of the luma sample array of each coded picture (whether it is a coded
frame or a coded field) is an integer multiple of 16 and the height of each chroma array for these pictures is an integer
multiple of 8. If any coded frames are present within a coded video sequence that contains coded fields or contains
coded frames that use macroblock-adaptive frame-field coding, the height of the luma sample array of all coded frames
in the coded video sequence is an integer multiple of 32 and the height of each chroma sample array for these frames is
an integer multiple of 16. The width or height of pictures output from the decoding process need not be an integer
multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is
half that of frames coded referring to the same sequence parameter set (see below).

The nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

X X X X X X

O O o [X X
X X X X X X

X X X X X X

(o) o o

X X X X X X

X X X X X X

(o) o o

X X X X X X

Guide:

X = Location of luma sample

QO = Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

14 ITU-T Rec. H.264 (05/2003)

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth,
etc. rows of a decoded frame are the bottom field rows. The first (i.e., top) row is numbered as row number 0; the second
row is numbered as row number 1; the third row is numbered as row number 2, etc. A top field consists of only the top
field rows of a frame, and a bottom field consists of only the bottom field rows of a frame. When the top field or bottom
field of a decoded frame is used as a reference field (see below) only the even-numbered rows (for a top field) or the
odd-numbered rows (for a bottom field) of the decoded frame are used.

The nominal vertical and horizontal relative locations of luma and chroma samples in top and bottom fields are shown in
Figure 6-2. The nominal vertical sampling relative locations of the chroma samples in a top field are specified as shifted
up by one-quarter luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma
samples in a bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling
grid. Alternative chroma sample relative locations may be indicated in the video usability information (see Annex E).

NOTE - The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

O X
O X
O X

O O O
X X X X X X
X X X X X X
O Q O
X X X X X X
[] []
Top field % Bottom field %
Guide: Guide:
X = Location of luma sample X = Location of luma sample
(O =Location of chroma sample (O =Location of chroma sample

Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields.

6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice
is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of macroblock
pairs.

Each macroblock is comprised of one 16x16 luma and two 8x8 chroma sample arrays. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-3.

ITU-T Rec. H.264 (05/2003) 15

Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer

number of macroblock pairs as shown in Figure 6-4. Each macroblock pair consists of two macroblocks.

AN

A macroblock pair

Figure 6-4 — Partitioning of the decoded frame into macroblock pairs.

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes

for neighbours.

6.4.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock with address mbAddr

relative to the upper-left sample of the picture.
The inverse macroblock scanning process is specified as follows.

- If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 0)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 1)

- Otherwise (MbaffFrameFlag is equal to 1), the following applies.

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 0)

16 ITU-T Rec. H.264 (05/2003)

(6-1)

(6-2)

(6-3)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 1) (6-4)
Depending on the current macroblock the following applies.
- If the current macroblock is a frame macroblock
x =x0 (6-5)
y=yO + (mbAddr%2) * 16 (6-6)
- Otherwise (the current macroblock is a field macroblock),
x=x0 (6-7)
y=yO + (mbAddr % 2) (6-8)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-5. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14, and
Table 7-15. MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the
macroblock type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of
a macroblock with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

Macroblock
partitions

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

Sub-macroblock
partitions

1 sub-macroblock partition
of 8*8 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and
associated chroma samples

Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock
partition scans.

6.4.2.1 Inverse macroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by
x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-9)

ITU-T Rec. H.264 (05/2003) 17

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1)

6.4.2.2 Inverse sub-macroblock partition scanning process

(6-10)

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition

subMbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the sub-macroblock partition

subMbPartldx relative to the upper-left sample of the sub-macroblock.
The inverse sub-macroblock partition scanning process is specified as follows.

- Ifmb_type is equal to P_8x8, P_8x8ref0, or B_8x8,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 0)

y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 1)

- Otherwise,

x = InverseRasterScan(subMbPartldx, 4, 4, 8, 0)
y = InverseRasterScan(subMbPartldx, 4,4, 8, 1)

6.4.3 Inverse 4x4 luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

(6-11)

(6-12)

(6-13)

(6-14)

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index

luma4x4BIlkldx relative to the upper-left luma sample of the macroblock.

Figure 6-6 shows the scan for the 4x4 luma blocks.

0 1 4 |5

213|6|7

8 19 (1213

1011114 (15

Figure 6-6 — Scan for 4x4 luma blocks.

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 0) + InverseRasterScan(luma4x4Blkldx % 4, 4, 4, 8,0)
y = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 1) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8, 1)

6.4.4 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE - The meaning of availability is determined when this process is invoked.

(6-15)

(6-16)

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock shall

be marked as not available:
- mbAddr<0
- mbAddr > CurrMbAddr

- the macroblock with address mbAddr belongs to a different slice than the current slice

18 ITU-T Rec. H.264 (05/2003)

6.4.5 Derivation process for neighbouring macroblock addresses and their availability

This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are

- mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.

mbAddrB: the address and availability status of the macroblock above the current macroblock.

mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.

- mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-7 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-7 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.4 is mbAddrA = CurrMbAddr— 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal
to 0.

Input to the process in subclause 6.4.4 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.4 is mbAddrD = CurrMbAddr — PicWidthInMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.
The outputs of this process are

- mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

- mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

- mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

- mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-8 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

ITU-T Rec. H.264 (05/2003) 19

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.4 is mbAddrA =2 * (CurtMbAddr/2—1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr /2) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.4 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is whether
the macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.4 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs - 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions
Subclause 6.4.7.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.7.2 specifies the derivation process for neighbouring 8x8 luma blocks.
Subclause 6.4.7.3 specifies the derivation process for neighbouring 4x4 luma blocks.
Subclause 6.4.7.4 specifies the derivation process for neighbouring 4x4 chroma blocks.
Subclause 6.4.7.5 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BIkIdxN, luma4x4BIkIdxN, and chroma4x4BIlkIdxN for the output.
These input and output assignments are used in subclauses 6.4.7.1 to 6.4.7.5. The variable predPartWidth is specified
when Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1 to 6.4.7.5

N xD yD
A -1 0
B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-9 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

20 ITU-T Rec. H.264 (05/2003)

D B C

A Current

Macroblock

or Partition
or Block

Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.7.1 Derivation process for neighbouring macroblocks

Outputs of this process are

mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and

mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.7.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8Blkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

luma8x8BIlkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8BlkIdx and its
availability status,

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability status.

mbAddrN and luma8x8BIlkIdxN (with N being A or B) are derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The luma location (xN, yN) is specified by

xN = (luma8x8BlkIdx % 2) * 8 + xD (6-17)
yN = (luma8x8Blkldx /2) * 8 + yD (6-18)
The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
The variable luma8x8BIlkIdxN is derived as follows.
- If mbAddrN is not available, luma8x8BIlkIdxN is marked as not available.

- Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) shall be assigned to luma8x8BlkIdxN.

ITU-T Rec. H.264 (05/2003) 21

6.4.7.3 Derivation process for neighbouring 4x4 luma blocks

Input to this process is a 4x4 luma block index luma4x4BIkIdx.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

luma4x4BlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability status,

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

luma4x4BlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4Blkldx and its
availability status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as follows.

The difference of luma location (XD, yD) is set according to Table 6-2.

The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (X, y) as the output.

The luma location (xN, yN) is specified by
xN=x+xD (6-19)
yN=y+yD (6-20)
The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
The variable luma4x4BIkIdxN is derived as follows.
- If mbAddrN is not available, luma4x4BI1kIdxN is marked as not available.

- Otherwise (mbAddrN is available), the 4x4 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) shall be assigned to luma4x4BlkIdxN.

6.4.7.4 Derivation process for neighbouring 4x4 chroma blocks

Input to this is a current 4x4 chroma block chroma4x4BlkIdx.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

chroma4x4BlkldxA: the index of the 4x4 chroma block to the left of the chroma 4x4 block with index
chroma4x4BIlklIdx and its availability status,

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

chroma4x4BIlkIdxB: the index of the 4x4 chroma block above the chroma 4x4 block index chroma4x4BlkIdx and its
availability status.

The derivation process for neighbouring 8x8 luma block is invoked with luma8x8Blkldx = chroma4x4BlkIdx as the
input and with mbAddrA, chroma4x4BlkldxA = Iuma8x8BlkldxA, mbAddrB, and chroma4x4BlkldxB =
luma8x8BlkIdxB as the output.

6.4.7.5 Derivation process for neighbouring partitions

Inputs to this process are

a macroblock partition index mbPartldx
a current sub-macroblock type currSubMbType

a sub-macroblock partition index subMbPartIdx

Outputs of this process are

22

ITU-T Rec. H.264 (05/2003)

mbAddrA\mbPartldx A\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartldx and its availability status,

mbAddrD\mbPartldxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldx (with N being A, B, C, or D) are derived as follows.

The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
the input and (X, y) as the output.

The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

— If mb_type is equal to P_8x8, P_8x8ref0 or B 8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

— Otherwise, (xS, yS)aresetto (0, 0).

The variable predPartWidth in Table 6-2 is specified as follows.

— Ifmb_type is equal to P_Skip, B_Skip, or B Direct 16x16, predPartWidth = 16.
— Otherwise, if mb_type is equal to B_8x8, the following applies.

— If currSubMbType is equal to B Direct 8x8, predPartWidth = 16.

NOTE — When currSubMbType is equal to B_Direct 8x8 and direct_spatial mv_pred flag is equal to 1, the predicted
motion vector is the predicted motion vector for the complete macroblock.

— Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, if mb_type is equal to P 8x8 or P 8x8ref0,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, predPartWidth = MbPartWidth(mb_type).
The difference of luma location (xD, yD) is set according to Table 6-2.

The neighbouring luma location (XN, yN) is specified by
xN=x+xS+xD (6-21)
yN=y+yS+yD (6-22)
The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
Depending on mbAddrN, the following applies.

- If mbAddrN is not available, the macroblock or sub-macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

- Otherwise (mbAddrN is available), the following applies.

- The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) shall be
assigned to mbPartldxN and the sub-macroblock partition inside the macroblock partition mbPartldxN
covering the sample (xW, yW) in the macroblock mbAddrN shall be assigned to subMbPartIdxN.

- When the partition given by mbPartldxN and subMbPartIdxN is not yet decoded, the macroblock partition
mbPartIdxN and the sub-macroblock partition subMbPartldxN are marked as not available.

NOTE - The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3, xD = 4, yD = -1, i.e., when
neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

ITU-T Rec. H.264 (05/2003) 23

6.4.8 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock

Outputs of this process are

- mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

- (xW,yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxWH be a variable specifying a maximum value of the location components xN, yN xW, and yW. maxWH is
derived as follows.

- Ifthis process is invoked for neighbouring luma locations,

maxWH = 16 (6-23)
- Otherwise (this process is invoked for neighbouring chroma locations),

maxWH = 8 (6-24)

Depending on the variable MbaffFrameFlag, the neighbouring luma locations are derived as follows.

- If MbaffFrameFlag is equal to 0, the specification for neighbouring luma locations in fields and non-MBAFF frames
as described in subclause 6.4.8.1 is applied.

- Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring luma locations in MBAFF frames as
described in subclause 6.4.8.2 is applied.

6.4.8.1 Specification for neighbouring luma locations in fields and non-MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.5 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (xN, yN).

Table 6-3 — Specification of mbAddrN

xN yN mbAddrN
<0 <0 mbAddrD
<0 0. maxWH-1 | mbAddrA
0. maxWH-1 | <0 mbAddrB

0. maxWH-1 | 0. maxWH -1 CurrMbAddr

>maxWH - 1 <0 mbAddrC

>maxWH -1 0. maxWH-1 | notavailable

>maxWH - 1 not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-25)
yW = (yN + maxWH) % maxWH (6-26)

6.4.8.2 Specification for neighbouring luma locations in MBAFF frames

The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

24 ITU-T Rec. H.264 (05/2003)

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.6 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the following variables:
- The variable currMbFrameFlag is derived as follows.
- If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1,

- Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal
to 0.

- The variable mblsTopMbFlag is derived as follows.

- If the macroblock with address CurrMbAddr is a top macroblock (CurrMbAddr % 2 is equal to 0),
mblsTopMbFlag is set equal to 1;

- Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, CurrMbAddr % 2 is equal
to 1), mblsTopMbFlag is set equal to 0.

2. Depending on the availability of mbAddrX, the following applies.
- If mbAddrX is not available, mbAddrN is marked as not available.

- Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and yM
depending on (xN, yN), currMbFrameFlag, mblsTopMbFlag, and the variable mbAddrXFrameFlag, which is
derived as follows.

- If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1,
- Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

ITU-T Rec. H.264 (05/2003) 25

Table 6-4 - Specification of mbAddrN and yM

an
< =
k= 5 =
5| g E
E|lS i S
2zl o= % 3 z
=0 = ! g S
S| &= =] 8 S
Z Z. E|ls .g j::: S .?:3 =
w” > 3| E g = B = >
1 |mbAddrD mbAddrD +1 |yN
1 1 mbAddrA yN
0 [mbAddrA =5 mbAddrA + 1 |(yN + maxWH) >> |
<0 <0 1 mbAddrD + 1 [2*yN
o | [P mbAddrD yN
0 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2==0 mbAddrA yN >> |
yN%2!=0 mbAddrA+1 [yN>>1
1 1 mbAddrA + 1 |yN
0 |mbAddrA yN %2 == mbAddrA (yN +maxWH) >> 1
0. 0 yN%21=0 mbAddrA + 1 [(yN + maxWH) >> |
<0 maxWH -) yN <(maxWH/2) |mbAddrA yN <<1
1 1 |mbAddrA yN >=(maxWH /2) |mbAddrA+1 |(yN <<I) - maxWH
0 mbAddrA yN
0 yN <(maxWH/2) [mbAddrA (yN<<1)+1
1 _ mbAddrA+1 [(yN<<1)+1-
0 |mbAddrA yN>=(maxWH/2) maxWH
0 mbAddrA +1 |yN
1 |mbAddrB mbAddrB+1 |yN
0 I To JcurrMbAddr CurrMbAddr - 1 [yN
. N
maxWH - |<0 1 AddrB mbAddrB + 1 2*y
1 0 mbAddr mbAddrB YN
0 |mbAddrB mbAddrB+1 |yN
0. 0. CurrMbAddr |yN
maxWH - |maxWH - CurrMbAddr
1 1
1 |mbAddrC mbAddrC+1 |yN
1 [0 [|not available not available na
> maxWH 1 mbAddrC+1 [2*yN
<0 1 A Yy
-1 o | [o mbAddrC yN
0 |mbAddrC mbAddrC+1 |yN
0.. not available na
_>1m axWH maxWH - not available
1
> maxWH . not available na
1 not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-27)

yW = (yM + maxWH) % maxWH (6-28)

26 ITU-T Rec. H.264 (05/2003)

7 Syntax and semantics

7.1 Method of describing syntax in tabular form

The syntax tables describe a superset of the syntax of all allowed input bitstreams. Additional constraints on the syntax
may be specified in other clauses.

NOTE - An actual decoder should implement means for identifying entry points into the bitstream and to identify and handle non-
conforming bitstreams. The methods for identifying and handling errors and other such situations are not described here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a data element is read (extracted) from the bitstream and the bitstream pointer.

ITU-T Rec. H.264 (05/2003) 27

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An “if ... else” structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The “else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows.

- If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

- Otherwise, the return value of byte aligned() is equal to FALSE.

28 ITU-T Rec. H.264 (05/2003)

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows.

- If more data follow in the byte stream, the return value of more_data in_byte stream() is equal to TRUE.
- Otherwise, the return value of more data in_byte stream() is equal to FALSE.
more_rbsp_data() is specified as follows.

- If there is more data in an RBSP before rbsp _trailing bits(), the return value of more rbsp data() is equal to
TRUE.

- Otherwise, the return value of more rbsp data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp _trailing_data() is specified as follows.
- Ifthere is more data in an RBSP, the return value of more rbsp_trailing_data() is equal to TRUE.
- Otherwise, the return value of more rbsp trailing data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is not
specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with category
marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy coding mode flag is equal
to 0 and the right descriptor applies when entropy coding _mode flag is equal to 1.

- ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

- b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

- ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

- f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read bits(n).

nen

- i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a two’s complement integer representation with most
significant bit written first.

- me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

- se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

- te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

ITU-T Rec. H.264 (05/2003) 29

- u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

- ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.
7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | f(1)
nal_ref_idc All | u(2)
nal_unit_type All | u(5)

NumBytesInRBSP = 0
for(1=1;1<NumBytesInNALunit; i++) {
if(i+ 2 <NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp_byte[NumBytesInRBSP++ | All | b(8)

rbsp_byte[NumBytesInRBSP++ | All | b(8)

i+=2

emulation_prevention_three _byte /* equal to 0x03 */ All | £(8)
} else

rbsp_byte[NumBytesInRBSP++ | All | b(8)

30 ITU-T Rec. H.264 (05/2003)

7.3.2
7.3.2.1

Raw byte sequence payloads and RBSP trailing bits syntax

Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { C | Descriptor

profile_idc 0 [u®)
constraint_set0_flag 0 |u)
constraint_setl_flag 0 | ul)
constraint_set2 flag 0 |u)
reserved_zero_Sbits /* equal to 0 */ 0 | u®
level idc 0 | u®
seq_parameter_set_id 0 | ue(v)
log2_max_frame num_minus4 0 | ue(v)
pic_order_cnt_type 0 | ue(v)
if(pic_order_cnt_type == 0)

log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt type == 1) {

delta_pic_order_always zero_flag 0 | ul)

offset_for non_ref pic 0 | se(v)

offset_for top_to_bottom_field 0 | se(v)

num_ref frames_in_pic_order_cnt_cycle 0 | ue(v)

for(1=0;1<num_ref frames in pic order cnt cycle; it+)

offset_for ref frame[i | 0 | se(v)

H
num_ref frames 0 | ue(v)
gaps_in_frame num_value_allowed_flag 0 | uwl
pic_width_in_mbs_minus1 0 | ue(v)
pic_height_in_map_units_minusl 0 | ue(v)
frame_mbs_only_flag 0 | ul)
if(!frame _mbs_only flag)

mb_adaptive frame field_flag 0 | ul)
direct_8x8 inference_ flag 0 | uwl
frame_cropping flag 0 | ul)
if(frame_cropping_flag) {

frame_crop_left offset 0 | ue(v)

frame_crop_right offset 0 | ue(v)

frame_crop_top_offset 0 | ue(v)

frame_crop_bottom_offset 0 | ue(v)
}
vui_parameters_present_flag 0 | ul
if(vui_parameters_present flag)

vui_parameters() 0
rbsp_trailing_bits() 0

}

ITU-T Rec. H.264 (05/2003)

31

7.3.2.2

32

Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding mode_flag 1 | ul)
pic_order_present_flag 1| uwl)
num_slice_groups_minusl 1 | ue(v)
if(num_slice groups minusl >0) {
slice_group_map_type 1 | ue(v)
if(slice_group map type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length minus1|[iGroup | 1 | ue(v)
else if(slice_group map type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++) {
top_left[iGroup | 1 | ue(v)
bottom_right[iGroup | 1 | ue(v)
H
else if(slice_group map_type == 3 ||
slice_group map _type == 4 ||
slice group map type == 5) {
slice_group_change_direction_flag 1 | u(l)
slice_group_change rate_minus1 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size _in_map_units_minusl 1 | ue(v)
for(1=0;1<=pic_size in_map units_minusl; i++)
slice_group_id[i] 1| uwv)
H
H
num_ref idx 10_active_minusl 1 | ue(v)
num_ref idx 11 _active_minusl 1 | ue(v)
weighted_pred_flag 1| u(l)
weighted_bipred_idc 1 | u2)
pic_init_qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_qs_minus26 /* relative to 26 */ 1 | se(v)
chroma_qp_index_offset 1 | se(v)
deblocking_filter control_present_flag 1 | u(l)
constrained_intra_pred_flag 1| u(l)
redundant_pic_cnt_present_flag 1 | u(l)
rbsp _trailing bits() 1

ITU-T Rec. H.264 (05/2003)

7.3.2.3 Supplemental enhancement information RBSP syntax

7.3.2.3.1 Supplemental enhancement information message syntax

7.3.2.4

7.3.2.5

sei_rbsp() {

C | Descriptor

do

sei_message() 5
while(more_rbsp_data())
rbsp_trailing bits() 5

sei_message() {

C | Descriptor

payloadType =0

while(next_bits(8) == O0xFF) {

ff_byte /* equal to OxFF */

5 | £(8)

payloadType += 255

}

last_payload_type byte

5 [u®)

payloadType += last_payload type byte

payloadSize =0

while(next bits(8) == O0xFF) {

ff_byte /* equal to OxFF */

5 [f8)

payloadSize += 255

i

last_payload_size byte

5 | u®)

payloadSize += last_payload _size byte

sei_payload(payloadType, payloadSize)

Access unit delimiter RBSP syntax

access_unit_delimiter rbsp() {

Descriptor

primary_pic_type

u3)

rbsp _trailing bits()

N N A

End of sequence RBSP syntax

end of seq rbsp() {

C | Descriptor

}

ITU-T Rec. H.264 (05/2003)

33

7.3.2.6

End of stream RBSP syntax

end of stream rbsp() {

Descriptor

}

7.3.2.7

Filler data RBSP syntax

filler data rbsp(NumBytesInRBSP) {

Descriptor

while(next bits(8) == O0xFF)

ff_byte /* equal to OxFF */

f(8)

rbsp _trailing bits()

7.3.2.8

Slice layer without partitioning RBSP syntax

slice layer without partitioning_rbsp() {

Descriptor

slice_header()

slice_data() /* all categories of slice_data() syntax */

21314

rbsp_slice_trailing_bits()

7.3.2.9
7.3.2.9.1

Slice data partition RBSP syntax

Slice data partition A RBSP syntax

slice_data_partition_a layer rbsp() {

Descriptor

slice_header()

slice_id

ue(v)

slice_data() /* only category 2 parts of slice data() syntax */

rbsp_slice_trailing_bits()

NN A

7.3.2.9.2

Slice data partition B RBSP syntax

slice_data_partition_b_layer rbsp() {

Descriptor

slice_id

ue(v)

if(redundant_pic_cnt present flag)

redundant_pic_cnt

ue(v)

slice_data() /* only category 3 parts of slice data() syntax */

rbsp_slice trailing bits()

34

ITU-T Rec. H.264 (05/2003)

7.3.2.9.3

Slice data partition C RBSP syntax

slice_data_partition ¢ layer rbsp() { C | Descriptor
slice_id 4 | ue(v)
if(redundant_pic_cnt present flag)
redundant_pic_cnt 4 | ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_slice_trailing_bits() 4
H
7.3.2.10 RBSP slice trailing bits syntax
rbsp_slice_trailing_bits() { C | Descriptor
rbsp_trailing_bits() All
if(entropy_coding_mode flag)
while(more rbsp _trailing data())
cabac_zero_word /* equal to 0x0000 */ All | f(16)
H
7.3.2.11 RBSP trailing bits syntax
rbsp_trailing bits() { C | Descriptor
rbsp_stop_one_bit /* equal to 1 */ All | f(1)
while(!byte_aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | f(1)
H

ITU-T Rec. H.264 (05/2003)

35

7.3.3

36

Slice header syntax

slice_header() { C | Descriptor
first mb_in_slice 2 | ue(v)
slice_type 2 ue(v)
pic_parameter_set_id 2 | ue(v)
frame_ num 2 u(v)
if(!'frame _mbs_only flag) {
field_pic_flag 2 u(l)
if(field pic flag)
bottom_field flag 2 u(l)
¥
if(nal_unit_type == 5)
idr_pic_id 2 | ue(v)
if(pic_order_cnt _type == 0) {
pic_order_cnt_Isb 2 | uv)
if(pic_order present flag && !field pic_flag)
delta_pic_order_cnt_bottom 2 se(v)
}
if(pic_order_cnt_type == 1 && !delta_pic_order always_zero flag) {
delta_pic_order_cnt[0] 2 | se(v)
if(pic_order_present flag && !field pic flag)
delta_pic_order_cnt[1] 2 | se(v)
¥
if(redundant_pic_cnt present flag)
redundant_pic_cnt 2 | ue(v)
if(slice type == B)
direct_spatial mv_pred_flag 2 | u(l)
if(slice type==P || slice_type==SP ||slice type==B) {
num_ref idx_active override flag 2 | u(l)
if(num_ref idx_active override flag) {
num_ref idx 10 _active minusl 2 | ue(v)
if(slice type == B)
num_ref idx _I1_active minusl 2 | ue(v)
}
¥
ref pic_list reordering() 2
if((weighted pred flag && (slice_type==P || slice type==SP)) ||
(weighted bipred idc == 1 && slice type == B))
pred_weight table() 2
if(nal ref idc !=0)
dec_ref pic_marking() 2
if(entropy coding mode flag && slice type != I && slice type != SI)
cabac_init_idc ue(v)
slice_qp_delta se(v)
if(slice_type == SP || slice type == SI) {
if(slice_type == SP)
sp_for_switch_flag 2 | uw(l)
slice_qs_delta 2 | se(v)

ITU-T Rec. H.264 (05/2003)

}
if(deblocking_filter control present flag) {
disable_deblocking_filter idc 2 | ue(v)
if(disable deblocking_filter idc != 1) {
slice_alpha_c0_offset_div2 2 | se(v)
slice_beta_offset_div2 2 | se(v)
}
H
if(num_slice groups minusl >0 &&
slice_group map type >=3 && slice group map type <=5)
slice_group_change cycle 2 | uv)

7.3.3.1

Reference picture list reordering syntax

C | Descriptor

ref pic_list reordering() {
if(slice_type != 1 && slice type != SI) {

2 [u()

ref pic_list reordering_flag 10

if(ref pic_list_reordering flag 10)

do {

2 | ue(v)

reordering of pic_nums_idc
==0]

if(reordering_of pic nums idc
reordering of pic nums idc == 1)

2 | ue(v)

abs_diff pic_ num_minusl

else if(reordering_of pic nums idc == 2)

2 | ue(v)

long_term_pic_num

} while(reordering_of pic nums_idc != 3)

H
if(slice_type == B) {

2 | u(l)

ref pic_list_reordering flag 11

if(ref pic_list reordering flag 11)

do {

2 | ue(v)

reordering_of pic_nums_ide
==0[]

if(reordering_of pic_nums_idc
reordering of pic nums idc == 1)

2 | ue(v)

abs_diff pic_ num_minusl

else if(reordering_of pic nums idc == 2)

2 | ue(v)

long_term_pic_num

} while(reordering_of pic nums_idc != 3)

ITU-T Rec. H.264 (05/2003)

37

7.3.3.2

38

Prediction weight table syntax

pred_weight table() { C | Descriptor
luma_log2 weight_denom 2 | ue(v)
chroma_log2 weight_denom 2 | ue(v)
for(i=0;i<=num_ref idx 10 active minusl; i++) {
luma_weight 10 flag 2 | u()
if(luma_weight 10 flag) {
luma_weight 10[i | 2 | se(v)
luma_offset _10[1] 2 | se(v)
H
chroma_weight 10 flag 2 | u(l)
if(chroma_weight 10 flag)
for(j=0;j<2;j++) {
chroma_weight 10[i][j] 2 | se(v)
chroma_offset 10[i][]] 2 | se(v)
H
H
if(slice_type == B)
for(i=0;1i<=num_ref idx 11 _active minusl; i++) {
luma_weight 11 flag 2 | u(l)
if(luma_weight 11 flag) {
luma_weight 11] i | 2 | se(v)
luma_offset 11]1] 2 | se(v)
H
chroma_weight 11 _flag 2 [u(l)
if(chroma_weight 11 _flag)
for(j=0;j<2;j++) {
chroma_weight 11[1i][j] 2 | se(v)
chroma_offset 11[i][]] 2 | se(v)

ITU-T Rec. H.264 (05/2003)

7.3.3.3

Decoded reference picture marking syntax

dec_ref pic_marking() { C | Descriptor
if(nal_unit_type == 5) {
no_output_of prior_pics_flag 215 | ul)
long_term_reference flag 215 | ul)
}else {
adaptive_ref pic_marking mode_flag 2|5 | u(l)
if(adaptive ref pic_marking mode flag)
do {
memory_management_control_operation 2|5 | ue(v)
if(memory_management control _operation == 1 ||
memory management control operation == 3)
difference_of pic_nums_minusl 2|5 | ue(v)
if(memory management control operation == 2)
long_term_pic_num 2|5 | ue(v)
if(memory management_control_operation == 3 ||
memory management control operation == 6)
long_term_frame_idx 2|5 | ue(v)
if(memory management control operation == 4)
max_long_term_frame idx_plusl 2|5 | ue(v)
} while(memory_management_control _operation != 0)
i
i

ITU-T Rec. H.264 (05/2003)

39

7.3.4

40

Slice data syntax

slice_data() {

Descriptor

if(entropy_coding_mode flag)

while(!byte aligned())

cabac_alignment_one_bit

f(1)

CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice_type != 1 && slice type != SI)

if(lentropy_coding_mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip run>0)

for(i=0; i<mb_skip run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

moreDataFlag = more_rbsp data()

} else {

mb_skip_flag

ae(v)

moreDataFlag = Imb_skip flag

}

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr %2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))

mb_field_decoding flag

u(l) | ae(v)

macroblock layer()

2134

}

if(lentropy coding mode flag)

moreDataFlag = more rbsp data()

else {

if(slice_type != I && slice type != SI)

prevMbSkipped = mb_skip flag

if(MbaftfFrameFlag && CurrMbAddr %2 == 0)

moreDataFlag = 1

else {

end_of slice_flag

ae(v)

moreDataFlag = lend of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

ITU-T Rec. H.264 (05/2003)

7.3.5

Macroblock layer syntax

macroblock layer() {

Descriptor

mb_type

ue(v) | ae(v)

if(mb_type==1 PCM) {

while(!byte aligned())

pcem_alignment_zero_bit

f(1)

for(1=0;1<256 * ChromaFormatFactor; i++)

pcem_byte[1]

u(®)

} else {

if(MbPartPredMode(mb_type, 0) != Intra 4x4 &&
MbPartPredMode(mb_type, 0) != Intra 16x16 &&
NumMbPart(mb_type) == 4)

sub_mb_pred(mb_type)

else

mb_pred(mb_type)

if(MbPartPredMode(mb_type, 0) != Intra 16x16)

coded_block_pattern

me(Vv) | ae(Vv)

if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma >0 | |
MbPartPredMode(mb type, 0) == Intra 16x16) {

mb_qp_delta

se(v) | ae(v)

residual()

314

ITU-T Rec. H.264 (05/2003)

41

7.3.5.1

42

Macroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(MbPartPredMode(mb_type, 0) == Intra 4x4 ||
MbPartPredMode(mb_type, 0) == Intra 16x16) {

if(MbPartPredMode(mb_type, 0) == Intra 4x4)

for(luma4x4BlkIdx=0; luma4x4Blkldx<16; luma4x4Blkldx++) {

prev_intradx4 pred_mode_flag| luma4x4BIkIdx]

u(l) | ae(v)

if(Iprev_intra4x4 pred mode flag| luma4x4BlkIdx |)

rem_intradx4 pred_mode[luma4x4BIkIdx]

u(3) | ae(v)

}

intra_chroma_pred_mode

ue(v) | ae(v)

} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 10 active minusl >0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred L1)

ref_idx_10[mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 11 active minusl > 0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred LO)

ref_idx_11[mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) != Pred L1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][0][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) != Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_11[mbPartldx][0][compldx]

se(v) | ae(v)

ITU-T Rec. H.264 (05/2003)

7.3.5.2

Sub-macroblock prediction syntax

sub mb pred(mb type) {

Descriptor

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

sub_mb_type[mbPartldx]

ue(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx 10 active minusl > 0 || mb_field decoding flag) &&
mb_type != P_8x8ref0 &&
sub mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_ mb_type[mbPartldx]) != Pred L1)

ref_idx_l0] mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx 11 active minusl > 0 || mb_field decoding flag) &&
sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred LO)

ref idx 11[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx | != B_Direct 8x8 &&
SubMbPredMode(sub_ mb_type[mbPartldx]) != Pred L1)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_10] mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L0)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_11[mbPartldx][subMbPartldx][compldx |

se(v) | ae(v)

ITU-T Rec. H.264 (05/2003)

43

7.3.5.3

44

Residual data syntax

residual() { C Descriptor
if(lentropy coding mode flag)
residual block = residual block cavlc
else
residual_block = residual_block cabac
if(MbPartPredMode(mb_type, 0) == Intra 16x16)
residual_block(Intral6x16DCLevel, 16) 3
for(i8x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */
for(14x4 = 0; 14x4 < 4; i4x4++) /* each 4x4 sub-block of block */
if(CodedBlockPatternLuma & (1 <<i8x8)) {
if(MbPartPredMode(mb_type, 0) == Intra 16x16)
residual_block(Intral6x16ACLevel[i8x8 * 4 +i4x4], 15) 3
else
residual block(LumaLevel[i8x8 * 4 +14x4], 16) 314
} else {
if(MbPartPredMode(mb_type, 0) == Intra_16x16)
for(1=0;1<15;i++)
Intral6x16ACLevel[i8x8 * 4 +i4x4][1]=0
else
for(1=0;1<16;it++)
LumaLevel[i8x8 * 4 +i4x4][i]=0
}
for(iCbCr = 0; iCbCr < 2; iCbCr++)
if(CodedBlockPatternChroma & 3) /* chroma DC residual present */
residual block(ChromaDCLevel[iCbCr |, 4) 314
else
for(i=0;1<4;it+)
ChromaDCLevel[iCbCr][1]=0
for(iCbCr = 0; iCbCr < 2; iCbCr++)
for(i4x4 = 0; i4x4 < 4; i4x4++)
if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */
residual block(ChromaACLevel[iCbCr][i4x4], 15) 3|14

else

for(i=0;1<15;i++)

ChromaACLevel[iCbCr][14x4][1]=0

ITU-T Rec. H.264 (05/2003)

7.3.5.3.1

Residual block CAVLC syntax

residual_block cavlc(coeffLevel, maxNumCoeff') {

Descriptor

for(1= 0; 1 <maxNumCoeff; i++)

coeffLevel[1]=0

coeff _token

314

ce(v)

if(TotalCoeff(coeff token)>0) {

if(TotalCoeff(coeff token)> 10 && TrailingOnes(coeff token)<3)

suffixLength = 1

else

suffixLength =0

for(i=0; 1 < TotalCoeff(coeff token); it++)

if(i < TrailingOnes(coeff token)) {

trailing_ones_sign_flag

314

u(l)

level[i]=1-2 * trailing_ones_sign_flag

}else {

level prefix

314

ce(v)

levelCode = (level prefix << suffixLength)

if(suffixLength >0 || level prefix >=14) {

level_suffix

314

u(v)

levelCode += level_suffix

}

if(level prefix == 15 && suffixLength == 0)

levelCode += 15

if(i == TrailingOnes(coeff token) &&
TrailingOnes(coeff token) <3)

levelCode +=2

if(levelCode % 2 == 0)

level[i]=(levelCode +2)>>1

else

level[i]=(—levelCode—1)>>1

if(suffixLength == 0)

suffixLength = 1

if(Abs(level[i]) > (3 <<(suffixLength—1)) &&
suffixLength <6)

suffixLength++

}

if(TotalCoeff(coeff token) < maxNumCoeff) {

total_zeros

314

ce(v)

zerosLeft = total zeros

} else

zerosLeft=0

for(1=0; 1< TotalCoeff(coeff token)—1;it++) {

if(zerosLeft>0) {

run_before

314

ce(v)

run[i] = run_before

} else

run[i]=0

zerosLeft = zerosLeft — run[i |

ITU-T Rec. H.264 (05/2003)

45

run[TotalCoeff(coeff token)— 1] = zerosLeft

coeffNum = -1

for(i = TotalCoeff(coeff token)—1;1>=0;i--) {

coeffNum +=run[i]+ 1

coeffLevel[coeffNum] =level[i]

7.3.5.3.2 Residual block CABAC syntax

46

residual_block cabac(coeffLevel, maxNumCoeff) {

Descriptor

coded_block flag

314

ae(v)

if(coded_block flag) {

numCoeff = maxNumCoeff

i=0

do {

significant_coeff flag|i]

314

ae(v)

if(significant coeff flag[i]) {

last_significant_coeff flag[i |

314

ae(v)

if(last_significant coeff flag[i]) {

numCoeff=1+1

for(j = numCoeff; j < maxNumCoeff; j++)

coeffLevel[j]=0

}

i++

} while(i < numCoeff-1)

coeff_abs_level minusl[numCoeff-1]

314

ae(v)

coeff _sign_flag] numCoeff-1 |

314

ae(v)

coeffLevel[numCoeff-1] =
(coeff abs_level minusl[numCoeff—1]+1)*
(1 -2 * coeff sign flag[numCoeff—11])

for(1=numCoeff-2;1>=0;i--) {

if(significant coeff flag[i]) {

coeff _abs level minusl|i]

3|4

ae(v)

coeff_sign_flag[i]

314

ae(v)

coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1 =2 * coeff sign flag[i])

} else

coeffLevel[1]=0

}

} else

for(1= 0; 1 <maxNumCoeff; i++)

coeffLevel[1]=0

ITU-T Rec. H.264 (05/2003)

7.4 Semantics

7.4.1 NAL unit semantics

NOTE - The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref idc not equal to O specifies that the content of the NAL unit contains a sequence parameter set or a picture
parameter set or a slice of a reference picture or a slice data partition of a reference picture.

nal ref idc equal to 0 for a NAL unit containing a slice or slice data partition indicates that the slice or slice data
partition is part of a non-reference picture.

nal _ref idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. When nal ref idc is
equal to O for one slice or slice data partition NAL unit of a particular picture, it shall be equal to 0 for all slice and slice
data partition NAL units of the picture.

nal ref idc shall not be equal to 0 for IDR NAL units, i.e., NAL units with nal_unit_type equal to 5.
nal_ref idc shall be equal to 0 for all NAL units having nal unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. VCL NAL
units are specified as those NAL units having nal unit type equal to 1 to 5, inclusive. All remaining NAL units are
called non-VCL NAL units.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit_type and not categorized as "All".

ITU-T Rec. H.264 (05/2003) 47

Table 7-1 — NAL unit type codes

nal_unit_type Content of NAL unit and RBSP syntax structure C

0 Unspecified

1 Coded slice of a non-IDR picture 2,3,4
slice_layer without partitioning rbsp()

2 Coded slice data partition A 2
slice data partition a layer rbsp()

3 Coded slice data partition B 3
slice_data partition b layer rbsp()

4 Coded slice data partition C 4
slice data partition ¢ layer rbsp()

5 Coded slice of an IDR picture 2,3
slice_layer without partitioning rbsp()

6 Supplemental enhancement information (SEI) 5
sei_rbsp()

7 Sequence parameter set 0

seq parameter set rbsp()

8 Picture parameter set 1
pic_parameter set rbsp()

9 Access unit delimiter 6
access unit delimiter rbsp()

10 End of sequence 7
end of seq rbsp()
11 End of stream 8
end of stream rbsp()
12 Filler data 9
filler data rbsp()
13..23 Reserved
24.31 Unspecified

NAL units that use nal unit type equal to O or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.

NOTE — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.
NOTE - This requirement allows future definition of compatible extensions to this Recommendation | International Standard.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit.

When the value of nal unit _type is equal to 5 for a NAL unit containing a slice of a coded picture, the value of
nal _unit type shall be 5 in all other VCL NAL units of the same coded picture. Such a picture is referred to as an IDR
picture.

NOTE - Slice data partitioning cannot be used for IDR pictures.

rbsp_byte| i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.
- Ifthe SODB is empty (i.e., zero bits in length), the RBSP is also empty.
- Otherwise, the RBSP contains the SODB as follows.

48 ITU-T Rec. H.264 (05/2003)

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB,
(if any)

ii) The next bit consists of a single rbsp_stop _one_bit equal to 1, and

iii) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp_alignment_zero_bit is present to result in byte alignment.

3) One or more cabac_zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing bits() at the end of the RBSP.

n

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE - When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits
of the bytes of the RBSP and discarding the rbsp_stop_one bit, which is the last (least significant, right-most) bit equal to 1, and
discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the
decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byte is a byte equal to 0x03. When an emulation_prevention three byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

- 0x00000300
- 0x00000301
- 0x00000302
- 0x00000303

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one_bit starting at the end of the RBSP, and

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns

'00000000 00000000 00000011 000000xx',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a
cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

ITU-T Rec. H.264 (05/2003) 49

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit, and

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL units in the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders conforming to this
Recommendation | International Standard shall be capable of receiving NAL units and their syntax elements in decoding
order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

NOTE - The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not
active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active
at any given moment during the operation of the decoding process, and the activation of any particular picture parameter
set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter set_id) is not active and it is referred to by
a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter set id), it is
activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the
activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of
pic_parameter set id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter _set id for the active picture parameter set
RBSP shall have the same content as that of the active picture parameter set RBSP unless it follows the last VCL NAL
unit of a coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs
or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP is
initially considered not active at the start of the operation of the decoding process. At most one sequence parameter set
RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any
particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP

(if any).

When a sequence parameter set RBSP (with a particular value of seq parameter set id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq parameter_set id) or is referred to by
an SEI NAL unit containing a buffering period SEI message (using that value of seq parameter_set _id), it is activated.
This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the
activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq_parameter_set_id, shall be available to the decoding process prior to its activation. An activated sequence parameter
set RBSP shall remain active for the entire coded video sequence.

NOTE — Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must

remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI
message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq_parameter_set id for the active sequence parameter
set RBSP shall have the same content as that of the active sequence parameter set RBSP unless it follows the last access
unit of a coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering
period SEI message (when present) of another coded video sequence.
NOTE - If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of
variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax
elements are expressions of constraints that apply only to the active sequence parameter set and the active picture
parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements
shall have values that would conform to the specified constraints if it were activated by reference in an otherwise-

50 ITU-T Rec. H.264 (05/2003)

conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax
elements shall have values that would conform to the specified constraints if it were activated by reference in an
otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences
A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. The order of NAL units and coded pictures and their
association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

The values of picture order count for the coded pictures in consecutive access units in decoding order containing non-
reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit has
a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the bitstream
and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit.

- access unit delimiter NAL unit (when present)

- sequence parameter set NAL unit (when present)

- picture parameter set NAL unit (when present)

- SEINAL unit (when present)

- NAL units with nal unit_type in the range of 13 to 18, inclusive
- first VCL NAL unit of a primary coded picture (always present)

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause
7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit.

- When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

- When any SEI NAL units are present, they shall precede the primary coded picture.

- When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit

- The primary coded picture shall precede the corresponding redundant coded pictures.

- When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant_pic_cnt.

ITU-T Rec. H.264 (05/2003) 51

- When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any).

- When an end of stream NAL unit is present, it shall be the last NAL unit.

- NAL units having nal_unit_type equal to 0, 12, or in the range of 19 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.

NOTE — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot
follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
new access unit.

NOTE — When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in the
coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal unit type equal to 0, 7, 8, or in the range of 12
to 31, inclusive, is shown in Figure 7-1.

start

y

access unit delimiter

-
%

[72]

El

A

y

primary coded picture

Y

redundant coded picture

-
%

y

end of sequence

-
%

end of stream

\j

end

Figure 7-1 — The structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in
the range of 12 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways.

- frame num differs in value. The value of frame num used to test this condition is the value of frame num that
appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for
subsequent use in the decoding process due to the presence of memory management _control _operation equal to 5.

52 ITU-T Rec. H.264 (05/2003)

NOTE — A consequence of the above statement is that a primary coded picture having frame num equal to 1 cannot
contain a memory_ management control operation equal to 5 unless some other condition listed below is fulfilled for
the next primary coded picture that follows after it (if any).

- pic_parameter_set_id differs in value.

- field pic flag differs in value.

- Dbottom_field flag is present in both and differs in value.

- nal_ref idc differs in value with one of the nal_ref idc values being equal to 0.

- pic_order cnt type is equal toO for both and either pic order cnt Isb differs in value, or
delta_pic_order cnt bottom differs in value.

- pic_order cnt type is equal tol for both and either delta pic order cnt[0] differs in value, or
delta pic_order cnt[1] differs in value.

- nal unit type differs in value with one of the nal unit type values being equal to 5.

- nal unit type is equal to 5 for both and idr_pic_id differs in value.

NOTE — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g. an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures
Each VCL NAL unit is part of a coded picture.
The order of the VCL NAL units within a coded IDR picture is constrained as follows.

- If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of an IDR picture NAL units shall be in the
order of increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows.

- If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice id shall precede any present coded slice data partition B NAL unit with the same
value of slice id. A coded slice data partition A NAL unit with a particular value of slice id shall precede any
present coded slice data partition C NAL unit with the same value of slice id. When a coded slice data partition B
NAL unit with a particular value of slice id is present, it shall precede any present coded slice data partition C NAL
unit with the same value of slice_id.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units shall be in the order of increasing macroblock address for the first macroblock of
each coded slice of a non-IDR picture NAL unit or coded slice data partition A NAL unit. A coded slice data
partition A NAL unit with a particular value of slice id shall immediately precede any present coded slice data
partition B NAL unit with the same value of slice id. A coded slice data partition A NAL unit with a particular
value of slice_id shall immediately precede any present coded slice data partition C NAL unit with the same value of
slice_id, when a coded slice data partition B NAL unit with the same value of slice id is not present. When a coded
slice data partition B NAL unit with a particular value of slice id is present, it shall immediately precede any present
coded slice data partition C NAL unit with the same value of slice_id.

NAL units having nal unit _type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal unit type in the range of 19 to 23, inclusive, which are reserved, shall not precede the first VCL
NAL unit of the primary coded picture within the access unit (when specified in the future by ITU-T | ISO/IEC).

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

profile_idc and level_idc indicate the profile and level to which the bitstream conforms, as specified in Annex A.

ITU-T Rec. H.264 (05/2003) 53

constraint_set0_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.1.
constraint set0_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A2.1.

constraint_setl_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.2.
constraint setl flag equal to O indicates that the bitstream may or may not obey all constraints specified in subclause
A2.2.

constraint_set2_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.3.
constraint_set2 flag equal to O indicates that the bitstream may or may not obey all constraints specified in subclause
A23.

NOTE — When more than one of constraint_set0 flag, constraint_setl flag, or constraint _set2 flag are equal to 1, the bitstream
obeys the constraints of all of the indicated subclauses of subclause A.2.

reserved_zero_Sbits shall be equal to 0 in bitstreams conforming to this Recommendation | International Standard.
Other values of reserved zero_Sbits may be specified in the future by ITU-T | ISO/IEC. Decoders shall ignore the value
of reserved zero 5Sbits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE — When feasible, encoders should use distinct values of seq_parameter_set id when the values of other sequence parameter
set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set_id.

log2_max_frame num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7_ 1)

The value of log2 max_frame num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order cnt type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following

- an access unit containing a non-reference frame followed immediately by an access unit containing a non-
reference picture

- two access units each containing a field with the two fields together forming a complementary non-reference
field pair followed immediately by an access unit containing a non-reference picture

- an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary non-reference field pair with the first of the two access
units

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_lsb_minus4 +4) (7_2)

The value of log2 max_pic_order cnt Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always_zero_flag equal to 1 specifies that delta pic_order cnt[0] and delta_pic_order cnt[1 | are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta pic_order always zero flag
equal toO specifies that delta pic order cnt[0] is present in the slice headers of the sequence and
delta_pic_order cnt[1 | may be present in the slice headers of the sequence.

offset_for_non_ref pic is used to calculate the picture order count of a non-reference picture as specified in 8.2.1. The
value of offset_for non_ref pic shall be in the range of -2*' to 2*' - 1, inclusive.

offset_for top_to bottom_field is used to calculate the picture order count of the bottom field in a frame as specified in
8.2.1. The value of offset_for top to_bottom_field shall be in the range of -2*' to 2*' - 1, inclusive.

num_ref frames in_pic_order cnt _cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref frames in pic_order cnt cycle shall be in the range of 0 to 255, inclusive.

offset_for ref frame[i] is an element of a list of num_ref frames in pic_order cnt cycle values used in the decoding
process for picture order count as specified in subclause 8.2.1. The value of offset for ref frame[i] shall be in the
range of -2*' to 2*' - 1, inclusive.

54 ITU-T Rec. H.264 (05/2003)

num_ref frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of any
picture in the sequence. num ref frames also determines the size of the sliding window operation as specified in
subclause 8.2.5.3. The value of num_ref frames shall be in the range of 0 to MaxDpbSize (as specified in subclause
A.3.1), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minusl1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as follows
PicWidthInMbs = pic_width_in_mbs_minus] + 1 (7-3)
The variable for picture width for the luma component is derived as follows

PicWidthInSamples; = PicWidthInMbs * 16 (7-4)

The variable for picture width for the chroma components is derived as follows

PicWidthInSamples: = PicWidthInMbs * 8 (7-5)

pic_height_in_map_units_minusl plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightinMapUnits and PicSizeInMapUnits are derived as follows
PicHeightInMapUnits = pic_height in_map units minusl + 1 (7-6)
PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits 7-7)

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields or
coded frames. frame _mbs_only flag equal to 1 specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The allowed range of values for pic width in mbs minusl, pic_height in map units minusl, and
frame _mbs_only flag is specified by constraints in Annex A.

Depending on frame _mbs_only flag, semantics are assigned to pic_height_in_map_units minusl as follows.

- If frame mbs only flag is equal to 0, pic_height in map units minusl plus 1 is the height of a field in units of
macroblocks.

- Otherwise (frame_mbs_only flag is equal to 1), pic_height in_map_units minusl plus 1 is the height of a frame in
units of macroblocks.

The variable FrameHeightInMbs is derived as follows

FrameHeightInMbs = (2 — frame_mbs_only_flag) * PicHeightiInMapUnits (7-8)

mb_adaptive frame field flag equal to O specifies no switching between frame and field macroblocks within a picture.
mb_adaptive_frame field flag equal to 1 specifies the possible use of switching between frame and field macroblocks
within frames. When mb_adaptive frame field flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B Direct 16x16 and B Direct 8x8 as specified in subclause 8.4.1.2. When frame mbs only flag is equal to 0,
direct 8x8 inference flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left offset, frame crop_right offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of a frame within a rectangle as follows.

— If frame mbs_only flag is equal to 1, the cropping rectangle contains luma samples with horizontal coordinates
from 2 * frame crop left offset to PicWidthInSamples; - (2 * frame crop right offset+ 1) and vertical
coordinates from 2 * frame crop top_ offset to (FrameHeightInMbs * 16) - (2 * frame crop_bottom_offset + 1),
inclusive. In this case, the value of frame crop left offset shall be in the range of 0 to 8 * PicWidthInMbs -

ITU-T Rec. H.264 (05/2003) 55

(frame crop right offset + 1), inclusive; and the value of frame crop top offset shall be in the range of 0
to 8 * FrameHeightInMbs - (frame crop bottom_offset + 1), inclusive.

— Otherwise (frame mbs_only flag is equal to 0), the cropping rectangle contains luma samples with horizontal
coordinates from 2 * frame crop left offset to PicWidthInSamples, - (2 * frame crop right offset+ 1) and
vertical coordinates from 4 * frame_crop_top_offset to (FrameHeightInMbs * 16) -
(4 * frame _crop_bottom_offset + 1), inclusive. In this case the value of frame crop left offset shall be in the
range of 0 to 8 * PicWidthInMbs - (frame crop right offset+ 1), inclusive; and the value of
frame crop top offset shall be in the range of 0 to 4 * FrameHeightInMbs - (frame crop bottom offset + 1),
inclusive.

When frame cropping_flag is equal to 0, the following values shall be inferred: frame crop_left offset =0,
frame crop_right offset =0, frame crop top_offset = 0, and frame_crop bottom_offset = 0.

The specified samples of the two chroma arrays are the samples having frame coordinates (x /2,y /2), where (x,y)
are the frame coordinates of the specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure specified in Annex E is
present next in the bitstream. vui_parameters present flag equal to 0 specifies that the vui_parameters() syntax structure
specified in Annex E is not present next in the bitstream.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter set id shall be in the
range of 0 to 31, inclusive.

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

- If entropy coding mode flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

- Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table
is applied (CABAC, see subclause 9.3).

pic_order_present_flag equal to 1 specifies that the picture order count related syntax elements are present in the slice
headers as specified in subclause 7.3.3. pic_order present flag equal to 0 specifies that the picture order count related
syntax elements are not present in the slice headers.

num_slice_groups_minusl1 plus 1 specifies the number of slice groups for a picture. When num_slice groups minusl is
equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups_minusl is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group _map_type shall be in the range of 0 to 6, inclusive.

slice_group _map_type equal to 0 specifies interleaved slice groups.
slice_group _map_type equal to 1 specifies a dispersed slice group mapping.
slice_group map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_group_map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice groups minus] is not
equal to 1, slice_group map_type shall not be equal to 3, 4, or 5.

slice_group _map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows.

— If frame mbs _only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise, if frame _mbs_only flag is equal to 1 or a coded picture is a field, the slice group map units are units of
macroblocks.

56 ITU-T Rec. H.264 (05/2003)

— Otherwise (frame mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minus1[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length _minus1[i] shall be in the range of 0 to
PicSizeInMapUnits - 1, inclusive.

top_left[i | and bottom_right|[i | specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, all of the following constraints shall be obeyed by the values of the syntax elements top left[i] and
bottom_right[i]

- top leftf[i] shall be less than or equal to bottom right{i] and bottom right[i] shall be less than
PicSizeInMapUnits.

- (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i] % PicWidthInMbs).

slice_group_change_direction_flag is used with slice group map type to specify the refined map type when
slice_group map typeis 3, 4, or 5.

slice_group_change_rate_minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice_group change rate minusl shall be in the range of 0 to PicSizeInMapUnits — 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group change rate minusl + 1 (7-9)

pic_size in_map_ units minusl is used to specify the number of slice group map units in the picture.
pic_size in_map_units_minusl shall be equal to PicSizeInMapUnits - 1.

slice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The size of the
slice_group id[i] syntax element is Ceil(Log2(num_slice groups minusl + 1)) bits. The value of slice group id[i]
shall be in the range of 0 to num_slice_groups_minusl, inclusive.

num_ref idx 10 _active_minus1 specifies the maximum reference index for reference picture list O that shall be used to
decode each slice of the picture in which list 0 is used when num_ref idx_active override flag is equal to O for the slice.
When MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active minusl + 1 is the maximum index value for the decoding of field
macroblocks. The value of num_ref idx 10 active minusl shall be in the range of 0 to 31, inclusive.

num_ref idx 11 _active_minusl has the same semantics as num_ref idx 10 active minusl with 10 and list O replaced
by 11 and list 1, respectively.

weighted pred_flag equal to 0 specifies that weighted prediction shall not be applied to P and SP slices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted bipred idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices.
weighted bipred_idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted bipred_idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice qp delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init_gqp_minus26 shall be in the range of -26 to +25,
inclusive.

pic_init_qs_minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice qs delta is decoded. The value of
pic_init_gs_minus26 shall be in the range of -26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QP values.
The value of chroma qp_index_offset shall be in the range of -12 to +12, inclusive.

deblocking_filter _control present flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter control present flag equal to 0 specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

ITU-T Rec. H.264 (05/2003) 57

constrained_intra_pred_flag equal to O specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks
coded using Intra macroblock prediction modes. constrained intra pred flag equal to 1 specifies constrained intra
prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual
data and decoded samples from I or SI macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant pic cnt syntax element is not present in slice
headers, data partitions B, and data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set. redundant_pic_cnt present flag equal to 1 specifies that the redundant pic_cnt
syntax element is present in all slice headers, data partitions B, and data partitions C that refer (either directly or by
association with a corresponding data partition A) to the picture parameter set.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of bytes in the SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used within.
last_payload_type byte is the last byte of the payload type of an SEI message.
last_payload_size byte is the last byte of the size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set
listed in Table 7-2 for the given value of primary pic_type.

Table 7-2 — Meaning of primary_pic_type

primary_pic_type | slice_type values that may be present in the primary coded picture

I

L P

L,P,B

SI

SI, SP

I, SI

I, SI, P, SP
I, SI, P, SP, B

NN N | R |WIN]|=|O

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall
be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

58 ITU-T Rec. H.264 (05/2003)

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for
a filler data RBSP.

ff_byte is a byte equal to OxFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.
7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A
contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the data partition. Each slice shall have a unique slice id value within the
coded picture that contains the slice. When arbitrary slice order is not allowed as specified in Annex A, the first slice of a
coded picture, in decoding order, shall have slice_id equal to 0 and the value of slice id shall be incremented by one for
each subsequent slice of the coded picture in decoding order.

The range of slice id is specified as follows.
— If MbaffFrameFlag is equal to 0, slice id shall be in the range of 0 to PicSizeInMbs - 1, inclusive.
— Otherwise (MbaffFrameFlag is equal to 1), slice_id shall be in the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-7.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.

redundant_pic_cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
redundant pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant coded pictures.
When redundant pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant pic_cnt shall
be in the range of 0 to 127, inclusive.

The presence of a slice data partition B RBSP is specified as follows.

- If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3 in
the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

- Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-7.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.

The presence of a slice data partition C RBSP is specified as follows.

ITU-T Rec. H.264 (05/2003) 59

- If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4 in
the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

- Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same value of
slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in subclause
9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When entropy coding mode flag is
equal to 1, BinCountsInNALunits shall not exceed (32 + 3) * NumBytesInVcINALunits + 96 * PicSizeInMbs.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit is a single bit equal to 1.

rbsp_alignment_zero_bit is a single bit equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic parameter set id, frame num, field pic flag,
bottom_field flag, idr_pic _id, pic_order cnt_Isb, delta_pic_order cnt bottom, delta_pic_order cnt[0],
delta_pic_order cnt[1], sp_for_switch flag, and slice group change cycle shall be the same in all slice headers of a
coded picture.

first mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first mb_in_slice shall not be less than the value of first mb_in_slice for any other
slice of the current picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows.

— If MbaffFrameFlag is equal to 0, first mb_in_slice is the macroblock address of the first macroblock in the slice,
and first mb_in_slice shall be in the range of 0 to PicSizeInMbs - 1, inclusive.

— Otherwise (MbaftfFrameFlag is equal to 1), first mb_in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-3.

Table 7-3 — Name association to slice_type

slice_type Name of slice_type
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)

O |Q|N|n|[h|W|IN|~—]|O

60 ITU-T Rec. H.264 (05/2003)

slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value
of slice type — 5.

When nal_unit type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.
When num_ref frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter set id shall be in the range
of 0 to 255, inclusive.

frame num is used as an identifier for pictures and shall be represented by log2 max_frame num minus4 + 4 bits in
the bitstream. frame num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.
- If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

- Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set equal to the value of
frame num for the previous access unit in decoding order that contains a reference picture.

The value of frame num is constrained as follows.
- If the current picture is an IDR picture, frame num shall be equal to 0.

- Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true.

- the current picture and the preceding reference picture belong to consecutive access units in decoding order
- the current picture and the preceding reference picture are reference fields having opposite parity

- one or more of the following conditions is true
— the preceding reference picture is an IDR picture

— the preceding reference picture includes a memory management control operation syntax element equal
to 5

NOTE — When the preceding reference picture includes a memory management control operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equal to
PrevRefFrameNum

there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture

When the value of frame num is not equal to PrevRefFrameNum, the following applies.

— There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term
reference" that has a value of frame num equal to any value taken on by the variable UnusedShortTermFrameNum
in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-10)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

— The value of frame num is constrained as follows.

— If gaps_in_frame num_ value allowed flag is equal to 0, the value of frame num for the current picture shall
be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

— Otherwise (gaps_in_frame num_value allowed flag is equal to 1), the following applies.

— If frame num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order in
which either of the following conditions is true.

— The value of frame num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for the
current picture.

ITU-T Rec. H.264 (05/2003) 61

— Otherwise (frame _num is less than PrevRefFrameNum), there shall not be any non-reference pictures in
the bitstream that follow the previous reference picture and precede the current picture in decoding order
in which both of the following conditions are true.

— The value of frame num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for the
current picture.

A picture including a memory management_control_operation equal to 5 shall have frame num constraints as described
above and, after the decoding of the current picture and the processing of the memory management control operations,
the picture shall be inferred to have had frame num equal to O for all subsequent use in the decoding process, except as
specified in subclause 7.4.1.2.4.

NOTE — When the primary coded picture is not an IDR picture and does not contain memory management_control operation
syntax element equal to 5, the value of frame num of a corresponding redundant coded picture is the same as the value of
frame num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory management control operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field pic_flag equal to 0 specifies that the slice
is a slice of a coded frame. When field pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows.

MbaftfFrameFlag = (mb_adaptive frame field flag && !field pic flag) (7-11)

The variable for the picture height in units of macroblocks is derived as follows

PicHeightInMbs = FrameHeightInMbs / (1 + field pic flag) (7-12)

The variable for picture height for the luma component is derived as follows

PicHeightInSamples; = PicHeightInMbs * 16 (7-13)

The variable for picture height for the chroma component is derived as follows

PicHeightInSamplesc = PicHeightInMbs * 8 (7-14)

The variable PicSizeInMbs for the current picture is derived according to:

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-15)

The variable MaxPicNum is derived as follows.

- Iffield pic flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

- Otherwise (field pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.
The variable CurrPicNum is derived as follows.

- Iffield pic_flag is equal to 0, CurrPicNum is set equal to frame num.

- Otherwise (field pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame num + 1.

bottom_field flag equal to 1 specifies that the slice is part of a coded bottom field. bottom field flag equal to O
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr pic_id in all the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of
the first such IDR access unit shall differ from the idr pic_id in the second such IDR access unit. The value of
idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_Isb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The size of the pic_order cnt Isb syntax element is log2 max_pic_order cnt Isb minus4 + 4 bits. The
value of the pic_order _cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame as follows.

62 ITU-T Rec. H.264 (05/2003)

- If the current picture includes a memory management control operation equal to 5, the value of
delta_pic_order _cnt_bottom shall be in the range of (1 — MaxPicOrderCntLsb) to 2*' - 1, inclusive.

- Otherwise (the current picture does not include a memory management_control operation equal to 5), the value of
delta_pic_order cnt bottom shall be in the range of —2*' to 2°! - 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt| 0 | specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order cnt[O] shall be
in the range of -2*' to 2*' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt| 1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta_pic_order cnt[1] shall be in the range of -
231 t0 23! - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred
to be equal to 0.

redundant_pic_cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
value of redundant pic_cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE - There should be no noticeable difference between any area of the decoded primary picture and a corresponding area that
would result from application of the decoding process specified in clause 8 for any redundant picture in the same access unit.

The value of pic_parameter set id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of pic_order present flag in the picture parameter set in use in a redundant coded picture is equal to
the value of pic_order present flag in the picture parameter set in use in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field pic flag, bottom field flag, and idr pic id.

When the value of nal ref idc in one VCL NAL unit of an access unit is equal to 0, the value of nal ref idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE - The above constraint also has the following implications. If the value of nal ref idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal ref idc for the VCL NAL units of any corresponding redundant coded picture
are equal to 0; otherwise (the value of nal_ref idc for the VCL NAL units of the primary coded picture is greater than 0), the value
of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame num after the decoded reference picture marking process
as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the same
access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead of the
primary coded picture) of the access unit would be decoded.

NOTE - The above constraint also has the following implications.

If a primary coded picture is not an IDR picture, the contents of the dec_ref pic_marking() syntax structure must be identical in

all slice headers of the primary coded picture and all redundant coded pictures corresponding to the primary coded picture.

Otherwise (a primary coded picture is an IDR picture), the following applies.

If a redundant coded picture corresponding to the primary coded picture is an IDR picture, the contents of the

dec_ref pic_marking() syntax structure must be identical in all slice headers of the primary coded picture and the redundant
coded picture corresponding to the primary coded picture.

Otherwise (a redundant picture corresponding to the primary coded picture is not an IDR picture), all slice headers of the
redundant picture must contain a dec_ref pic_marking syntax() structure including a memory management_control operation
syntax element equal to 5, and the following applies.

If the value of long_term reference flag in the primary coded picture is equal to 0, the dec_ref pic_marking syntax structure of
the redundant coded picture must not include a memory management_control operation syntax element equal to 6.

Otherwise (the value of long_term reference flag in the primary coded picture is equal to 1), the dec _ref pic_marking syntax
structure of the redundant coded picture must include memory management_control operation syntax elements equal to 5, 4, and
6 in decoding order, and the value of max_long_term frame idx_plusl must be equal to 1, and the value of long_term_frame idx
must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical regardless
whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of the access
unit would be decoded.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.

ITU-T Rec. H.264 (05/2003) 63

However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.
NOTE — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and a coded redundant slice can be correctly decoded, the decoder should replace the samples of the

decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant pic_cnt should be used.

Redundant slices and slice data partitions having the same value of redundant pic_cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows.

- If direct spatial mv_pred flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B_Direct 8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

- Otherwise (direct_spatial mv_pred_flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B_Direct 8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref idx_active_override_flag equal to0O specifies that the values of the syntax elements
num_ref idx 10 active minusl and num ref idx 11 active minusl specified in the referred picture parameter set are in
effect. num ref idx active override flag equal to1l specifies that the num ref idx 10 active minusl and
num_ref idx 11 _active minusl specified in the referred picture parameter set are overridden for the current slice (and
only for the current slice) by the following values in the slice header.

When the current slice is a P, SP, or B slice and field pic flag is equal to0O and the value of
num_ref idx 10 active minusl in the picture parameter set exceeds 15, num ref idx active override flag shall be
equal to 1.

When the current slice is a B slice and field pic flag is equal to 0 and the value of num_ref idx 11 active minusl in the
picture parameter set exceeds 15, num_ref idx active override flag shall be equal to 1.

num_ref idx_l0_active_minus]1 specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

The range of num_ref idx 10 active minusl is specified as follows.

— If field pic flag is equal to 0, num_ref idx 10 active minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active_minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field pic_flag is equal to 1), num_ref idx 10 active_minus] shall be in the range of 0 to 31, inclusive.

num_ref idx 11 _active_minusl has the same semantics as num_ref idx 10 active_minusl with 10 and list 0 replaced
by 11 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac init idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QPy quantisation parameter for the slice is computed as:

SliceQPy =26 + pic_init_gp_minus26 + slice_qp_delta (7-16)

The value of slice_qp_delta shall be limited such that SliceQPy is in the range of 0 to 51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows.

- If sp_for switch flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

- Otherwise (sp_for_switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and SI
decoding process for switching pictures as specified in subclause 8.6.2.

slice_qs_delta specifies the value of QSy for all the macroblocks in SP and SI slices. The QSy quantisation parameter
for the slice is computed as:

QSy =26 + pic_init_qs minus26 + slice gs_delta (7-17)

64 ITU-T Rec. H.264 (05/2003)

The value of slice_qs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices with
prediction mode equal to inter.

disable_deblocking_filter idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable deblocking filter idc is not
present in the slice header, the value of disable deblocking filter idc shall be inferred to be equal to 0.

The value of disable deblocking filter idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the a and tcy deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = slice_alpha c0 offset div2 <<1 (7-18)

The value of slice_alpha c0 offset div2 shall be in the range of -6 to +6, inclusive. When slice_alpha c0 offset div2 is
not present in the slice header, the value of slice_alpha c0 offset div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the P deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the B table of
the deblocking filter shall be computed as:

FilterOffsetB = slice_beta offset div2 << (7-19)

The value of slice beta offset div2 shall be in the range of -6 to +6, inclusive. When slice beta offset div2 is not
present in the slice header the value of slice_beta offset div2 shall be inferred to be equal to 0.

slice_group_change cycle is used to derive the number of slice group map units in slice group 0 when
slice_group_map_type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change cycle * SliceGroupChangeRate, PicSizeInMapUnits) (7-20)

The value of slice_group change cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)) (7-21)

The value of slice_group change cycle shall be in the range of 0 to Ceil(PicSizeInMapUnits=+SliceGroupChangeRate),
inclusive.

7.4.3.1 Reference picture list reordering semantics

The syntax elements reordering of pic nums idc, abs diff pic num minusl, and long term pic num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref pic_list reordering_flag 10 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 0. ref pic list reordering flag 10 equal to O specifies that this syntax element is not
present.

When ref pic _list_reordering_flag 10 is equal to 1, the number of times that reordering of pic_nums_idc is not equal
to 3 following ref pic_list reordering_flag 10 shall not exceed num_ref idx 10 active minusl + 1.

When RefPicListO[num_ref idx 10 active minusl] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref pic_list reordering flag 10 shall be equal to1 and
reordering_of pic_nums_idc shall not be equal to 3 until RefPicListO[num_ref idx 10 active minusl] in the reordered
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

ref _pic_list reordering_flag 11 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 1. ref pic list reordering flag 11 equal to O specifies that this syntax element is not
present.

When ref pic list reordering flag 11 is equal to 1, the number of times that reordering_of pic nums idc is not equal
to 3 following ref pic list reordering flag 11 shall not exceed num ref idx 11 active minusl + 1.

When decoding a B slice and RefPicList][num ref idx 11 active minusl] in the initial reference picture list produced
as specified in subclause 8.2.4.2 is equal to "no reference picture", ref pic list reordering flag 11 shall be equal to 1 and
reordering_of pic nums_idc shall not be equal to 3 until RefPicListl[num ref idx 11 active minusl] in the reordered
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

ITU-T Rec. H.264 (05/2003) 65

reordering_of pic_nums_idc together with abs diff pic num minusl or long term pic num specifies which of the
reference pictures are re-mapped. The values of reordering_of pic nums_idc are specified in Table 7-4. The value of the
first reordering of pic nums idc that follows immediately after ref pic list reordering flag 10 or
ref pic_list reordering flag 11 shall not be equal to 3.

Table 7-4 — reordering_of pic_nums_idc operations for reordering of reference picture lists

reordering_of pic_nums_idc Reordering specified

0 abs_diff pic num minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff pic num_minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for reordering of the initial reference picture list

abs_diff pic_ num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. abs_diff pic num_minusl shall be in the
range of 0 to MaxPicNum — 1. The allowed values of abs_diff pic num minusl are further restricted as specified in
subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long term pic num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a
coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

chroma_log2 weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma log2 weight denom shall be in the range of 0 to 7, inclusive.

luma_weight 10 flag equal to 1 specifies that weighting factors for the luma component of list 0 prediction are present.
luma_weight 10 flag equal to O specifies that these weighting factors are not present.

luma_weight 10[i] is the weighting factor applied to the luma prediction value for list O prediction using
RefPicListO[i]. When luma_weight 10 flag is equal to 1, the value of luma_weight 10[i | shall be in the range of —128
to 127, inclusive. When luma weight 10 flag is equal to 0, luma weight 10[1] shall be inferred to be equal
to 2'vmalog2 weight denom £ R o fPicListO] i].

luma_offset_10] i] is the additive offset applied to the luma prediction value for list O prediction using RefPicList0[i].
The value of luma_offset 10[i] shall be in the range of —128 to 127, inclusive. When luma_weight 10 _flag is equal to 0,
luma_offset 10[i] shall be inferred as equal to O for RefPicListO[i].

chroma_weight_10_flag equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction
are present. chroma weight 10 flag equal to O specifies that these weighting factors are not present.

chroma_weight 10[i][]] is the weighting factor applied to the chroma prediction values for list O prediction using
RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight 10 flag is equal to 1, the value of
chroma_weight 10[i][j] shall be in the range of —128 to 127, inclusive. When chroma weight 10 flag is equal to 0,
chroma_weight 10[i][j] shall be inferred to be equal to 2¢tome-tog2-veight denom g5 R o fPic istO i].

chroma_offset 10[i][j] is the additive offset applied to the chroma prediction values for list 0 prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma offset 10[i][j] shall be in the
range of -128 to 127, inclusive. When chroma weight 10 flag is equal to 0, chroma offset 10[i][j] shall be inferred to
be equal to O for RefPicList0[i].

luma_weight 11 _flag, luma_weight 11, luma_offset_I1, chroma_weight 11 _flag, chroma_weight 11,
chroma_offset 11 have the same semantics as luma weight 10 flag, luma weight 10, Iuma offset 10,

66 ITU-T Rec. H.264 (05/2003)

chroma weight 10 flag, chroma weight 10, chroma offset 10, respectively, with 10, list 0, and List0 replaced by 11,
list 1, and List1, respectively.

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output of prior pics flag, long term reference flag, adaptive ref pic_marking mode flag,
memory_management_control_operation, difference of pic nums minusl, long term frame idx, long_term pic_num,
and max_long term_frame idx_plusl specify marking of the reference pictures.

non

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term
reference", but only one among these three. When a reference picture is referred to have the marking "used for reference”
this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference",
but not both.

The syntax element adaptive ref pic_marking mode flag and the content of the decoded reference picture marking
syntax structure shall be identical for all coded slices of a coded picture.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

- If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure shall be inferred to be equal to 2.

- Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure shall be inferred to be equal to 5.

no_output_of prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior pics flag has no effect on the decoding process. When the IDR picture is not the first IDR
picture in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame buffering derived from
the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or
max_dec_frame buffering derived from the sequence parameter set active for the preceding sequence,
no_output_of prior pics_flag equal to 1 may be inferred by the decoder, regardless of the actual value of
no_output_of prior pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameldx variable is set equal to “no long-term
frame indices” and that the IDR picture is marked as “used for short-term reference”. long_term_reference flag equal
to 1 specifies that the MaxLongTermFrameldx variable is set equal to 0 and that the current IDR picture is marked “used
for long-term reference” and is assigned LongTermFrameldx equal to 0. When num ref frames is equal to O,
long term reference flag shall be equal to 0.

adaptive_ref pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-5. adaptive ref pic_marking mode flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(num_ref frames, 1).

Table 7-5 — Interpretation of adaptive_ref pic_marking mode_flag

adaptive_ref pic_marking_mode_flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as “unused for reference” and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to manage the reference picture
marking. The memory management control operation syntax element is followed by data necessary for the operation
specified by the value of memory management control operation. The values and control operations associated with
memory _management_control operation are specified in Table 7-6. The memory management control operation
syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the
semantics constraints expressed for each memory management control operation apply at the specific position in that
order at which that individual memory management_control operation is processed.

ITU-T Rec. H.264 (05/2003) 67

memory management control operation shall not be equal to 1 in a slice header unless the specified short-term picture
is currently marked as "used for reference" when the memory management control operation is processed by the
decoding process, and the specified short-term picture has not been assigned to a long-term frame index and is not
assigned to a long-term frame index in the same decoded reference picture marking syntax structure.

memory management control operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a frame or field that is currently marked as '"used for reference” when the
memory management control operation is processed by the decoding process.

memory management control operation shall not be equal to3 in a slice header unless the specified short-term
reference picture is currently marked as "used for reference" when the memory management control operation is
processed by the decoding process and the specified short-term reference picture has not previously been assigned a
long-term frame index and is not assigned to any other long-term frame index within the same decoded reference picture
marking syntax structure.

memory management control operation shall not be equal to 3 or 6 when the value of the wvariable
MaxLongTermFrameldx is equal to "no long-term frame indices" when the memory management _control _operation is
processed by the decoding process.

Not more than one memory management control operation equal to 4 shall be present in a slice header.

memory management _control operation shall not be equal to 5 in a slice header wunless no
memory_management_control operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

Not more than one memory management control operation equal to 6 shall be present in a slice header.

When a memory management control_operation equal to 6 is present, any memory management _control operation
equal to 2, 3, or 4 that follows the memory management control operation equal to 6 within the same slice header shall
not specify the current picture to be marked as "unused for reference".

A memory management control operation equal to 6 shall not precede a memory management control operation
equal to 5 in the same slice header.

NOTE — These constraints prohibit any combination of multiple memory management control operation syntax elements that
would specify the current picture to be marked as "unused for reference". However, some other combinations of
memory_management control operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory management_control operation equal
to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same
slice header by a memory management control operation equal to 2, 3, or 4 that specifies the same reference picture to
subsequently be marked as "unused for reference".

No more than one memory management control operation shall be present in a slice header that specifies the same
action to be taken.

Table 7-6 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory_management control operation
loop
1 Mark a short-term picture as

“unused for reference”

2 Mark a frame or field having a long-term
picture number as
“unused for reference”

3 Assign a long-term frame index to a short-
term picture

Specify the maximum long-term frame index

5 Mark all reference pictures as "unused for
reference"” and set the
MaxLongTermFrameldx variable to "no long-
term frame indices"

6 Assign a long-term frame index to the current
decoded picture

68 ITU-T Rec. H.264 (05/2003)

When decoding a field and a memory management control operation command equal to 3 assigns a long-term frame
index to a field that is part of a short-term reference frame or a short-term complementary reference field pair, another
memory management control operation command to assign the same long-term frame index to the other field of the
same frame or complementary reference field pair shall be present in the same decoded reference picture marking syntax
structure.

When the first field (in decoding order) of a complementary reference field pair includes a long term reference flag
equal to 1 or a memory management control operation command equal to 6, the decoded reference picture marking
syntax structure for the other field of the complementary reference field pair shall contain a
memory_management_control_operation command equal to 6 that assigns the same long-term frame index to the other
field.

difference_of pic_nums_minusl is used (with memory management control operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as “unused for
reference”. When the associated memory management control operation is processed by the decoding process, the
resulting picture number derived from difference of pic_nums_minus] shall be a picture number assigned to one of the
reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows.

- If field pic flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.
NOTE — When field pic_flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference". In particular, when field_pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory management control operation equal to 1.

- Otherwise (field pic flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory management control operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory management control operation is processed by the
decoding process, long term_pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows.

- If field pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.
NOTE — When field pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture number
assigned to a complementary reference field pair in which both fields are marked as "used for reference" or a frame in
which both fields are marked as "used for reference". In particular, when field pic flag is equal to 0, the marking of a
non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory _management_control operation equal to 2.

- Otherwise (field pic flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory management control operation equal to 3 or 6) to assign a long-term
frame index to a picture. When the associated memory management control operation is processed by the decoding
process, the value of long_term frame idx shall be in the range of 0 to MaxLongTermFrameldx, inclusive.

max_long term_frame idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for long-
term reference pictures (until receipt of another value of max long term frame idx plusl). The value of
max_long term frame idx plusl shall be in the range of 0 to num_ref frames, inclusive.

7.4.4 Slice data semantics
cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or for
which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred
to as a B macroblock type. The value of mb_skip run shall be in the range of 0 to PicSizeInMbs — CurrMbAddr,
inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when

ITU-T Rec. H.264 (05/2003) 69

decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip flag equal to 0 specifies that the current macroblock is not skipped.

mb_field_decoding_flag equal to O specifies that the current macroblock pair is a frame macroblock pair.
mb_field decoding flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field macroblock
pair are referred to in the text as field macroblocks.

When mb field decoding flag is not present for either macroblock of a macroblock pair, the value of
mb_field decoding flag is derived as follows.

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,
the value of mb_field decoding flag shall be inferred to be equal to the value of mb field decoding flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in the
same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the same
slice, the value of mb_field decoding_flag shall be inferred to be equal to the value of mb_field decoding_flag for
the neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the current
macroblock pair in the same slice), the value of mb_field decoding_flag shall be inferred to be equal to 0.

end_of slice_flag equal to 0 specifies that another macroblock is following in the slice. end of slice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in subclause 8.2.2.

7.4.5 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents the
value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the NumMbPart(mb_type)
function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by “na”. In the text, the value
of mb_type may be referred to as the macroblock type and a value X of MbPartPredMode() may be referred to in the
text by "X macroblock (partition) prediction mode" or as “X prediction macroblocks”.

Table 7-7 shows the allowed collective macroblock types for each slice_type.
NOTE — There are some macroblock types with Pred L0 prediction mode that are classified as B macroblock types.

Table 7-7 — Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types

I (slice) I (see Table 7-8) (macroblock types)

P (slice) P (see Table 7-10) and I (see Table 7-8) (macroblock types)
B (slice) B (see Table 7-11) and I (see Table 7-8) (macroblock types)
SI (slice) SI (see Table 7-9) and I (see Table 7-8) (macroblock types)
SP (slice) P (see Table 7-10) and I (see Table 7-8) (macroblock types)

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-8.

The macroblock types for I slices are all I macroblock types.

70 ITU-T Rec. H.264 (05/2003)

Table 7-8 — Macroblock types for I slices

g =
3 : g
g 3 S = 2
> S ™ E Q =
5 Hl 2 c,\ g E g
[=9 = = = 12 b=
= 5] P = A b=} <
| = e o £ &
) S v = = o)
g o == 3 o) S
g & E - = 2
= 8 — g =) L=}
g = E 3 3
@]

0 1 4x4 Intra_4x4 na Equation 7-22 Equation 7-22
1 1 16x16 0 0 0 Intra_16x16 0 0 0
2 [16x16_1 00 Intra_16x16 1 0 0
3 [16x16 2 0 0 Intra_16x16 2 0 0
4 I 16x16_3 0 0 Intra_16x16 3 0 0
5 [16x16.0_1 0 Intra_16x16 0 1 0
6 [16x16 110 Intra_16x16 1 1 0
7 [16x16.2 1 0 Intra_16x16 2 1 0
8 [16x16 3 10 Intra_16x16 3 1 0
9 [16x16 0.2 0 Intra_16x16 0 2 0
10 [16x16.12 0 Intra_16x16 1 2 0
11 [16x16 2 2 0 Intra_16x16 2 2 0
12 [16x16 3 2 0 Intra_16x16 3 2 0
13 [16x16_0 0 1 Intra_16x16 0 0 15
14 [16x16 1 0 1 Intra_16x16 1 0 15
15 I 16x16_2 0 1 Intra_16x16 2 0 15
16 [16x16 3 01 Intra_16x16 3 0 15
17 [16x16 0 1 1 Intra_16x16 0 1 15
18 [16x16_1 11 Intra_16x16 1 1 15
19 [16x16 2 1 1 Intra_16x16 2 1 15
20 [16x16.3 1 1 Intra_16x16 3 1 15
21 [16x16 0 2 1 Intra_16x16 0 2 15
22 [16x16 1 2 1 Intra_16x16 1 2 15
23 [16x16_2 2 1 Intra_16x16 2 2 15
24 [16x16 3 2 1 Intra_16x16 3 2 15
25 I PCM na na na na

The following semantics are assigned to the macroblock types in Table 7-8:

I_4x4: the macroblock is coded as an Intra_4x4 prediction macroblock.

ITU-T Rec. H.264 (05/2003)

71

I 16x16 0 0 0,1 16x16 1 0 0,1 16x16 2 0 0,1 16x16 3 0 0,1 16x16 0 1 0,1 16x16 1 1 0,1 16x16 2 1 0,
I 16x16 3 1 0,1 16x16 0 2 0,1 16x16 1 2 0,1 16x16 2 2 0,1 16x16 3 2 0,1 16x16 0 0 1,1 16x16 1 0 1,
I 16x16 2 0 1,1 16x16 3 0 1,1 16x16 0 1 1,1 16x16 1 1 1,1 16x16 2 1 1,1 16x16 3 1 1,1 16x16 0 2 1,
[16x16 1 2 1,1 16x16 2 2 1,1 16x16 3 2 1:the macroblock is coded as an Intra 16x16 predlctlon mode
macroblock.

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra 16x16
prediction mode. CodedBlockPatternChroma contains the coded block pattern value for chroma as specified in
Table 7-12. CodedBlockPatternLuma specifies whether, for the luma component, non-zero AC transform coefficient
levels are present. CodedBlockPattern.uma equal to O specifies that all AC transform coefficient levels in the luma
component of the macroblock are equal to 0. CodedBlockPatternLuma equal to 15 specifies that at least one AC
transform coefficient levels in the luma component of the macroblock is non-zero, requiring scanning of AC transform
coefficient levels for all 16 of the 4x4 blocks in the 16x16 block.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra 4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked
as specified in subclause 8.3.2. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-9.

The macroblock types for SI slices are specified in Table 7-9 and Table 7-8. The mb_type value 0 is specified in
Table 7-9 and the mb_type values 1 to 26 are specified in Table 7-8, indexed by subtracting 1 from the value of mb_type.

Table 7-9 — Macroblock type with value 0 for SI slices

mb_type
Name of mb_type
MbPartPredMode
(mb_type, 0)
Intral6x16PredMode
CodedBlockPatternChroma
CodedBlockPatternLuma

0 SI Intra_4x4 na Equation 7-22 | Equation 7-22

The following semantics are assigned to the macroblock type in Table 7-9. The SI macroblock is coded as Intra_4x4
prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-10.

The macroblock types for P and SP slices are specified in Table 7-10 and Table 7-8. mb_type values 0 to 4 are specified
in Table 7-10 and mb_type values 5 to 30 are specified in Table 7-8, indexed by subtracting 5 from the value of
mb_type.

72 ITU-T Rec. H.264 (05/2003)

Table 7-10 — Macroblock type values 0 to 4 for P and SP slices

g < S
& T~ S S ﬁ ~ E ~_~
@ ;I 5 % < % - = .%b @
i g == c & TE |2z | &
| = =7 o Lol S 7 £t
) S =2 € € s 2 =2
E 2 EE << =< SE | &E
= -\ = 2 2
z > =
0 P_LO 16x16 1 Pred LO na 16 16
1 P_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
2 P LO_LO 8x16 2 Pred_LO Pred_LO 8 16
3 P 8x8 4 na na 8 8
4 P 8x8refl 4 na na 8 8
inferred P_Skip 1 Pred LO na 16 16

The following semantics are assigned to the macroblock types in Table 7-10.
P L0 _16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

P L0 LO _MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two
luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated

chroma samples, respectively.

P_8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref idx_10) is present in
the bitstream and ref idx 10[mbPartldx] shall be inferred to be equal to 0 for all sub-macroblocks of the

macroblock (with indices mbPartldx equal to 0..3).

— P_Skip: no further data is present for the macroblock in the bitstream.
The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-10.

Pred LO: specifies that the inter prediction process is invoked using list 0 prediction. Pred L0 is an Inter
macroblock prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-11.

The macroblock types for B slices are specified in Table 7-11 and Table 7-8. The mb_type values 0 to 22 are specified in
Table 7-11 and the mb_type values 23 to 48 are specified in Table 7-8, indexed by subtracting 23 from the value of

mb_type.

ITU-T Rec. H.264 (05/2003) 73

Table 7-11 — Macroblock type values 0 to 22 for B slices

g < S
& T~ S S :E ~_~ E ~_~
© ;I 5% % < % - = .%‘J @
= g =z e E e z2| £&
I = =7 o] Fo S £
= S s € €) s 2
= @ 5 E s2 S2 & E &g
< L~ =~ 2 E
z > =
0 B Direct 16x16 na Direct na 8 8
1 B_LO_16x16 1 Pred_LO na 16 16
2 B L1_16x16 1 Pred L1 na 16 16
3 B Bi_16x16 1 BiPred na 16 16
4 B_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
5 B L0 _LO_8x16 2 Pred_LO Pred_LO 8 16
6 B L1 L1 16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 _8x16 2 Pred L1 Pred L1 8 16
8 B LO L1 16x8 2 Pred_LO Pred L1 16 8
9 B L0 L1 8x16 2 Pred LO Pred L1 8 16
10 B L1_L0O_16x8 2 Pred L1 Pred_LO 16 8
11 B L1 _LO_8x16 2 Pred L1 Pred_LO 8 16
12 B L0 Bi 16x8 2 Pred LO BiPred 16 8
13 B_LO_Bi_8x16 2 Pred_LO BiPred 8 16
14 B L1 Bi_16x8 2 Pred L1 BiPred 16 8
15 B L1 Bi 8x16 2 Pred L1 BiPred 8 16
16 B Bi_L0_16x8 2 BiPred Pred_LO 16 8
17 B Bi_L0_8x16 2 BiPred Pred_LO 8 16
18 B Bi L1 16x8 2 BiPred Pred L1 16 8
19 B Bi_L1_8x16 2 BiPred Pred L1 8 16
20 B Bi_Bi_16x8 2 BiPred BiPred 16 8
21 B Bi Bi 8x16 2 BiPred BiPred 8 16
22 B 8x8 4 na na 8 8
inferred B_Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-11:

74

B_Direct _16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct 16x16), and MbPartHeight(B Direct 16x16) are used in the derivation
process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B_X 16x16 with X being replaced by LO, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B X 16x16 with X being replaced by either LO or L1, one motion vector difference and one reference index is

ITU-T Rec. H.264 (05/2003)

present in the bitstream for the macroblock. For a macroblock with type B X 16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macroblock.

— B X0 X1 MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by L0, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

— B _8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
subclause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-11.

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct 16x16) in the bitstream. Direct is an Inter macroblock prediction mode.

— Pred LO: see semantics for Table 7-10.

— Pred L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred L1 is an Inter
macroblock prediction mode.

— BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_byte[1] is a sample value. pcm_byte[i] shall not be equal to 0. The first 256 pcm_byte[i] values represent luma
sample values in the raster scan within the macroblock. The next (256 * (ChromaFormatFactor-1))/2 pcm_byte[i]
values represent Cb sample values in the raster scan within the macroblock. The last
(256 * (ChromaFormatFactor - 1)) /2 pcm_byte[i] values represent Cr sample values in the raster scan within the
macroblock.

coded_block pattern specifies which of the six 8x8 blocks - luma and chroma — may contain non-zero transform
coefficient levels. For macroblocks with prediction mode not equal to Intra_16x16, coded_block pattern is present in the
bitstream and the variables CodedBlockPatternLuma and CodedBlockPatternChroma are derived as follows.

CodedBlockPatternLuma = coded_block pattern % 16
CodedBlockPatternChroma = coded_block pattern / 16 (7-22)

When coded block pattern is present, CodedBlockPatternLuma specifies, for each of the four 8x8 luma blocks of the
macroblock, one of the following cases.

- All transform coefficient levels of the four 4x4 luma blocks in the 8x8 luma block are equal to zero

- One or more transform coefficient levels of one or more of the 4x4 luma blocks in the 8x8 luma block shall be non-
zero valued.

The meaning of CodedBlockPatternChroma is specified in Table 7-12.

Table 7-12 — Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.
1 One or more chroma DC transform coefficient levels shall be non-zero
valued.

All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero
valued.

ITU-T Rec. H.264 (05/2003) 75

mb_qp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_qp_delta shall be in the
range of -26 to +25, inclusive. mb_qp_delta shall be inferred to be equal to 0 when it is not present for any macroblock
(including P_Skip and B_Skip macroblock types).

The value of QPy is derived as

QPy = (QPyprev + mb_qp_delta +52) % 52 (7-23)

where QPy prey 1s the luma quantisation parameter, QPy, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPy prey is initially set equal to SliceQPy derived in Equation 7-16 at the start
of each slice.

7.4.5.1 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intra4x4 pred_mode flag] luma4x4Blkldx | and rem_intradx4 pred mode[luma4x4Blkldx | specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma in macroblocks using Intra_4x4 or
Intra_16x16 prediction, as shown in Table 7-13.

Table 7-13 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref _idx_l0[mbPartldx | when present, specifies the index in list O of the reference picture to be used for prediction.

The range of ref idx_10[mbPartldx], the index in list O of the reference picture, and, if applicable, the parity of the field
within the reference picture used for prediction are specified as follows.

- If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, the value of ref idx 10[mbPartldx] shall
be in the range of 0 to num_ref idx 10 active minusl, inclusive.

- Otherwise (MbaffFrameFlag is equal tol and mb field decoding flag is equal to1), the value of
ref idx 10[mbPartldx] shall be in the range of 0 to 2 * num_ref idx 10 active minusl + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref idx 10[mbPartldx] shall be inferred to be
equal to 0.

ref _idx_11[mbPartldx | has the same semantics as ref_idx_10, with 10 and list O replaced by 11 and list 1, respectively.

mvd_10[mbPartldx |[0][compldx | specifies the difference between a vector component to be used and its prediction.
The index mbPartldx specifies to which macroblock partition mvd 10 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned Compldx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
Compldx = 1. The range of the components of mvd 10[mbPartldx][O][compldx] is specified by constraints on the
motion vector variable values derived from it as specified in Annex A.

mvd_11[mbPartldx |[0][compldx | has the same semantics as mvd 10, with 10 and LO replaced by 11 and L1,
respectively.

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, SP, and B slices. Each table presents the
value of sub_mb_type, the name of sub mb type, the number of sub-macroblock partitions used (given by the
NumSubMbPart(sub_mb_type) function), and the prediction mode of the sub-macroblock (given by the

76 ITU-T Rec. H.264 (05/2003)

SubMbPredMode(sub_mb_type) function). In the text, the value of sub mb type may be referred to by “sub-
macroblock type”. In the text, the value of SubMbPredMode() may be referred to by “sub-macroblock prediction
mode”.

The sub-macroblock types for P macroblock types are specified in Table 7-14.

Table 7-14 — Sub-macroblock types in P macroblocks

= = = = P P
= = = = = =
= = S o F =% -
5 5 L | 2% £k 55
A A & A = & = A 5 A
= =2 5= 2= == = =
= oE S E T E T E =
T Eg =3 £ g5 g3
=3 < 2 -3 = & = & 2 &
z z z €=z Sz sz sz
2 2 E 2l zc 3 2 Z 2
EI EI z EI 7] EI) EI & El
)) = = o o
= = C C = =
w w wn wn w» w»
0 P LO 8x8 1 Pred LO 8 8
1 P L0 8x4 2 Pred_LO 8 4
2 P LO 4x8 2 Pred LO 4 8
3 P L0 4x4 4 Pred LO 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-14.

P L0 MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma
partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-14.

Pred LO: see semantics for Table 7-10.

ITU-T Rec. H.264 (05/2003) 71

The sub-macroblock types for B macroblock types are specified in Table 7-15.

Table 7-15 — Sub-macroblock types in B macroblocks

" - - - - -
= = = < = =
= = - ST =T | ET
= < FR B= S s o &
5 <5 £ | 2% | 35| &
1) = = z =
g o g = =} S E c E t E
I} £ =7 &3 iy iy
=3 S = & = o = = & &
z .z RS Sz sz sz
2 2 PN e N = 2 22
El EI z EI 7] EI n EI a EI
) 2 2 2 2 2
= = = = = =
v w w w w w
na B_Skip na Direct 4 4
na B Direct_16x16 na Direct 4 4
0 B _Direct 8x8 na Direct 4 4
1 B LO_8x8 1 Pred_LO 8 8
2 B L1 8x8 1 Pred L1 8 8
3 B Bi 8x8 1 BiPred 8 8
4 B LO_8x4 2 Pred_LO 8 4
5 B L0 4x8 2 Pred LO 4 8
6 B L1 8x4 2 Pred L1 8 4
7 B L1 _4x8 2 Pred L1 4 8
8 B Bi 8x4 2 BiPred 8 4
9 B Bi 4x8 2 BiPred 4 8
10 B LO_4x4 4 Pred_LO 4 4
11 B L1 4x4 4 Pred L1 4 4
12 B Bi 4x4 4 BiPred 4 4

The following semantics are assigned to the macroblock types in Table 7-15:

B Skip and B Direct 16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B Direct 8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B X MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-macroblock
are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-macroblock are
predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively. All
sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition in a sub-
macroblock with sub_mb_type being B_ X MxN with X being replaced by either LO or L1, one motion vector
difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock with sub_mb_type
being B Bi_MxN, two motion vector difference are present in the bitstream.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-15.

78

ITU-T Rec. H.264 (05/2003)

— Direct: see semantics for Table 7-11.
— Pred LO: see semantics for Table 7-10.
— Pred L1: see semantics for Table 7-11.

— BiPred: see semantics for Table 7-11.

ref _idx_10[mbPartldx | has the same semantics as ref idx_10 in subclause 7.4.5.1.
ref_idx_I1[mbPartldx | has the same semantics as ref idx 11 in subclause 7.4.5.1.

mvd_10[mbPartldx][subMbPartldx][compldx | has the same semantics as mvd 10 in subclause 7.4.5.1, except that it
is applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_10 is assigned.

mvd_11[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd 11 in subclause 7.4.5.1.

7.4.5.3 Residual data semantics
The syntax structure residual block(), which is used for parsing the transform coefficient levels, is assigned as follows.

- If entropy coding mode flag is equal to 0, residual block is set equal to residual block cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

- Otherwise (entropy_coding_mode flag is equal to 1), residual block is set equal to residual block cabac, which is
used for parsing the syntax elements for transform coefficient levels.

Depending on mb_type, luma or chroma, the syntax structure residual block(coeffLevel, maxNumCoeff) is used with
the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block(), and maxNumCoeff as follows.

- Depending on MbPartPredMode(mb_type, 0), the following applies.

- If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the
list Intral6x16DCLevel and into the 16 lists Intral6x16ACLevel[i1]. Intral6x16DCLevel contains the 16
transform coefficient levels of the DC transform coefficient levels for each 4x4 luma block. For each of the 16
4x4 luma blocks indexed by i = 0..15, the 15 AC transform coefficients levels of the i-th block are parsed into
the i-th list Intral6x16ACLevel[i].

- Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra 16x16), for each of the 16 4x4 luma blocks
indexed by i = 0..15, the 16 transform coefficient levels of the i-th block are parsed into the i-th list
LumaLevel[i].

- For each chroma component, indexed by iCbCr = 0..1, the 4 DC transform coefficient levels of the 4x4 chroma
blocks are parsed into iCbCr-th list ChromaDCLevel[iCbCr].

- For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3, of each chroma component, indexed by iCbCr = 0..1, the
15 AC transform coefficient levels are parsed into the i4x4-th list of the iCbCr-th chroma component
ChromaACLevel[iCbCr][i4x4].

7.4.5.3.1 Residual block CAVLC semantics

The function TotalCoeff(coeff token) that is used in subclause 7.3.5.3.1 returns the number of non-zero transform
coefficient levels derived from coeff token.

The function TrailingOnes(coeff token) that is used in subclause 7.3.5.3.1 returns the trailing ones derived from
coeff token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff token is specified in subclause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows.
- Iftrailing ones sign flag is equal to 0, the corresponding transform coefficient level is decoded as +1.

- Otherwise (trailing_ones_sign flag equal to 1), the corresponding transform coefficient level is decoded as -1.

ITU-T Rec. H.264 (05/2003) 79

level prefix and level suffix specify the value of a non-zero transform coefficient level. The range of level prefix and
level suffix is specified in subclause 9.2.2.

total zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total zeros is specified
in subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a non-
zero valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.2 Residual block CABAC semantics

coded_block flag specifies whether the block contains non-zero transform coefficient levels as follows.

- Ifcoded block flag is equal to 0, the block contains no non-zero transform coefficient levels.

- Otherwise (coded block flag is equal to 1), the block contains at least one non-zero transform coefficient level.
significant_coeff flag[i | specifies whether the transform coefficient level at scanning position i is non-zero as follows.
- Ifsignificant coeff flag[i]is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

- Otherwise (significant_coeff flag[i] is equal to 1), the transform coefficient level at scanning position i has a non-
zero value.

last_significant_coeff flag| i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positions i + 1 to maxNumCoeff — 1 as follows.

- If last_significant coeff flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0..

- Otherwise (last_significant_coeff flag[i] is equal to 0), there are further non-zero transform coefficient levels along
the scanning path.

coeff _abs level minusl[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff abs level minusl is constrained by the limits in subclause 8.5.

coeff _sign_flag| i | specifies the sign of a transform coefficient level as follows.
- Ifcoeff sign flag is equal to 0, the corresponding transform coefficient level has a positive value.
- Otherwise (coeff sign flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process
Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).
This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a primary picture. Each slice referred to in this clause is a slice of a primary
picture. Each slice data partition referred to in this clause is a slice data partition of a primary picture.

An overview of the decoding process is given as follows.
- The decoding of NAL units is specified in subclause 8.1.
- The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above.

- Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one slice of a picture)

- Variables and functions relating to the macroblock to slice group map are derived in subclause 8.2.2. (only
needed to be invoked for one slice of a picture)

80 ITU-T Rec. H.264 (05/2003)

8.1

The method of combining the various partitions when slice data partitioning is used is described in subclause
8.2.3.

Prior to decoding each slice, the derivation of reference picture lists as described in 8.2.4 is necessary for inter
prediction.

When the current picture is a reference picture and after all slices of the current picture have been decoded, the
decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in the
decoding process of inter prediction in later decoded pictures.

The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

The intra prediction process for I and SI macroblocks, except for I PCM macroblocks as specified in
subclause 8.3, has intra prediction samples as its output. For I PCM macroblocks subclause 8.3 directly
specifies a picture construction process. The output are the constructed samples prior to the deblocking filter
process.

The inter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction samples
being the output.

The transform coefficient decoding process and picture construction process prior to deblocking filter process
are specified in subclause 8.5. That process derives samples for I and B macroblocks and for P macroblocks in P
slices. The output are constructed samples prior to the deblocking filter process.

The decoding process for P macroblocks in SP slices or SI macroblocks is specified in subclause 8.6. That
process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are constructed
samples prior to the deblocking filter process.

The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the decoded
samples.

NAL unit decoding process

Inputs to this process are NAL units.

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1, 2, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 to 5.

NAL units with nal unit type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal unit_type equal to 6, 9, 10, 11, and 12.

ITU-T Rec. H.264 (05/2003) 81

8.2 Slice decoding process

8.2.1 Decoding process for picture order count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.4.2.3 and 8.2.4.2.4), to represent picture order differences between frames or fields for motion vector
derivation in temporal direct mode (see subclause 8.4.1.2.3), for implicit mode weighted prediction in B slices (see
subclause 8.4.2.3.2), and for decoder conformance checking (see subclause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

- Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

- Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

- Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory management control operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set equal
to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt - tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt - tempPicOrderCnt.

The bitstream shall not contain data that results in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to 0 for a
coded IDR frame, TopFieldOrderCnt not equal to 0 for a coded IDR top field, or BottomFieldOrderCnt not equal to 0 for
a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to 0 for the
fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies.

- Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following

- the first picture in the list is the previous picture of any of the following types
- an IDR picture
- apicture containing a memory management_control_operation equal to 5

- the following additional pictures.

- If pic_order cnt type is equal to 0, all other pictures that follow in decoding order after the first picture in the
list and are not "non-existing" frames inferred by the decoding process for gaps in frame num specified in
subclause 8.2.5.2 and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is equal to 0 and the current picture is not a "non-existing" frame inferred by the decoding
process for gaps in frame num specified in subclause 8.2.5.2, the current picture is included in listD prior to the
invoking of the decoded reference picture marking process.

- Otherwise (pic_order cnt type is not equal to 0), all other pictures that follow in decoding order after the first
picture in the list and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is not equal to 0, the current picture is included in listD prior to the invoking of the decoded
reference picture marking process.

- Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not contain
any of the following.

- a pair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not at
consecutive positions in listO.

- a TopFieldOrderCnt that has a value equal to another TopFieldOrderCnt.

- aBottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt.

82 ITU-T Rec. H.264 (05/2003)

- a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt and
TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that results in values of TopFieldOrderCnt, BottomFieldOrderCnt, PicOrderCntMsb,
or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that exceed the range of
values from -2*' to 2°!-1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field

pair picX
else if(picX is a top field)
PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)

else if(picX is a bottom field)
PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) - PicOrderCnt(picB) (8-2)

The bitstream shall contain data that results in values of DiffPicOrderCnt(picA, picB) used in the decoding process that
are in the range of -2'° to 2" - 1, inclusive.
NOTE - Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in the

same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

NOTE — Many applications assign PicOrderCnt(X) proportional to the sampling time of the picture X relative to the sampling
time of an IDR picture.

When the current picture includes a memory management control operation equal to 5, PicOrderCnt(CurrPic) shall be
greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0
This process is invoked when pic_order cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this
subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

- If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

- Otherwise (the current picture is not an IDR picture), the following applies.

- If the previous reference picture in decoding order included a memory management control operation equal
to 5, the following applies.

- If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

- Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is set
equal to 0 and prevPicOrderCntLsb is set equal to 0.

- Otherwise (the previous reference picture in decoding order did not include a
memory_management_control operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order cnt_lIsb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as follows:

if((pic_order cnt Isb < prevPicOrderCntLsb) &&
((prevPicOrderCntLsb — pic_order_cnt_Isb) >= (MaxPicOrderCntLsb/2)))
PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order_cnt Isb > prevPicOrderCntLsb) &&
((pic_order cnt_Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

ITU-T Rec. H.264 (05/2003) 83

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else
PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as follows:

if(field pic flag || !bottom field flag)
TopFieldOrderCnt = PicOrderCntMsb + pic_order cnt lsb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as follows:

if(!field_pic_flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order _cnt bottom

else if(bottom_field flag) (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order cnt Isb

8.2.1.2 Decoding process for picture order count type 1

This process is invoked when pic_order cnt type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this subclause. Let
prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a "non-
existing" frame inferred by the decoding process for gaps in frame num specified in subclause 8.2.5.2.

The derivation proceeds in the following ordered steps.

1.

84

The variable FrameNumOffset is derived as follows:

if(nal unit type == 5)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable absFrameNum is derived as follows:

if(num_ref frames in pic_order cnt cycle != 0)
absFrameNum = FrameNumOffset + frame num

else (8-7)
absFrameNum = 0

if(nal ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as follows:

if(absFrameNum > 0) {
picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order cnt cycle
frameNumlInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames in_pic_order cnt cycle (8-8)

}

ITU-T Rec. H.264 (05/2003)

4. The variable expectedDeltaPerPicOrderCntCycle is derived as follows:

expectedDeltaPerPicOrderCntCycle = 0
for(1=0; i <num ref frames in pic order cnt cycle; i++)
expectedDeltaPerPicOrderCntCycle += offset for ref frame[1i]

5. The variable expectedPicOrderCnt is derived as follows:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * expectedDeltaPerPicOrderCntCycle
for(1= 0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset for ref frame[i]
} else
expectedPicOrderCnt = 0
if(nal_ref ide == 0)
expectedPicOrderCnt = expectedPicOrderCnt + offset for non_ref pic

6. The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field pic flag) {
TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[O]
BottomFieldOrderCnt = TopFieldOrderCnt +
offset for top to bottom field + delta_pic_order cnt[1]
} else if(!bottom_field flag)
TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[O]
else

(8-9)

(8-10)

(8-11)

BottomFieldOrderCnt = expectedPicOrderCnt + offset for top to bottom field + delta_pic_order cnt[0]

8.2.1.3 Decoding process for picture order count type 2
This process is invoked when pic_order cnt type is equal to 2.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

- If the previous picture in decoding order included a memory management control operation equal to S5,

prevFrameNumOffset is set equal to 0.

- Otherwise (the previous picture in decoding order did not include a memory management control_operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a "non-

existing" frame inferred by the decoding process for gaps in frame num specified in subclause 8.2.5.2.

The variable FrameNumOffset is derived as follows.

if(nal unit type == 5)

FrameNumOffset = 0
else if(prevFrameNum > frame num)

FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as follows:

if(nal_unit_type == 5)

tempPicOrderCnt = 0
else if(nal ref idc == 0)

tempPicOrderCnt = 2 * (FrameNumOffset + frame num) — 1
else

tempPicOrderCnt =2 * (FrameNumOffset + frame num)

ITU-T Rec. H.264 (05/2003)

(8-12)

(8-13)

85

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(field pic flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-14)
} else if(bottom_field flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE - Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures that
would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these pictures
having the same value of BottomFieldOrderCnt.

NOTE —Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.
Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE - The output of this process is equal for all slices of a picture.

When num_slice_groups_minus] is equal to 1 and slice_group_map _type is equal to 3, 4, or 5, slice groups 0 and 1 have
a size and shape determined by slice_group change direction_flag as shown in Table 8-1 and specified in subclauses
8.2.2.4-8.2.2.6.

Table 8-1 — Refined slice group map type

slice_group_map_type slice_group_change_direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, MapUnitsInSliceGroupO slice group map units in the specified growth order are allocated for slice group
0 and the remaining PicSizeInMapUnits — MapUnitsInSliceGroup0 slice group map units of the picture are allocated for
slice group 1.

When num_slice_groups minusl is equal to1l and slice group map type is equal to4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group change direction_flag ?
(PicSizeInMapUnits — MapUnitsInSliceGroup0) : MapUnitsInSliceGroup0) (8-15)

The variable mapUnitToSliceGroupMap is derived as follows.

- If num slice groups minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits — 1, inclusive, as specified by:

mapUnitToSliceGroupMap[1] =0 (8-16)

- Otherwise (num_slice groups minus] is not equal to 0), mapUnitToSliceGroupMap is derived as follows.

— If slice group map type is equal to 0, the derivation of mapUnitToSliceGroupMap as specified in
subclause 8.2.2.1 applies.

— Otherwise, if slice group map type is equal to 1, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.2 applies.

— Otherwise, if slice group map type is equal to 2, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.3 applies.

86 ITU-T Rec. H.264 (05/2003)

— Otherwise, if slice _group map type is equal to 3, the derivation of mapUnitToSliceGroupMap as

specified in subclause 8.2.2.4 applies.

— Otherwise, if slice group map type is equal to4, the derivation of mapUnitToSliceGroupMap as

specified in subclause 8.2.2.5 applies.

— Otherwise, if slice group map type is equal to 5, the derivation of mapUnitToSliceGroupMap as

specified in subclause 8.2.2.6 applies.

— Otherwise (slice_group_map_type is equal to 6), the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.2.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
After derivation of the macroblock to slice group map as specified in subclause 8.2.2.8, the function NextMbAddress(n)

is defined as the value of the variable nextMbAddress derived as specified by:

i=n+1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] != MbToSliceGroupMap[n |)
it+;

nextMbAddress = i

8.2.2.1 Specification for interleaved slice group map type
The specifications in this subclause apply when slice _group map_type is equal to 0.
The map unit to slice group map is generated as specified by:

i=0

do

for(iGroup = 0; iGroup <= num_slice_groups minusl && i < PicSizeInMapUnits;
i+=run_length minusl[iGroup++]+1)
for(j=0;j <=run_length minusl[iGroup] && i+ j < PicSizeInMapUnits; j++)
mapUnitToSliceGroupMap(i +j | = iGroup

while(i < PicSizeInMapUnits)

8.2.2.2 Specification for dispersed slice group map type

The specifications in this subclause apply when slice _group map_type is equal to 1.

The map unit to slice group map is generated as specified by:

for(i =0; i <PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((i % PicWidthInMbs) +

(((1/PicWidthInMbs) * (num_slice_groups minusl +1))/2))

% (num_slice_groups minusl + 1)

8.2.2.3 Specification for foreground with left-over slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 2.

The map unit to slice group map is generated as specified by:

for(1= 0; i <PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i | = num_slice _groups _minusl
for(iGroup = num_slice _groups minusl — 1; iGroup >= 0; iGroup--) {
yTopLeft = top_left[iGroup] / PicWidthInMbs
xTopLeft = top_left[iGroup] % PicWidthInMbs
yBottomRight = bottom_right[iGroup] / PicWidthInMbs
xBottomRight = bottom_right[iGroup] % PicWidthInMbs
for(y = yTopLeft; y <= yBottomRight; y++)
for(x = xTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup
H

(8-17)

(8-18)

(8-19)

(8-20)

After application of the process specified in Equation 8-20, there shall be at least one value of i from 0 to
PicSizeInMapUnits — 1, inclusive, for which mapUnitToSliceGroupMap] i | is equal to iGroup for each value of iGroup
from 0 to num_slice groups_minusl, inclusive (i.e., each slice group shall contain at least one slice group map unit).

ITU-T Rec. H.264 (05/2003)

87

NOTE — The rectangles may overlap. Slice group O contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice_groups minus]
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice_groups minus1 contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types
The specifications in this subclause apply when slice _group map_type is equal to 3.

The map unit to slice group map is generated as specified by:

for(i =0; i <PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i]=1
x = (PicWidthInMbs — slice_group change direction flag) /2
y = (PicHeightInMapUnits — slice_group_change direction flag) /2
(leftBound, topBound) = (X, y)
(rightBound, bottomBound)= (x,y)
(xDir, yDir) = (slice_group change direction flag — 1, slice_group change direction flag)
for(k = 0; k < MapUnitsInSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs +x] == 1)

if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs +x] =0 (8-21)
if(xDir == -1 && x == leftBound) {

leftBound = Max(leftBound — 1, 0)

x = leftBound

(xDir, yDir) = (0, 2 * slice_group_change direction_flag—1)
} else if(xDir == 1 && x == rightBound) {

rightBound = Min(rightBound + 1, PicWidthInMbs — 1)

x = rightBound

(xDir, yDir)= (0, 1 — 2 * slice_group change direction_flag)

} else if(yDir == -1 && y == topBound) {
topBound = Max(topBound — 1, 0)
y = topBound

(xDir, yDir) = (1 — 2 * slice_group_change direction_flag, 0)
} else if(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightInMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group change direction flag—1,0)
} else
(x,y)=(x+xDir, y+ yDir)

8.2.2.5 Specification for raster scan slice group map types
The specifications in this subclause apply when slice _group map_type is equal to 4.

The map unit to slice group map is generated as specified by:

for(i =0; i <PicSizeInMapUnits; i++)
if(i < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap][i] = slice_group change direction_flag
else (8-22)
mapUnitToSliceGroupMap[i] = 1 —slice_group change direction_flag

8.2.2.6 Specification for wipe slice group map types

The specifications in this subclause apply when slice_group map_type is equal to 5.

The map unit to slice group map is generated as specified by:

k=0;
for(j = 0; j < PicWidthInMbs; j++)
for(i=0; i < PicHeightInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap][i * PicWidthInMbs + j] = slice_group change direction_flag

88 ITU-T Rec. H.264 (05/2003)

else (8-23)
mapUnitToSliceGroupMap][i * PicWidthInMbs +j] =1 —slice_group change direction flag

8.2.2.7 Specification for explicit slice group map type
The specifications in this subclause apply when slice _group map_type is equal to 6.

The map unit to slice group map is generated as specified by:
mapUnitToSliceGroupMap][i] = slice_group id[i] (8-24)
for all i ranging from 0 to PicSizeInMapUnits — 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizeInMbs — 1, inclusive, the macroblock to slice group map is specified as
follows.

— If frame mbs_only flag is equal to 1 or field pic_flag is equal to 1, the macroblock to slice group map is specified
by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap]| i] (8-25)

— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[i/2] (8-26)

— Otherwise (frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and field pic flag is
equal to 0), the macroblock to slice group map is specified by:

MbToSliceGroupMap| i | = mapUnitToSliceGroupMap[(i/ (2 * PicWidthInMbs)) * PicWidthInMbs
+ (1 % PicWidthInMbs)] (8-27)

8.2.3 Decoding process for slice data partitioning

Inputs to this process are
— aslice data partition A layer RBSP,

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the same
slice_id as in the slice data partition A layer RBSP, and

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the same
slice_id as in the slice data partition A layer RBSP.

NOTE — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.
Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in subclause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained in
separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2. Partition
B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C, when
present, contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP by
extracting each syntax element from the slice data partition in which the syntax element appears depending on the slice
data partition assignment in the syntax tables in subclause 7.3.
NOTE - Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
clements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice id that are used to
associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the
slice_id syntax element that establishes their association with the slice data partition A of the slice.

ITU-T Rec. H.264 (05/2003) 89

8.2.4 Decoding process for reference picture lists construction
This process is invoked at the beginning of decoding of each P, SP, or B slice.

Outputs of this process are a reference picture list RefPicList0 and, when decoding a B slice, a second reference picture
list RefPicListl1.

Decoded reference pictures are marked as "used for short-term reference” or "used for long-term reference" as specified
by the bitstream and specified in subclause 8.2.5. Short-term decoded reference pictures are identified by the value of
frame num. Long-term decoded reference pictures are assigned a long-term frame index as specified by the bitstream
and specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify

- the assignment of variables FrameNum, FrameNumWTrap, and PicNum to each of the short-term reference pictures,
and

- the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a list of variables PicNum and LongTermPicNum, which is called a reference picture list. When decoding a P
or SP slice, there is a single reference picture list RefPicList0. When decoding a B slice, there is a second independent
reference picture list RefPicListl in addition to RefPicList0.

At the beginning of decoding of each slice, reference picture list RefPicList0, and for B slices RefPicList1, are derived as
follows.

- An initial reference picture list RefPicList0 and for B slices RefPicList1 are derived as specified in subclause 8.2.4.2.

- The initial reference picture list RefPicList0 and for B slices RefPicList] are modified as specified in subclause
8.2.4.3.

The number of entries in the modified reference picture list RefPicList0 is num_ref idx 10 active minusl + 1, and for B
slices the number of entries in the modified reference picture list RefPicListl is num_ref idx 11 active minusl + 1. A
reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4 or
the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists in
subclause 8.2.4.3, and for the decoded reference picture marking process in subclause 8.2.5.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame num)

FrameNumWrap = FrameNum — MaxFrameNum (8-28)
else

FrameNumWrap = FrameNum

where the value of frame num used in Equation 8-28 is the frame num in the slice header(s) for the current picture.
To each long-term reference picture the variable LongTermFrameldx is assigned as specified in subclause 8.2.5.

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field pic flag and
bottom_field flag for the current picture and they are set as follows.

- Iffield pic flag is equal to 0, the following applies.

- For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWTrap (8-29)

- For each long-term reference frame or long-term complementary reference field pair:

LongTermPicNum = LongTermFrameldx (8-30)

90 ITU-T Rec. H.264 (05/2003)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in subclauses
8.2.4.2,8.2.4.3,and 8.2.5.

- Otherwise (field pic_flag is equal to 1), the following applies.
- For each short-term reference field the following applies.

- Ifthe reference field has the same parity as the current field

PicNum = 2 * FrameNumWrap + 1 (8-31)

- Otherwise (the reference field has the opposite parity of the current field),

PicNum = 2 * FrameNumWrap (8-32)

- For each long-term reference field the following applies.

- If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-33)

- Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameldx (8-34)

8.2.4.2 Initialisation process for reference picture lists
This initialisation process is invoked when decoding a P, SP, or B slice header.

Outputs of this process are initial reference picture list RefPicList0, and when decoding a B slice, initial reference picture
list RefPicList1.

RefPicList0 and RefPicListl have initial entries of the variables PicNum and LongTermPicNum as specified in
subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is greater than num_ref idx 10 active minusl + 1 or num ref idx Il active minusl + 1, respectively,
the extra entries past position num_ref idx 10 active minusl or num_ref idx 11 active minusl are discarded from the
initial reference picture list.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is less than num ref idx 10 active minusl + 1 or num ref idx 11 active minusl + 1, respectively,
the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames
This initialisation process is invoked when decoding a P or SP slice in a coded frame.
Output of this process is the initial reference picture list RefPicList0.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for short-term reference" or "used for long-term reference".

The reference picture list RefPicList0 is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaftFrameFlag.

ITU-T Rec. H.264 (05/2003) 91

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302,
and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3,
the initial index order is:

- RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,
- RefPicListO[1] is set equal to the short-term reference picture with PicNum = 302,
- RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,
- RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0, and

- RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields
This initialisation process is invoked when decoding a P or SP slice in a coded field.
Output of this process is initial reference picture list RefPicList0.

When decoding a field, each field included in the reference picture list has a separate index in the list.

NOTE - When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded frames, complementary reference field pairs, non-paired
reference fields and reference frames in which a single field is marked "used for short-term reference" or "used for long-
term reference" are all considered reference frames.

- The FrameNumWTrap of all frames having one or more fields marked "used for short-term reference" are included in
the list of short-term reference frames refFrameListOShortTerm. When the current field is the second field (in
decoding order) of a complementary reference field pair and the first field is marked as "used for short-term
reference", the FrameNumWrap of the first field is included in the list refFrameListOShortTerm.
refFrameListOShortTerm is ordered starting with the frame with the highest FrameNumWrap value and proceeding
through in descending order to the frame with the lowest FrameNumWrap value.

- The LongTermFrameldx of all frames having one or more fields marked "used for long-term reference" are included
in the list of long-term reference frames refFrameListOLongTerm. When the current field is the second field (in
decoding order) of a complementary reference field pair and the first field is marked as "used for long-term
reference", the LongTermFrameldx of the first field is included in the list refFrameListOLongTerm.
refFrameList0LongTerm is ordered starting with the frame with the lowest LongTermFrameldx value and proceeding
through in ascending order to the frame with the highest LongTermFrameldx value.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm
given as input and the output is assigned to RefPicList0.

8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames
This initialisation process is invoked when decoding a B slice in a coded frame.
Outputs of this process are the initial reference picture lists RefPicList0 and RefPicList1.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for short-term reference" or "used for long-term reference".

For B slices, the order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList] depends
on output order, as given by PicOrderCnt(). When pic_order cnt _type is equal to 0, reference pictures that are marked
as "non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicListl.

NOTE — When gaps_in_frame num_value allowed flag is equal to 1, encoders should use reference picture list reordering to

ensure proper operation of the decoding process (particularly when pic_order_cnt type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing" frames).

The reference picture list RefPicList0 is ordered such that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is ordered as follows.

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm0 with the largest value of PicOrderCnt(frm0) less
than the value of PicOrderCnt(CurrPic) and proceeding through in descending order to the short-term reference
frame or complementary reference field pair frml that has the smallest value of PicOrderCnt(frm1l), and then
continuing with the short-term reference frame or complementary reference field pair frm2 with the smallest value of

92 ITU-T Rec. H.264 (05/2003)

PicOrderCnt(frm2) greater than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through in
ascending order to the short-term reference frame or complementary reference field pair frm3 that has the largest
value of PicOrderCnt(frm3).

- The long-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding through in ascending order to the long-term reference frame or complementary reference field pair that
has the highest LongTermPicNum value.

The reference picture list RefPicList]l is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is ordered as follows.

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm4 with the smallest value of PicOrderCnt(frm4)
greater than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through in ascending order to
the short-term reference frame or complementary reference field pair frmS5 that has the largest value of
PicOrderCnt(frmS5), and then continuing with the short-term reference frame or complementary reference field pair
frm6 with the largest value of PicOrderCnt(frm6) less than the value of PicOrderCnt(CurrPic) of the current frame
and proceeding through in descending order to the short-term reference frame or complementary reference field pair
frm7 that has the smallest value of PicOrderCnt(frm?7).

- Long-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding through in ascending order to the long-term reference frame or complementary reference field pair that
has the highest LongTermPicNum value.

- When the reference picture list RefPicList] has more than one entry and RefPicListl is identical to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE — A non-paired reference field is not used for inter prediction of frames independent of the value of MbaftFrameFlag.

8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields
This initialisation process is invoked when decoding a B slice in a coded field.
Outputs of this process are the initial reference picture lists RefPicList0 and RefPicList1.

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList] depend on
output order, as given by PicOrderCnt(). When pic_order cnt type is equal to 0, reference pictures that are marked as
"non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicListl.
NOTE — When gaps_in_frame num_value_allowed flag is equal to 1, encoders should use reference picture list reordering to
ensure proper operation of the decoding process (particularly when pic_order cnt type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing" frames).

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameList] ShortTerm and refFrameListLongTerm,
are derived as follows. For purposes of the formation of these lists of frames the term reference entry refers in the
following to decoded reference frames, complementary reference field pairs, or non-paired reference fields. When
pic_order cnt type is equal to 0, the term reference entry does not refer to frames that are marked as "non-existing" as
specified in subclause 8.2.5.2.

- refFrameListOShortTerm is ordered starting with the reference entry fO with the largest value of PicOrderCnt(f0)
less than or equal to the value of PicOrderCnt(CurrPic) of the current field and proceeding through in descending
order to the short-term reference entry f1 that has the smallest value of PicOrderCnt(f1), and then continuing with
the reference entry f2 with the smallest value of PicOrderCnt(f2) greater than the value of PicOrderCnt(CurrPic) of
the current field and proceeding through in ascending order to the short-term reference entry f3 that has the largest
value of PicOrderCnt(3).

NOTE - When the current field follows in decoding order a coded field fldPrev with which together it forms a
complementary reference field pair, fldPrev is included into the list refFrameListOShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

- refFrameListl ShortTerm is ordered starting with the reference entry f4 with the smallest value of PicOrderCnt(f4)
greater than the value of PicOrderCnt(CurrPic) of the current field and proceeding through in ascending order to the
short-term reference entry f5 that has the largest value of PicOrderCnt(f5), and then continuing with the reference
entry f6 with the largest value of PicOrderCnt(f6) less than or equal to the value of PicOrderCnt(CurrPic) of the

ITU-T Rec. H.264 (05/2003) 93

current field and proceeding through in descending order to the short-term reference entry f7 that has the smallest
value of PicOrderCnt(f7).
NOTE - When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameList]1ShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

- refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value and
proceeding through in ascending order to the reference entry having highest LongTermFrameldx value.
NOTE - When the complementary field of the current picture is marked "used for long-term reference" it is included into the list
refFrameListLongTerm. A reference entry in which only one field is marked as “used for long-term reference” is included into the
list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm given
as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList] ShortTerm and refFrameListLongTerm given
as input and the output is assigned to RefPicListl.

When the reference picture list RefPicList]l has more than one entry and RefPicListl is identical to the reference picture
list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation process for reference picture lists in fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

Output of this process is reference picture list RefPicListX (which may be RefPicList0 or RefPicListl).

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than long-
term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is derived
as follows.

- Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked as
“used for short-term reference”, the missing field is ignored and instead the next available stored reference field of
the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX. When there
are no more short-term reference fields of the alternate parity in the ordered list of frames refFrameListXShortTerm,
the next not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur in
the ordered list of frames refFrameListXShortTerm.

- Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same parity
as the current field (when present). When one field of a reference frame was not decoded or is not marked as “used
for long-term reference”, the missing field is ignored and instead the next available stored reference field of the
chosen parity from the ordered list of frames refFrameListLongTerm is inserted into RefPicListX. When there are no
more long-term reference fields of the alternate parity in the ordered list of frames refFrameListLongTerm, the next
not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur in the
ordered list of frames refFrameListLongTerm.

8.2.4.3 Reordering process for reference picture lists

Input to this process is reference picture list RefPicList0 and, when decoding a B slice, also reference picture list
RefPicListl.

Outputs of this process are a possibly modified reference picture list RefPicList0 and, when decoding a B slice, also a
possibly modified reference picture list RefPicListl.

When ref pic_list reordering flag 10 is equal to 1, the following applies.
- Let refldxL0O be an index into the reference picture list RefPicList0. It is initially set equal to 0.

- The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- Ifreordering_of pic nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with RefPicList0 and refldxL0 given as input, and the output is assigned to RefPicList0 and refldxLO.

- Otherwise, if reordering_of pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with RefPicList0 and refldxLO0 given as input, and the output is assigned to RefPicList0 and refldxLO0.

94 ITU-T Rec. H.264 (05/2003)

- Otherwise (reordering of pic nums_idc is equal to3), the reordering process for reference picture list
RefPicList0 is finished.

When ref pic_list reordering flag 11 is equal to 1, the following applies.
- LetrefldxL1 be an index into the reference picture list RefPicListl. It is initially set equal to 0.

- The corresponding syntax elements reordering of pic nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- If reordering of pic nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with RefPicListl and refldxL1 given as input, and the output is assigned to RefPicListl and refldxL1.

- Otherwise, if reordering of pic nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with RefPicList] and refldxL1 given as input, and the output is assigned to RefPicListl and refldxL1.

- Otherwise (reordering of pic nums_idc is equal to3), the reordering process for reference picture list
RefPicListl is finished.

8.2.4.3.1 Reordering process of reference picture lists for short-term pictures

Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxLX into this list.
Outputs of this process are a possibly modified reference picture list RefPicListX and the incremented index refldxLX.
The variable picNumLXNoWrap is derived as follows.

- Ifreordering of pic nums_idc is equal to 0

if(picNumLXPred — (abs_diff pic num minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1) + MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1)

- Otherwise (reordering of pic nums_idc is equal to 1),

if(picNumLXPred + (abs_diff pic num minusl + 1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1) — MaxPicNum (8-36)
else

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this subclause
is invoked the first time for a slice (that is, for the first occurrence of reordering of pic nums_idc equal to 0 or 1 in the
ref pic_list reordering() syntax), picNumLOPred and picNumL1Pred are initially set equal to CurrPicNum. After each
assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

The variable picNumLX is derived as follows

if(picNumLXNoWrap > CurrPicNum)

picNumLX = picNumLXNoWrap — MaxPicNum (8-37)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as “used for short-term reference” and
shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure shall be conducted to place the picture with short-term picture number picNumLX into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx =num_ref idx IX active minusl + 1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX][cldx — 1]
RefPicListX[refldxLX++] = short-term reference picture with PicNum equal to picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref idx IX active minusl + 1; cldx++) (8-38)
if(PicNumF(RefPicListX[cldx]) != picNumLX)
RefPicListX[nldx++] = RefPicListX][cldx]

where the function PicNumF(RefPicListX][cIdx]) is derived as follows:

ITU-T Rec. H.264 (05/2003) 95

— If the picture RefPicListX[cldx] is marked as "used for short-term reference", PicNumF(RefPicListX[cldx]) is
the PicNum of the picture RefPicListX[cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for short-term reference"),
PicNumF(RefPicListX[cldx]) is equal to MaxPicNum.
NOTE - A value of MaxPicNum can never be equal to picNumLX.

NOTE - Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minusl of
the list need to be retained.

8.2.4.3.2 Reordering process of reference picture lists for long-term pictures
Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxLX into this list.
Outputs of this process are a possibly modified reference picture list RefPicListX and the incremented index refldxLX.

The following procedure shall be conducted to place the picture with long-term picture number long term pic num into
the index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value
of refldxLX.

for(cldx =num_ref idx IX active minusl + 1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX][cldx — 1]
RefPicListX[refldxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nldx = refldxLX
for(cldx = refldxLX; cldx <=num_ref idx IX active minusl + 1; cldx++) (8-39)
if(LongTermPicNumF(RefPicListX[cldx]) !=long_term pic num)
RefPicListX[nldx++] = RefPicListX[cldx]

where the function LongTermPicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX[cldx] is marked as "used for long-term reference",
LongTermPicNumF(RefPicListX][cldx]) is the LongTermPicNum of the picture RefPicListX][cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for long-term reference"),
LongTermPicNumF(RefPicListX][cldx]) is equal to 2 * (MaxLongTermFrameldx + 1).
NOTE — A value of 2 * (MaxLongTermFrameldx + 1) can never be equal to long_term pic_num.

NOTE - Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minusl of
the list need to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref idc is not equal to 0.

NOTE — One process (the decoding process for gaps in frame num specified in subclause 8.2.5.2) defined within this subclause
may also be invoked when nal_ref idc is equal to 0, as specified in clause 8.

A decoded picture with nal_ref idc not equal to 0, referred to as a reference picture, is marked as “used for short-term
reference” or "used for long-term reference”". For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference"” is identified by its FrameNum and, when it is a field, by its parity. A picture
that is marked as "used for long-term reference" is identified by its LongTermFrameldx and, when it is a field, by its
parity.

Frames or complementary field pairs marked as “used for short-term reference” or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one of
its constituent fields is marked as “unused for reference”. A field marked as “used for short-term reference” or as "used
for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as “unused
for reference”.

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking process,
a customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding
process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture,
subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and
LongTermPicNum.

96 ITU-T Rec. H.264 (05/2003)

8.2.5.1 Sequence of operations for decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps.

1. When frame num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame num is performed according to
subclause 8.2.5.2.

2. Allslices of the current picture are decoded.
3. Depending on whether the current picture is an IDR picture, the following applies.
- If the current picture is an IDR picture, the following applies.
- All reference pictures shall be marked as "unused for reference"
- Depending on long_term reference flag, the following applies.

- If long_term reference flag is equal to 0, the IDR picture shall be marked as "used for short-term
reference" and MaxLongTermFrameldx shall be set equal to “no long-term frame indices”.

- Otherwise (long_term reference flag is equal to 1), the IDR picture shall be marked as "used for long-
term reference", the LongTermFrameldx for the IDR picture shall be set equal to0, and
MaxLongTermFrameldx shall be set equal to 0.

- Otherwise (the current picture is not an IDR picture), the following applies.
- Ifadaptive ref pic marking mode flag is equal to 0, the process specified in subclause 8.2.5.3 is invoked.

- Otherwise (adaptive ref pic_marking mode flag is equal to 1), the process specified in subclause 8.2.5.4 is
invoked.

4. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control operation equal to 6, it is marked as "used for short-term reference".

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

8.2.5.2 Decoding process for gaps in frame_num

This process is invoked when frame num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.
NOTE — Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only

when nal_ref idc is not equal to 0), this process may also be invoked when nal_ref idc is equal to 0 (as specified in clause 8). The
reasons for the location of this subclause within the structure of this Recommendation | International Standard are historical.

NOTE - This process can only be invoked for a conforming bitstream when gaps_in_frame num_value allowed flag is equal
to 1. When gaps_in_frame num_value allowed flag is equal to 0 and frame num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame num pertaining to “non-existing” pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-10 except the value of frame num for the current picture.

The decoding process shall generate and mark a frame for each of the values of frame num pertaining to “non-existing”
pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-10, using the
“sliding window” picture marking process as specified in subclause 8.2.5.3. The generated frames shall also be marked
as “non-existing” and “used for short-term reference”. The sample values of the generated frames may be set to any
value. These generated frames which are marked as “non-existing” shall not be referred to in the inter prediction process,
shall not be referred to in the reordering commands for reference picture lists for short-term pictures (subclause
8.2.4.3.1), and shall not be referred to in the assignment process of a LongTermFrameldx to a short-term picture
(subclause 8.2.5.4.3).

When pic_order cnt type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the
"non-existing" frames by invoking the decoding process for picture order count in subclause 8.2.1. When invoking the
process in subclause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture
considered having frame num inferred to be equal to UnusedShortTermFrameNum, nal ref idc inferred to be not equal
to 0, nal unit type inferred to be not equal to 5, field pic flag inferred to be equal to O,
adaptive ref pic marking mode flag inferred to be equal to 0, delta pic _order cnt[O] (if needed) inferred to be equal
to 0, and delta_pic_order_cnt[1] (if needed) inferred to be equal to 0.

NOTE - The decoding process should infer an unintentional picture loss when any of these values of frame num pertaining to
“non-existing” pictures is referred to in the inter prediction process, is referred to in the reordering commands for reference picture

ITU-T Rec. H.264 (05/2003) 97

lists for short-term pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a LongTermFrameldx to a short-
term picture (subclause 8.2.5.4.3). The decoding process should not infer an unintentional picture loss when a memory
management control operation not equal to 3 is applied to a frame marked as ‘“non-existing”.

8.2.5.3 Sliding window decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 0.
Depending on the properties of the current picture as specified below, the following applies.

- If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as “used for short-term reference”, the current picture is also marked as
“used for short-term reference”.

- Otherwise, the following applies.

- Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as “used for short-term reference”. Let numLongTerm be
the total number of reference frames, complementary reference field pairs and non-paired reference fields for
which at least one field is marked as “used for long-term reference”.

- When numShortTerm + numLongTerm is equal to Max(num_ref frames, 1), the condition that numShortTerm
is greater than 0 shall be fulfilled, and the short-term reference frame, complementary reference field pair or non-
paired reference field that has the smallest value of FrameNumWrap is marked as “unused for reference”. When it
is a frame or a complementary field pair, both of its fields are also marked as “unused for reference”.

8.2.5.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 1.

The memory management control operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory management control operation
commands, one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.6 is invoked depending on the value of
memory_management_control_operation. The memory management control operation command with value of 0
specifies the end of memory management control operation commands.

Memory management control operations are applied to pictures as follows.

- If field pic flag is equal to 0, memory management control operation commands are applied to the frames or
complementary reference field pairs specified.

- Otherwise (field pic flag is equal to 1), memory management control operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term picture as “unused for reference”
This process is invoked when memory management control operation is equal to 1.
Let picNumX be specified by

picNumX = CurrPicNum — (difference of pic_nums minusl + 1). (8-40)
Depending on field pic flag the value of picNumX is used to mark a short-term picture as “unused for reference” as
follows.

- If field pic flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as “unused for reference”.

- Otherwise (field pic flag is equal to 1), the short-term reference field specified by picNumX is marked as “unused
for reference”. When that reference field is part of a reference frame or a complementary reference field pair, the
frame or complementary field pair is also marked as "unused for reference", but the marking of the other field is not
changed.

8.2.5.4.2 Marking process of a long-term picture as “unused for reference”
This process is invoked when memory management_control operation is equal to 2.

Depending on field pic flag the value of LongTermPicNum is used to mark a long-term picture as “unused for
reference” as follows.

- Iffield pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair having
LongTermPicNum equal to long_term_pic_num and both of its fields are marked as “unused for reference”.

98 ITU-T Rec. H.264 (05/2003)

- Otherwise (field pic_flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long term pic_num is marked as “unused for reference”. When that reference field is part of a reference frame or a
complementary reference field pair, the frame or complementary field pair is also marked as "unused for reference"”,
but the marking of the other field is not changed.

8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture
This process is invoked when memory _management_control operation is equal to 3.

Given the syntax element difference of pic nums minusl, the variable picNumX is obtained as specified in subclause
8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field marked as
"used for short-term reference" and not marked as "non-existing".

When LongTermFrameldx equal to long term frame idx is already assigned to a long-term reference frame or a long-
term complementary reference field pair, that frame or complementary field pair and both of its fields are marked as
"unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and the field is not
the complementary field of the picture specified by picNumX, that field is marked as “unused for reference”.

Depending on field pic flag the value of LongTermFrameldx is used to mark a picture from "used for short-term
reference" to "used for long-term reference" as follows.

- If field pic flag is equal to 0, the marking of the short-term reference frame or short-term complementary reference
field pair specified by picNumX and both of its fields are changed from "used for short-term reference" to "used for
long-term reference" and assigned LongTermFrameldx equal to long term frame idx.

- Otherwise (field pic flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameldx
equal to long term frame idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameldx
This process is invoked when memory _management_control operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max_long term frame idx plusl — 1 and that are marked as
"used for long-term reference" shall be marked as “unused for reference”.

The variable MaxLongTermFrameldx is derived as follows.

- Ifmax_long term frame idx_ plusl is equal to 0, MaxLongTermFrameldx shall be set equal to “no long-term frame
indices”.

- Otherwise (max_long term_ frame idx plusl is greater than 0), MaxLongTermFrameldx shall be set equal to
max_long term frame idx plusl — 1.

NOTE — The memory management_control_operation command equal to 4 can be used to mark long-term reference pictures as
“unused for reference”. The frequency of transmitting max long term frame idx plusl is not specified by this
Recommendation | International Standard. However, the encoder should send a memory management control operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.5.4.5 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indices”

This process is invoked when memory _management_control operation is equal to 5.

All reference pictures are marked as “unused for reference” and the variable MaxLongTermFrameldx is set equal to “no
long-term frame indices”.

8.2.5.4.6 Process for assigning a long-term frame index to the current picture
This process is invoked when memory _management_control operation is equal to 6.

When a variable LongTermFrameldx equal to long term frame idx is already assigned to a long-term reference frame
or a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are
marked as "unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and the
field is not the complementary field of the current picture, that field is marked as “unused for reference”.

The current picture is marked as "used for long-term reference" and assigned LongTermFrameldx equal to
long term frame idx.

When field pic flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameldx equal to long term frame idx.

ITU-T Rec. H.264 (05/2003) 99

When field pic flag is equal to 1 and the current picture is a second (in decoding order) field of a complementary
reference field pair, the pair is also marked as "used for long-term reference" and assigned LongTermFrameldx equal to
long term frame idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

NOTE - Under some circumstances, the above statement may impose a constraint on the order in which a
memory_management_control operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory_management control _operation syntax element equal to 1, 2, or 4.

8.3 Intra prediction process

This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring macroblocks and
for Intra_4x4 prediction mode, the associated values of Intra4x4PredMode from neighbouring macroblocks.

Outputs of this process are specified as follows.

- If mb_type is not equal to I PCM, the Intra prediction samples of components of the macroblock or in case of the
Intra_4x4 prediction process for luma samples, the outputs are 4x4 luma sample arrays as part of the 16x16 luma
array of prediction samples of the macroblock.

- Otherwise (mb_type is equal to I PCM), constructed macroblock samples prior to the deblocking filter process.
The variable MvCnt is set equal to 0.
Depending on the value of mb_type the following applies.
- Ifmb_type is equal to I PCM, the process specified in subclause 8.3.4 is invoked.
- Otherwise (mb_type is not equal to I PCM), the following applies.
- The decoding processes for Intra prediction modes are described for the luma component as follows.
- If the macroblock prediction mode is equal to Intra_4x4, the specification in subclause 8.3.1 applies.

- Otherwise (the macroblock prediction mode is equal to Intra 16x16), the specification in subclause 8.3.2
applies.

- The decoding processes for Intra prediction modes for the chroma components are described in subclause 8.3.3.

Samples used in the Intra prediction process shall be sample values prior to alteration by any deblocking filter operations.

8.3.1 Intra_4x4 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are constructed luma samples prior to the deblocking filter process from neighbouring macroblocks
and the associated values of Intra4x4PredMode from the neighbouring macroblocks or macroblock pairs.

Outputs of this process are 4x4 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred; .

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4Blkldx = 0..15, the variable
Intrad4x4PredMode[luma4x4BlkIdx] is derived as specified in subclause 8.3.1.1.

For each luma block of 4x4 samples indexed using luma4x4BlklIdx = 0..15,

1. The Intra_4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4Blkldx and constructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the
output are the Intra_4x4 luma prediction samples pred4x4,[x, y] with x, y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the
input and the output being assigned to (xO, yO) and x, y =0..3.

pred [xO +x,yO +y | =pred4x4,[X,y] (8-41)

100 ITU-T Rec. H.264 (05/2003)

3. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with pred; and luma4x4BIkIdx as the input and the constructed samples for the current 4x4
luma block S’ as the output.

8.3.1.1 Derivation process for the Intra4dx4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx and variable arrays Intra4x4PredMode that are
previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].
Table 8-2 specifies the values for Intra4x4PredMode[luma4x4BIklIdx] and the associated names.

Table 8-2 — Specification of Intra4x4PredMode| luma4x4BIlkIdx | and associated names

Intrad4x4PredMode[luma4x4BlkIdx] Name of Intra4x4PredMode[luma4x4Blkldx]
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4 Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal Down_Left (prediction mode)
4 Intra_4x4 Diagonal Down_Right (prediction mode)
5 Intra_4x4 Vertical Right (prediction mode)
6 Intra_4x4 Horizontal Down (prediction mode)
7 Intra_4x4 Vertical Left (prediction mode)
8 Intra_4x4 Horizontal Up (prediction mode)

Intradx4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

Figure 8-1 — Intra_4x4 prediction mode directions (informative)

Let intra4x4PredModeA and intra4x4PredModeB be variables that specify the intra prediction modes of neighbouring
4x4 luma blocks.

Intrad4x4PredMode[luma4x4BlkIdx] is derived as follows.

- The process specified in subclause 6.4.7.3 is invoked with luma4x4Blkldx given as input and the output is assigned
to mbAddrA, luma4x4BlkIdxA, mbAddrB, and luma4x4BlkIdxB.

- The variable dcOnlyPredictionFlag is derived as follows.

- If one of the following conditions is true, dcOnlyPredictionFlag is set equal to 1

ITU-T Rec. H.264 (05/2003) 101

- the macroblock with address mbAddrA is not available
- the macroblock with address mbAddrB is not available

- the macroblock with address mbAddrA is available and coded in Inter prediction mode and
constrained_intra pred_flag is equal to 1

- the macroblock with address mbAddrB is available and coded in Inter prediction mode and
constrained_intra_pred_flag is equal to 1

- Otherwise, dcOnlyPredictionFlag is set equal to 0.
- For N being either replaced by A or B, the variables intra4x4PredModeN are derived as follows.

- If dcOnlyPredictionFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra 4x4
macroblock prediction mode, intradx4PredModeN is set equal to 2 (Intra_4x4 DC prediction mode).

- Otherwise (dcOnlyPredictionFlag is equal to 0 and the macroblock with address mbAddrN is coded in Intra_4x4
macroblock prediction mode), intra4x4PredModeN is set equal to Intradx4PredMode[luma4x4BIkIdxN],
where Intra4x4PredMode is the variable array assigned to the macroblock mbAddrN.

- Intra4x4PredMode[luma4x4BlkIdx] is derived by applying the following procedure.

predIntra4x4PredMode = Min(intra4x4PredModeA, intra4x4PredModeB)
if(prev_intradx4 pred mode flag[luma4x4BlklIdx])
Intra4x4PredMode[luma4x4BlkIdx] = predIntradx4PredMode
else (8-42)
if(rem_intra4x4 pred mode[luma4x4BlkIdx] < predIntra4x4PredMode)
Intra4x4PredMode[luma4x4Blkldx] =rem_intra4x4 pred mode[luma4x4BIkIdx]
else
Intra4x4PredMode[luma4x4BlkIdx] =rem_intra4x4 pred mode[luma4x4BlkIdx]+ 1
8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with prediction mode equal to Intra 4x4 followed by
the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are the index of the 4x4 luma block with index luma4x4BIklIdx and constructed samples prior (in
decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred4x4.[x, y], with x, y = 0..3 for the 4x4 luma block with index
luma4x4BIkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y | that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1.3and x=0..7, y = -1, are derived as follows.

— The luma location (XN, yN) is specified by
xN =x0 + x (8-43)
yN=yO +y (8-44)
— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (XN, yN)
as input and mbAddrN and (xW, yW) as output.
— Eachsample p[x,y | withx=-1,y=-1..3 and x =0..7, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[X,y] is marked as “not available for Intra 4x4
prediction”

- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra_pred_flag is equal to 1.

- the macroblock mbAddrN has mb_type equal to SI and constrained intra pred flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

- xis greater than 3 and luma4x4BIlkIdx is equal to 3 or 11

102 ITU-T Rec. H.264 (05/2003)

— Otherwise, the sample p[x, y] is marked as “available for Intra 4x4 prediction” and the luma sample at luma
location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y].

When samples p[x, -1], with x = 4..7 are marked as “not available for Intra 4x4 prediction,” and the sample p[3, -1] is
marked as “available for Intra_4x4 prediction,” the sample value of p[3, -1] is substituted for sample values p[x, -1],
with x =4..7 and samples p[x, -1], with x = 4..7 are marked as “available for Intra_4x4 prediction”.

NOTE - Each block is assumed to be constructed into a frame prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4Blkldx], one of the Intra 4x4 prediction modes specified in subclauses
8.3.1.2.1 to 8.3.1.2.9 shall be used.

8.3.1.2.1 Specification of Intra_4x4_Vertical prediction mode
This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4BlkIdx] is equal to O.

This mode shall be used only when the samples p[x,-1] with x = 0..3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived by
pred4x4; [X,y]=p[x,-1], withx,y=0..3 (8-45)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredMode[luma4x4BlkIdx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y = 0..3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4, [x, y], with x, y = 0..3 are derived by
pred4x4 [x,y |=p[-1,y], withx,y=0..3 (8-46)

8.3.1.2.3 Specification of Intra_4x4 DC prediction mode
This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4BlkIdx] is equal to 2.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

- If all samples p[x, -1], with x =0..3 and p[-1, y], with y = 0..3 are marked as “available for Intra 4x4 prediction”,
the values of the prediction samples pred4x4. [x, y], with x, y = 0..3 are derived by

pred4x4 [X,y]1=(p[0,-1]+p[1,-1]1+p[2,-1]+p[3,-1]+
p[-1,O]+p[-1,1]+p[-1,2]+p[-1,3]+4)>>3 (8-47)

- Otherwise, if any samples p[x, -1], with x = 0..3 are marked as “not available for Intra_4x4 prediction” and all
samples p[-1,y], with y = 0..3 are marked as “available for Intra_4x4 prediction”, the values of the prediction
samples pred4x4, [x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=(p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3]+2)>>2 (8-48)

- Otherwise, if any samples p[-1,y], with y = 0..3 are marked as “not available for Intra_4x4 prediction” and all
samples p[x, -1], with x =0 .. 3 are marked as “available for Intra 4x4 prediction”, the values of the prediction
samples pred4x4 [x,y], with x, y =0 .. 3 are derived by

preddx4 [X,y]=(p[O0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+2)>>2 (8-49)

- Otherwise (some samples p[x, -1], with x = 0..3 and some samples p[-1,y], with y = 0..3 are marked as “not
available for Intra 4x4 prediction”), the values of the prediction samples pred4x4.[x,y], with x, y = 0..3 are
derived by

pred4x4, [x,y] =128 (8-50)
NOTE — A 4x4 luma block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction mode
This Intra_4x4 prediction mode shall be used when Intradx4PredMode[luma4x4BlkIdx] is equal to 3.

ITU-T Rec. H.264 (05/2003) 103

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- Ifxisequal to 3 and y is equal to 3,

preddx4d [X,y]|=(p[6,-1]1+3*p[7,-1]+2)>>2 (8-51)
- Otherwise (x is not equal to 3 or y is not equal to 3),

preddx4 [X,y]=(p[x+y,-1]+2*p[x+y+1,-1]+p[x+y+2,-1]+2)>>2 (8-52)
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode

This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4Blkldx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra 4x4 prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y =0..3 are derived as follows.
- Ifxis greater thany,

pred4x4 [X,y]=(p[x-y-2,-1]+2*p[x-y-1,-1]+p[x-y,-1]+2)>2 (8-53)
- Otherwise if x is less than y,

pred4x4 [x,y]=(p[-l,y-x-2]+2*p[-1,y-x-1]+p[-l,y-x]+2)>>2 (8-54)
- Otherwise (x is equal to y),

preddx4 [X,y]1=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-55)
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction mode

This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4Blkldx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra 4x4 prediction”.

Let the variable zVR be set equal to 2 * x —y.
The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived as follows.

- IfzVRisequalto 0,2, 4, or 6,

preddxdr[X,y 1= (p[x-(y>>1)-1,-1J+p[x-(y>>1),-1]+1)>>1 (8-56)
- Otherwise, if zZVR is equal to 1, 3, or 5,

preddx4 [X,y [=(p[x-(y>>1)-2,-1]+2*p[x-(y>>1)-1-1J+p[x-(y>>1),-1]+2)>>2 (8-57)
- Otherwise, if zZVR is equal to -1,

pred4x4, [X,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-58)

Otherwise (zVR is equal to -2 or -3),
preddx4 [X,y |=(p[-L,y-1]+2%*p[-l,y-2]+p[-1,y-3]+2)>>2 (8-59)

8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction mode
This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

Let the variable zZHD be set equal to 2 * y — x.

104 ITU-T Rec. H.264 (05/2003)

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

- IfzHDisequalto0, 2,4, or 6,

preddx4 [x,y | =(p[-1,y-(x>>1)-1]+p[-L,y-(x>>1)]+1)>>1 (8-60)
- Otherwise, if zHD is equal to 1, 3, or 5,

preddx4 [x,y |=(p[-1,y-(x>>1)-2]+2*p[-1,y-(x>>1)-1]+p[-1,y-(x>>1)]+2)>>2(8-61)
- Otherwise, if zHD is equal to -1,

preddx4 [X,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-62)

Otherwise (zHD is equal to -2 or -3),

pred4x4 [x,y]=(p[x-1,-1]+2*p[x-2,-1]+p[x-3,-1]+2)>>2 (8-63)

8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction mode
This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4Blkldx] is equal to 7.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.
- Ifyisequalto0Oor2,

pred4xd [x,y |=(p[x+(y>>1),-1]+p[x+(y>1)+1,-1]+1)>>1 (8-64)
- Otherwise (y is equal to 1 or 3),

preddxd [x,y [=(p[x+(y>>1),-1]+2%p[x+(y>1)+1,-1]+p[x+(y>>1)+2,-1]+2)>>2
(8-65)
8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction mode
This Intra_4x4 prediction mode shall be used when Intra4x4PredMode[luma4x4BlkIdx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y = 0..3 are marked as “available for Intra 4x4
prediction”.

Let the variable zHU be set equal to x +2 * y.
The values of the prediction samples pred4x4;[x, y], with x, y =0..3 are derived as follows:

- IfzHU is equal to 0, 2, or 4
pred4x4 [X,y]=(p[-l,y +(x>>1)]+p[-L,y+(x>>1)+1]+1)>>1 (8-60)
- Otherwise, if zHU is equal to 1 or 3

predaxd [x,y 1= (p[-1,y +(x>> 1) [+2*p[-L,y+(x>> 1)+ 1]+p[-1,y +(x>>1)+2]+2)>>2

(8-67)
- Otherwise, if zHU is equal to 5,
preddx4 [X,y]1=(p[-1,2]+3 *p[-1,3]+2)>>2 (8-68)
- Otherwise (zHU is greater than 5),
pred4x4[x,y]=p[-1,3] (8-69)

8.3.2 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

ITU-T Rec. H.264 (05/2003) 105

Input to this process are constructed samples prior to the deblocking process from neighbouring luma blocks (if
available).

Outputs of this process are Intra prediction luma samples for the current macroblock pred;[x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x =-1,y=-1..15 and with x = 0..15, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (x,y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

— Each sample p[x, y] with x =-1, y =-1..15 and with x = 0..15, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra 16x16
prediction”

- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained intra_pred flag is equal to 1.
- the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred flag is equal to 1.

— Otherwise, the sample p[x, y] is marked as “available for Intra 16x16 prediction” and the luma sample at
luma location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y].

Let pred; [x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-3.

Table 8-3 — Specification of Intral6x16PredMode and associated names

Intral6x16PredMode Name of Intral6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.2.1 to 8.3.2.4
shall be used.

8.3.2.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x = 0..15 are marked as “available
for Intra_16x16 prediction”.

pred [X,y | =p[%, -1], withx, y=0..15 (8-70)

8.3.2.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[-1, y] with y = 0..15 are marked as “available
for Intra_16x16 prediction”.

pred; [x,y |=p[-1,y], withx, y=0..15 (8-71)

8.3.2.3 Specification of Intra_16x16_DC prediction mode

This Intra 16x16 prediction mode shall be used depending on whether the neighbouring samples are marked as
“available for Intra 16x16 prediction” as follows.

- If all neighbouring samples p[x, -1], with x = 0..15 and p[-1,y], with y = 0..15 are marked as “available for
Intra 16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15

15
predi[X,y 1= (3 p[x',~1]+ > p[-1,y]+16) >> 5. with x, y =0..15 (8-72)

x'=0 y'=0

106 ITU-T Rec. H.264 (05/2003)

- Otherwise, if any of the neighbouring samples p[x, -1], with x = 0..15 are marked as "not available for Intra 16x16
prediction" and all of the neighbouring samples p[-1,y], with y = 0..15 are marked as “available for Intra 16x16
prediction”, the prediction for all luma samples in the macroblock is given by:

15)
predL[X,y] = (zp[— 1,y']+ 8) >>4, with X, ¥y= 0..15 (8_73)

y'=0

- Otherwise, if any of the neighbouring samples p[-1, y], with y = 0..15 are marked as "not available for Intra_16x16
prediction" and all of the neighbouring samples p[x, -1], with x = 0..15 are marked as “available for Intra 16x16
prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
predi[X,y]= (3 p[x',~1]+8) >> 4, with x, y =0..15 (8-74)

x'=0

- Otherwise (some of the neighbouring samples p[x, -1], with x = 0..15 and some of the neighbouring samples p[-
1,y], with y = 0..15 are marked as “not available for Intra 16x16 prediction”), the prediction for all luma samples
in the macroblock is given by:

pred [x,y] =128, withx, y=0..15 (8-75)

8.3.2.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x =-1..15 and p[-1,y] withy =
0..15 are marked as “available for Intra_16x16 prediction”.

pred [X,y]=Clipl((a+b*(x-7)+c*(y-7)+16)>>5), withx,y=0..15, (8-76)
where:

a=16*(p[-1,15]+p[15,-1]) (8-77)

b=(5*H+32)>>6 (8-78)

c=(5*V+32)>>6 (8-79)

and H and V are specified in Equations 8-80 and 8-81.

H=Z7:(X'+1)*(p[8+X',—1]-p[6-X‘,-1]) (8-80)
V=2 (y+D)*(pl-1.8+y]-p[-1,6-y']) (8-81)

8.3.3 Intra prediction process for chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Inputs to this process are constructed samples prior to the deblocking process from neighbouring chroma blocks (if
available).

Outputs of this process are Intra prediction chroma samples for the current macroblock predcy[X, y] and prede,[X, y].

Both chroma blocks (Cb and Cr) of the macroblock shall use the same prediction mode. The prediction mode is applied
to each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The 17 neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with
x=-1,y=-1..7 and with x =0..7, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for chroma locations with (x,y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

— Each sample p[x, y] is derived as follows.

ITU-T Rec. H.264 (05/2003) 107

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra chroma
prediction”

- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained intra_pred flag is equal to 1.

- the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

— Otherwise, the sample p[x, y] is marked as “available for Intra chroma prediction” and the chroma sample of
component C at chroma location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y].

Let predc[x, y] with x, y = 0..7 denote the prediction samples for the chroma block samples.

Intra chroma prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intra chroma prediction modes and associated names

intra_chroma pred mode Name of intra_chroma_pred mode
0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra chroma pred mode, one of the Intra chroma prediction modes specified in subclauses 8.3.3.1
to 8.3.3.4 shall be used.

8.3.3.1 Specification of Intra_Chroma_DC prediction mode
The values of the prediction samples predc[x, y] with x =0..3 and y = 0..3 are derived as follows.

- If all samples p[x,—1], with x = 0..3 and all samples p[—1,y], with y = 0..3 are marked as “available for Intra
chroma prediction”,

3 3 .
predc[X,y] = (Zp[x,,_l]'f' zp[_ l,y’]+4J >>3,withx=0.3andy=0.3 (8-82)

x'=0 y'=0

- Otherwise, if all samples p[x,—1], with x = 0..3 are marked as “available for Intra chroma prediction” and any
samples p[—1, y], with y = 0..3 are marked as “not available for Intra chroma prediction”,

predc[x,y 1= (ip[x’,—l] . 2) o>, withx=0.3 and y = 0..3 (8-83)

x'=0

- Otherwise, if any samples p[x, —1], with x = 0..3 are marked as “not available for Intra chroma prediction” and all
samples p[-1, y], with y = 0..3 are marked as “available for Intra chroma prediction”,

predc[X,y]= [ip[_ 1Ly]+ ZJ >>2,withx=0.3andy=0.3 (8-84)

y'=0

- Otherwise (some samples p[x,—1], with x = 0..3 and some samples p[-1,y |, with y = 0..3 are marked as “not
available for Intra chroma prediction”),

predc[x, y 1= 128, with x = 0.3 and y = 0..3 (8-85)

The values of the prediction samples predc[X, y |, with x =4..7 and y = 0..3 are derived as follows.

- Ifall samples p[x, -1], with x = 4..7 are marked as “available for Intra chroma prediction”,

predc[x,y]= (ip[x"— 1+ 2] >0, withx=4.7 andy = 0.3 (8-86)

x'=4

108 ITU-T Rec. H.264 (05/2003)

- Otherwise, if all samples p[-1, y], with y = 0..3 are marked as “available for Intra chroma prediction”,

predc[X,y] = [ip[_ Ly]+ 2} >>2,withx=4.7andy=0.3 (8-87)

y'=0

- Otherwise (some samples p[x,—1], with x = 4..7 and some samples p[-1,y], with y = 0..3 are marked as “not
available for Intra chroma prediction”),

predc[X,y 1 =128, withx=4.7and y =0..3 (8-88)

The values of the prediction samples predc[X, y], with x =0..3 and y = 4..7 are derived as follows.

- Ifall samples p[-1, y |, with y = 4..7 are marked as “available for Intra chroma prediction”,

predc[X,y] [Zp Ly +2J>>2 withx=0.3 andy=4..7 (8-89)

y'=4

- Otherwise, if all samples p[x, -1], with x = 0..3 are marked as “available for Intra chroma prediction”,

predd[%,y] (sz _1]+2j>>2 with x=0.3 and y = 4..7 (8-90)

x'=0

- Otherwise (some samples p[x,—1], with x = 0..3 and some samples p[-1,y], with y = 4..7 are marked as “not
available for Intra chroma prediction”),

predc[x,y] =128, withx=0..3 and y =4..7 (8-91)

The values of the prediction samples predc[x, y] with x =4..7 and y = 4..7 are derived as follows.

- If all samples p[x,—1], with x = 4..7 and all samples p[—1, y], with y = 4..7 are marked as “available for Intra
chroma prediction”,

predc[X,y] (sz _1]+zp Ly +4J>>3 withx=4..7andy =4..7 (8-92)

4 y'=4

- Otherwise, if all samples p[x,—1], with x = 4..7 are marked as “available for Intra chroma prediction” and any
samples p[—1, y], with y = 4..7 are marked as “not available for Intra chroma prediction”,

predc[X,y] (pr _1]_,_2) >>2,withx=4..7andy=4..7 (8-93)

'=4

- Otherwise, if any samples p[x, —1], with x = 4..7 are marked as “not available for Intra chroma prediction” and all
samples p[-1, y], with y = 4..7 are marked as “available for Intra chroma prediction”,

predc[X,y] (Zp Ly +2j>>2,w1thx 4.7andy=4.7 (8-94)

- Otherwise (some samples p[x,—1], with x = 4..7 and some samples p[-1,y], with y = 4..7 are marked as “not
available for Intra chroma prediction™),

predc[x,y 1 =128, withx =4..7and y =4..7 (8-95)

8.3.3.2 Specification of Intra_Chroma_Horizontal prediction mode

This mode shall be used only when the samples p[-1,y], with y = 0..7 are marked as “available for Intra chroma
prediction”.

The values of the prediction samples predc[X, y] are derived as follows.

predc[X,y]=p[-1,y], withx,y=0..7 (8-96)

ITU-T Rec. H.264 (05/2003) 109

8.3.3.3 Specification of Intra_Chroma_Vertical prediction mode

This mode shall be used only when the samples p[x, -1], with x = 0..7 are marked as “available for Intra chroma
prediction”.

The values of the prediction samples predc[x, y] are derived as follows.
predc[X,y]=p[X, -1], withx,y=0..7 (8-97)

8.3.3.4 Specification of Intra_Chroma_Plane prediction mode

This mode shall be used only when the samples p[x, -1], with x = 0..7 and p[-1,y], with y = -1..7 are marked as
“available for Intra chroma prediction”.

The values of the prediction samples predc[X, y] are derived as follows.

predc[X,y]=Clipl((a+b*(x-3)+c*(y-3)+16)>>5), withx,y=0..7 (8-98)
where:

a=16*(p[-1,7]1+p[7,-11) (8-99)

b=(17*H+16)>>5 (8-100)

c=(17*V+16)>>5 (8-101)

and H and V are specified as follows.

H=i(x'+1)*(p[4+x',—1]—p[2—x',—1]) (8-102)
V=i(y'+1)*(p[—1,4+y‘]—p[—1,2—y’]) (8-103)

8.3.4 Sample construction process for | PCM macroblocks

This process is invoked when mb_type is equal to I PCM.

Outputs of this process are constructed macroblock samples S';, S'cy, and S'c; prior to the deblocking filter process.
The variable dy is derived as follows.

- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

- Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed samples prior to the deblocking process are generated as specified by:

for(i=0;i<256; i++)
S[XP+(i%16),yP+dy*(i/16))]=pem byte[i] (8-104)

for(1=0;1<64;it++) {
S'op[(xP>>1)+(1%8),((yP+1)>>1)+dy*(i/8)]=pcm byte[i+ 256] (8-105)
S'el (xP>>1)+(1%8),((yP+1)>>1)+dy*(i/8)]=pcm byte[i+ 320]

H

8.4 Inter prediction process

This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred; of luma
samples and two 8x8 arrays predc, and predc;, of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further

110 ITU-T Rec. H.264 (05/2003)

partitioned into sub-macroblock partitions as specified by sub_mb_type. Each sub-macroblock partition is referred to by
subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14, and
Table 7-15.

The variables partWidth and partHeight are derived as follows.
- Ifmb_type is not equal to P_8x8 or P_8x8ref0 or B_8x8, the following applies.

partWidth = MbPartWidth(mb_type) (8-106)
partHeight = MbPartHeight(mb_type) (8-107)
- Otherwise (mb_type is equal to P_8x8 or P_8x8ref0 or B_8x8),

partWidth = SubMbPartWidth(sub_mb_type[mbPartldx]) (8-108)
partHeight = SubMbPartHeight(sub_mb_type[mbPartldx]). (8-109)

When mb_type is equal to B_Skip or B_Direct 16x16 or sub_mb_type[mbPartldx] is equal to B_Direct_8x8, the Inter
prediction process is specified for

partWidth = 4 (8-110)

partHeight = 4 (8-111)
with mbPartldx proceeding over values 0..3. For each sub-macroblock indexed by mbPartldx, subMbPartldx proceeds
over values 0..3.

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx consists
of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.
Inputs to this process are
- a macroblock partition mbPartldx,
- a sub-macroblock partition subMbPartldx.
Outputs of this process are
- luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0O and mvCL1
- reference indices refldxLLO and refldxL1
- prediction list utilization flags predFlagl.0 and predFlagl1
- the sub-macroblock partition motion vector count subMvCnt.
2. The variable MvCnt is incremented by subMvCnt.
3. Decoding process for Inter prediction samples as specified in subclause 8.4.2.
Inputs to this process are
- a macroblock partition mbPartldx,
- a sub-macroblock partition subMbPartIdx.
- variables specifying partition width and height, partWidth, and partHeight
- luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0O and mvCL1
- reference indices refldxL.O and refldxL1

- prediction list utilization flags predFlagL.0 and predFlagl.1

ITU-T Rec. H.264 (05/2003) 111

Outputs of this process are

- inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples and two (partWidth/2)x(partHeight/2) arrays predPartc,, and predPartc;, of prediction chroma samples,
one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvLO[mbPartldx][subMbPartldx] = mvLO0 (8-112)
MvL1[mbPartldx][subMbPartldx] =mvL1 (8-113)
RefldxLO[mbPartldx] = refldxL0O (8-114)
RefldxL1[mbPartldx | = refldxL1 (8-115)
PredFlagL0[mbPartldx | = predFlaglL0 (8-116)
PredFlagL1[mbPartldx | = predFlagL.1 (8-117)

The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by
invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartldx as the input
and (xP, yP) as the output.

The location of the upper-left sample of the macroblock sub-partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2
with subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable pred; [xP + xS +x, yP +yS +y] with x =0 .. partWidth — 1, y =0 .. partHeight — 1 is derived by
pred [xP + xS +x, yP +yS +y] =predPart [X, y] (8-118)

The variable predc[xP /2 +xS/2+x,yP/2+yS/2+y]withx =0 .. partWidth/2 — 1, y =0 .. partHeight/2 — 1, and C
being replaced by Cb or Cr is derived by

predc[xP/2+xS/2+x,yP/2+yS/2+y]=predPartc[X,y] (8-119)

8.4.1 Derivation process for motion vector components and reference indices

Inputs to this process are

- a macroblock partition mbPartldx,

- a sub-macroblock partition subMbPartIdx.

Outputs of this process are

- luma motion vectors mvL0 and mvL1 as well as the chroma motion vectors mvCL0 and mvCL1

- reference indices refldxL0 and refldxL1

- prediction list utilization flags predFlagL0 and predFlagL.1

- a sub-partition macroblock motion vector count variable subMvCnt

For the derivation of the variables mvL0 and mvL1 as well as refldxL0 and refldxL1, the following applies.

- If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvL0 and reference indices
refldxL0, and predFlagLO is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagl1 is set
equal to 0. The sub-partition motion vector count variable subMvCnt is set equal to 1.

- Otherwise, if mb_type is equal to B_Skip or B_Direct 16x16 or sub_mb_type[mbPartldx] is equal to B_Direct 8x8,
the derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B Direct 8x8 in B slices in
subclause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma motion
vectors mvL0, mvL1, the reference indices refldxL0, refldxL1, the sub-partition motion vector count subMvCnt, and
the prediction utilization flags predFlagl.0 and predFlagL1.

112 ITU-T Rec. H.264 (05/2003)

- Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refldxLX, and in Pred LX and in
the syntax elements ref idx 1X and mvd 1X, and the following applies.

The variables refldxLX and predFlagLX are derived as follows.

- If MbPartPredMode(mb_type, mbPartldx) or SubMbPredMode(sub mb_type[mbPartldx]) is equal to
Pred LX or to BiPred,

refldxLX = ref _idx_1X[mbPartldx] (8-120)

predFlagLX =1 (8-121)
- Otherwise, the variables refldxLX and predFlagl.X are specified by

refldxLX = -1 (8-122)

predFlagLX =0 (8-123)

The variable subMvCnt for sub-partition motion vector count is set equal to predFlagL.0 + predFlagL1.

When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.1.3 is
invoked with mbPartldx subMbPartldx, refldxLX, and list suffix LX as the input and the output being mvpLX. The
luma motion vectors are derived by

mvLX[0]=mvpLX[0]+ mvd_1X[mbPartldx][subMbPartldx][0] (8-124)
mvLX[1]=mvpLX[1]+ mvd IX[mbPartldx][subMbPartldx][1] (8-125)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlagLX (with X
being either O or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with
mvLX and refldxLX as input and the output being mvCLX.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices
This process is invoked when mb_type is equal to P_Skip.
Outputs of this process are the motion vector mvLO0 and the reference index refldxLO0.

The reference index refldxLO0 for a skipped macroblock is derived as follows.

refldxL0 = 0. (8-126)

For the derivation of the motion vector mvLO of a P_Skip macroblock type, the following applies.

Let currSubMbType be set equal to sub_mb_type[0]. The process specified in subclause 8.4.1.3.2 is invoked with
mbPartldx set equal to 0, subMbPartldx set equal to 0, currSubMbType, and list suffix LO as input and the output is
assigned to mbAddrA, mbAddrB, mvLOA, mvLOB, refldxLOA, and refldxLOB.

The variable mvLO is specified as follows.

- Ifany one of the following conditions is true, both components of the motion vector mvL0 are set equal to 0.
- mbAddrA is not available

mbAddrB is not available

- refldxLOA is equal to 0 and both components of mvLOA are equal to 0
- refldxLOB is equal to 0 and both components of mvLOB are equal to 0

- Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked
with mbPartldx = 0, subMbPartldx = 0, refldxL.0, and list suffix LO as input and the output is assigned to mvLO0.

NOTE — The output is directly assigned to mvLO0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct _16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B _Direct 16x16, or sub_ mb_type[mbPartldx] is equal to
B Direct 8x8.

Inputs to this process are mbPartldx and subMbPartldx.

ITU-T Rec. H.264 (05/2003) 113

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvL0O and mvL1, the sub-
partition motion vector count subMvCnt, and the prediction list utilization flags, predFlagl.0 and predFlagl1.

The derivation process depends on the value of direct spatial mv_pred flag, which is present in the bitstream in the
slice header syntax as specified in subclause 7.3.3, and is specified as follows.

- Ifdirect spatial mv_pred flag is equal to 1, the mode in which the outputs of this process are derived is referred to
as spatial direct prediction mode.

- Otherwise (direct spatial mv_pred flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows.

- If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
subclause 8.4.1.2.2 is used, with subMvCnt being an output.

- Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in subclause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows.

- If subMbPartldx is equal to 0, subMvCnt is set equal to 2.

- Otherwise (subMbPartldx is not equal to 0), subMvCant is set equal to 0.
8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One To One, Frm To Fld or FIld To Frm).

Let firstRefPicL1 be the reference picture referred by RefPicList1[0].

When firstRefPicL1 is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL1Bottom be the top
and bottom fields of firstRefPicL.1, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic)) (8-127)
bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL.1Bottom, CurrPic)) (8-128)
The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-5.

Table 8-5 — Specification of the variable colPic

field pic flag | The first entry mb_field decoding flag | additional condition colPic
in RefPicListl
is ...
b e
1 decoded frame firstRefPicL 1
a decoded field firstRefPicLL1
a decoded frame firstRefPicL1
topAbsDiffPOC < the top field of
bottomAbsDiffPOC firstRefPicL1
0
topAbsDiffPOC >= the bottom field
0 a bottomAbsDiffPOC of firstRefPicL1
complementary
field pair __ the top field of
(CurrMbAddr & 1) 0 firstRefPicL 1
1
the bottom field
1=
(CurrMbAddr & 1) 1=0 of firstRefPicL1

When direct 8x8 inference flag is equal to 1, subMbPartldx is set as follows.

114 ITU-T Rec. H.264 (05/2003)

subMbPartldx = mbPartldx (8-129)
Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-6.

Table 8-6 — Specification of PicCodingStruct(X)

X is coded with field pic flag equal to ... | mb_adaptive frame field flag | PicCodingStruct(X)

1 FLD
0 0 FRM
0 1 AFRM

With luma4x4Blkldx = mbPartldx * 4 + subMbPartldx, the inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 is invoked with luma4x4BlkIdx as the input and (X, y) assigned to (xCol, yCol) as the output.

Table 8-7 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and
PicCodingStruct(colPic).

NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field decoding flag and the variable
fieldDecodingFlagX, which is derived as follows.

- If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal to 1

- Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is set
equal to 0.

Unspecified values in Table 8-7 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrColl =2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +

(CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-130)
mbAddrCol2 = 2 * CurrMbAddr + (yCol /8) (8-131)
mbAddrCol3 = 2 * CurrMbAddr + bottom_field flag (8-132)
mbAddrCol4 = PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +

(CurrMbAddr % PicWidthInMbs) (8-133)
mbAddrCol5 = CurrMbAddr / 2 (8-134)
mbAddrCol6 =2 * (CurrMbAddr /2) + ((topAbsDiffPOC < bottomAbsDiffPOC) ?0: 1) (8-135)
mbAddrCol7 =2 * (CurrMbAddr /2) + (yCol / 8) (8-136)

ITU-T Rec. H.264 (05/2003) 115

Table 8-7 — Specification of mbAddrCol, yM, and vertMvScale

2 | -
=) |
131 Q = | -
i ¢ 2y .
w m g - p— c —
£ | 2 % S| .- Z
= = | P
] 2]
S | g 28 2 . :
A = E =2 E =) s
FLD CurrMbAddr |yCol One To One
FRM mbAddrColl |(2* yCol) % 16 Frm To Fld
FLD
0 |mbAddrCol2 [(2* yCol) % 16 Frm To Fld
AFRM | 2*CurrMbAddr
1 |mbAddrCol3 |yCol One To One
* 1 1 [
FLD mbAddrCol4 8 (* (CurrMbAddr / PicWidthInMbs) % 2) Fld To Frm
FRM CurrMbAddr |yCol One To One
0 mbAddrCol5 |8 * (CurrMbAddr %2) +4 * (yCol / 8) Fld To Frm
FLD
1 mbAddrCol5 |yCol One To One
0 | CurrMbAddr |yCol One To One
AFRM CurrMbAddr 0
1 |mbAddrCol6 |8 * (CurrMbAddr %2)+4* (yCol/8) |Fld To Frm
AFRM
0 |mbAddrCol7 |(2* yCol) % 16 Frm To Fld
CurrMbAddr 1
1 |CurrMbAddr |yCol One To One

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-
macroblock partition index of the co-located sub-macroblock partition. The partition in the macroblock mbAddrCol
inside the picture colPic covering the sample (xCol, yM) shall be assigned to mbPartldxCol and the sub-macroblock
partition inside the partition mbPartldxCol covering the sample (xCol, yM) in the macroblock mbAddrCol inside the
picture colPic shall be assigned to subMbPartldxCol.

The prediction utilization flags predFlaglL.0Col and predFlagl.1Col are set equal to PredFlagLO[mbPartldxCol] and
PredFlagL1[mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic.

The motion vector mvCol and the reference index refldxCol are derived as follows.

- If the macroblock mbAddrCol is coded in Intra macroblock prediction mode or both prediction utilization flags,
predFlagL0Col and predFlagl.1Col are equal to 0, both components of mvCol are set equal to 0 and refldxCol is set
equal to —1.

- Otherwise, the following applies.

116

If predFlagl.0Col is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to
MvLO[mbPartldxCol][subMbPartldxCol] and RefldxLO[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxLO that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartldxCol\subMbPartldxCol inside the picture colPic.

Otherwise (predFlaglL0Col is equal to 0 and predFlagl.1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol are set equal to MvLI1[mbPartldxCol][subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL1 that
have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside the
picture colPic.

ITU-T Rec. H.264 (05/2003)

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial mv_pred flag is equal to 1 and any of the following conditions is true.

- mb_type is equal to B_Skip
- mb_type is equal to B Direct 16x16
- sub mb type[mbPartldx] is equal to B Direct 8x8.

Inputs to this process are mbPartldx, subMbPartldx.

Outputs of this process are the reference indices refldxLO0, refldxL1, the motion vectors mvL0O and mvL1, the sub-
partition motion vector count subMvCnt, and the prediction list utilization flags, predFlaglL0 and predFlagL1.

The reference indices refldxLO and refldxLL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1.
2.

Let the variable currSubMbType be set equal to sub_mb_type[mbPartldx].

The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and list suffix LO as input and the output is assigned to the motion vectors mvLON and the reference indices
refldxLON with N being replaced by A, B, or C.

The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and list suffix L1 as input and the output is assigned to the motion vectors mvLIN and the reference indices
refldxL1N with N being replaced by A, B, or C.

NOTE — The motion vectors mvLON, mvLIN and the reference indices refldxLLON, refldxL1N are identical for all 4x4 sub-
macroblock partitions of a macroblock.

The reference indices refldxL0, refldxL1, and directZeroPredictionFlag are derived by

refldxL.O0 = MinPositive(refldxLOA, MinPositive(refldxLOB, refldxLOC)) (8-137)

refldxL1 = MinPositive(refldxL1A, MinPositive(refldxL1B, refldxL.1C)) (8-138)

directZeroPredictionFlag = 0 (8-139)
where

Min(x, if x>=0andy>=0
MinPositive(X,y) = in(x,y) if x) ancy (8-140)
Max(x,y) otherwise

‘When both reference indices refldxL0 and refldxL1 are less than 0,

refldxLO =0 (8-141)
refldxLL1 =0 (8-142)
directZeroPredictionFlag = 1 (8-143)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

The variable colZeroFlag is derived as follows.

If all of the following conditions are true, colZeroFlag is set equal to 1.
- the reference picture referred by RefPicList1[0] is a short-term reference picture
- refldxCol is equal to 0

- both motion vector components mvCol[0] and mvCol[1] lie in the range of -1 to 1 in units specified as
follows.

- If the colocated macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

- Otherwise (the colocated macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are units

of quarter luma field samples.
NOTE - For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector for
the current macroblock in cases when the current macroblock is a frame macroblock and the colocated macroblock is a field
macroblock or when the current macroblock is a field macroblock and the colocated macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in subclause 8.4.1.2.3, which applies scaling to

ITU-T Rec. H.264 (05/2003) 117

the motion vector of the colocated macroblock to use the same units as the units of a motion vector for the current macroblock,
using Equation 8-146 or Equation 8-147 in these cases.

- Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows.

- If any of the following conditions is true, both components of the motion vector mvLX are set equal to 0.
- directZeroPredictionFlag is equal to 1
- refldxLX is less than 0
- refldxLX is equal to 0 and colZeroFlag is equal to 1

- Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0, refldxLX,
and list suffix LX as the input and the output is assigned to mvLX.

NOTE - In the immediately above case, the returned motion vector mvLX is identical for all 4x4 sub-macroblock
partitions of a macroblock.

The prediction utilization flags predFlagl.0 and predFlagl1 shall be derived as specified using Table 8-8.

Table 8-8 — Assignment of prediction utilization flags

refldxL0 refldxL1 predFlagl.0 predFlagl.1
>=0 >=0 1 1
>=0 <0 1 0
<0 >=(0 1

The variable subMvCnt is derived as follows.
- If subMbPartldx is not equal to 0 or direct 8x8 inference flag is equal to 0, subMvCnt is set equal to 0.

- Otherwise (subMbPartldx is equal to 0 and direct 8x8 inference flag is equal to 1), subMvCnt is set equal to
predFlaglL0 + predFLagL1.

8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode
This process is invoked when direct spatial mv_pred flag is equal to 0 and any of the following conditions is true.
- mb_typeis equal to B_Skip
- mb_type is equal to B_Direct 16x16
- sub_mb_type[mbPartldx] is equal to B Direct 8x8.
Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the motion vectors mvL0O and mvL1, the reference indices refldxLLO and refldxL1, and the
prediction list utilization flags, predFlagl.0 and predFlagL1.

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxLLO and refldxL1 are derived as follows.

refldxL0 = ((refldxCol <0) ? 0 : MapColToListO(refldxCol)) (8-144)
refldxL1 =0 (8-145)

NOTE - If the current macroblock is a field macroblock, refldxL0O and refldxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refldxL0 and refldxL1 index a list of frames or complementary reference field pairs.

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToList0(refldxCol) is
specified as follows.

- IfvertMvScale is equal to One_To_One, the following applies.
- Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

118 ITU-T Rec. H.264 (05/2003)

- Let refldxLOFrm be the lowest valued reference index in the current reference picture list RefPicList0 that
references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall
contain a variable PicNum or LongTermPicNum that references the frame or complementary field pair
that contains refPicCol. The return value of MapColToList0() is specified as follows.

- If the field referred to by refldxCol has the same parity as the current macroblock,
MapColToList0(refldxCol) returns the reference index (refldxLOFrm << 1).

- Otherwise (the field referred by refldxCol has the opposite parity of the current macroblock),
MapColToListO(refldxCol) returns the reference index ((refldxLOFrm << 1)+1).

Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), MapColToListO(
refldxCol) returns the lowest valued reference index refldxLO in the current reference picture list RefPicList0
that references refPicCol. RefPicList0 shall contain a variable PicNum or LongTermPicNum that references
refPicCol.

- Otherwise, if vertMvScale is equal to Frm_To_ Fld, the following applies.

If field pic flag is equal to 0, let refldxLOFrm be the lowest valued reference index in the current reference
index list RefPicList0 that references refPicCol. MapColToListO(refldxCol) returns the reference index
(refldxLOFrm << 1). RefPicList0 shall contain a variable PicNum or LongTermPicNum that references
refPicCol.

Otherwise (field pic_flag is equal to 1), MapColToList0(refldxCol) returns the lowest valued reference index
refldxLO in the current reference picture list RefPicListO that references the field of refPicCol with the same
parity as the current picture CurrPic. RefPicList0 shall contain a variable PicNum or LongTermPicNum that
references the field of refPicCol with the same parity as the current picture CurrPic.

- Otherwise (vertMvScale is equal to FId To Frm), MapColToListO(refldxCol) returns the lowest valued reference
index refldxL0 in the current reference picture list RefPicList0 that references the frame or complementary field pair
that contains refPicCol. RefPicList0 shall contain a variable PicNum or LongTermPicNum that references the frame
or complementary field pair that contains refPicCol.

NOTE — A decoded reference picture that was marked as "used for short-term reference" when it was referenced in the
decoding process of the picture containing the co-located macroblock may have been modified to be marked as "used
for long-term reference" before being used for reference for inter prediction using the direct prediction mode for the
current macroblock.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

- If vertMvScale is equal to Frm_To FId

mvCol[1]=mvCol[1]/2 (8-146)

- Otherwise, if vertMvScale is equal to Fld To Frm

mvCol[1]=mvCol[1]*2 (8-147)

- Otherwise (vertMvScale is equal to One_To One), mvCol[1] remains unchanged.

The variables currPicOrField, pic0, and picl, are derived as follows.

— Iffield pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
picl is the field of RefPicList1[0] that has the same parity as the current macroblock.

Let frameO be the frame or complementary field pair that is referred to by RefPicList0[refldxL0 /2].

The variable pic0 is derived as follows.

—If refldxLO % 2 is equal to 0, picO is the field of frame0 that has the same parity as the current macroblock.

—Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of frame0 that has the opposite parity of the current
macroblock.

— Otherwise (field pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the
current picture CurrPic, picl is the decoded reference picture referred to by RefPicList1[0], and picO is the decoded
reference picture referred to by RefPicListO[refldxLO].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived as

follows:

NOTE - It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample

ITU-T Rec. H.264 (05/2003) 119

values in larger units than 4x4 luma sample blocks. For example, when direct 8x8 inference flag is equal to 1, at least
cach 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxL0 refers to a long-term picture, or DiffPicOrderCnt(picl, picO) is equal to 0, the
motion vectors mvL0, mvL1 for the direct mode partition are derived by

mvL0 = mvCol (8-148)
mvL1 =0 (8-149)

— Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the co-
located sub-macroblock partition as specified below (see Figure 8-2)

tx=(16384+ Abs(td/2))/td (8-150)
DistScaleFactor = Clip3(-1024, 1023, (tb *tx +32)>>6) (8-151)
mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-152)
mvL1 =mvL0 — mvCol (8-153)

where tb and td are derived as follows.
tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-154)
td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-155)

NOTE - mvL0 and mvL1 cannot exceed the ranges specified in Annex A.
The prediction utilization flags predFlagl.0 and predFlagl1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
the list 0 reference picture and the list 1 reference picture.

List 0 Reference Current B List 1 Reference

™~ co-located partition
. » mvL1]
direct-mode B partition

time

Figure 8-2 —Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation process for luma motion vector prediction
Inputs to this process are

- the macroblock partition index mbPartldx,

- the sub-macroblock partition index subMbPartldx,

- list suffix LX,

- the reference index of the current partition refldxLX.

120 ITU-T Rec. H.264 (05/2003)

Output of this process is the prediction mvpLX of the motion vector mvLX.

Let currSubMbType be set equal to sub_mb_type[mbPartldx].

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartldx,
subMbPartldx, currSubMbType, and list suffix LX as the input and with mbAddrN\mbPartldxN\subMbPartIdxN,
reference indices refldxLXN and the motion vectors mvLXN with N being replaced by A, B, or C as the output.

The derivation process for median luma motion vector prediction in subclause 8.4.1.3.1

MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx
refldxL.XB is equal to refldxLX,

mvpLX = mvLXB

MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx
refldxLXA is equal to refldxLX,

mvpLX = mvLXA

MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx
refldxLXA is equal to refldxLX,

mvpLX = mvLXA

MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb type) is equal to 16, mbPartldx
refldxLXC is equal to refldxLX,

mvpLX =mvLXC

Figure 8-3 illustrates the non-median prediction as described above.

8*16 16*8

I O B v

Figure 8-3 — Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are

is invoked with
mbAddrN\mbPartldxN\subMbPartldxN, mvLXN, refldxLXN with N being replaced by A, B, or C and refldxLX as the
input and mvpLX as the output, unless one of the following is true.

is

is

is

is

equal to 0, and

(8-156)

equal to 1, and

(8-157)

equal to 0, and

(8-158)

equal to 1, and

(8-159)

the neighbouring partitions mbAddrN\mbPartldxN\subMbPartIdxN (with N being replaced by A, B, or C),

the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

the reference indices refldxLXN (with N being replaced by A, B, or C) of the neighbouring partitions, and

the reference index refldxLLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The variable mvpLX is derived as follows:

When both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not

available and mbAddrA\mbPartldx A\subMbPartIdxA is available,

mvLXB = mvLXA

(8-160)

ITU-T Rec. H.264 (05/2003) 121

mvLXC = mvLXA (8-161)
refldxLXB = refldxLXA (8-162)
refldxLXC = refldxLXA (8-163)

Depending on reference indices refldxLXA, refldxLXB, or refldxLXC, the following applies.

- If one and only one of the reference indices refldxL.XA, refldxLXB, or refldxLXC is equal to the reference index
refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is equal to
refldxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-164)

- Otherwise, each component of the motion vector prediction mvpLX is given by the median of the corresponding
vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX][0]=Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-165)

mvpLX][1]=Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-166)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions

Inputs to this process are

the macroblock partition index mbPartldx,

the sub-macroblock partition index subMbPartldx,
the current sub-macroblock type currSubMbType,
the list suffix LX

Outputs of this process are (with N being replaced by A, B, or C)

mbAddrN\mbPartldxN\subMbPartIdxN specifying neighbouring partitions,
the motion vectors mvLXN of the neighbouring partitions, and

the reference indices refldxLXN of the neighbouring partitions.

The partitions mbAddrN\mbPartldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1.
2.

Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

The process in subclause 6.4.7.5 is invoked with mbPartldx, currSubMbType, and subMbPartldx as input and the
output is assigned to mbAddrN\mbPartldxN\subMbPartIdxN with N being replaced by A, B, C, or D.

. When the partition mbAddrC\mbPartldxC\subMbPartIdxC is not available, the following applies

mbAddrC = mbAddrD (8-167)
mbPartldxC = mbPartldxD (8-168)
subMbPartldxC = subMbPartldxD (8-169)

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows.

If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is not available or
mbAddrN is coded in Intra prediction mode or predFlagLX of mbAddrN\mbPartldxN\subMbPartIdxN is equal to 0,
both components of mvLXN are set equal to 0 and refldxLXN is set equal to —1.

Otherwise, the following applies.

- The motion vector mvLXN and reference index refldxLXN are set equal to
MvLX[mbPartldxN][subMbPartldxN] and RefldxL X[mbPartldxN], respectively, which are the motion vector
mvLX and reference index refldxLX that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN.

- The variables mvLXN]J 1] and refldxLXN are further processed as follows.

122 ITU-T Rec. H.264 (05/2003)

- If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1]=mvLXN[1]/2 (8-170)

refldxLXN = refldxLXN * 2 (8-171)

- Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

mvLXN[1]=mvLXN[1]*2 (8-172)

refldxLXN = refldxLXN / 2 (8-173)

- Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxLXN remain
unchanged.

8.4.1.4 Derivation process for chroma motion vectors
Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.
Outputs of this process are a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector. Since the accuracy of luma motion
vectors is one-quarter sample and chroma has half resolution compared to luma, the accuracy of chroma motion vectors
is one-eighth sample, i.e., a value of 1 for the chroma motion vector refers to a one-eighth sample displacement.

NOTE - For example when the luma vector applies to 8x16 luma samples, the corresponding chroma vector applies to 4x8 chroma
samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.

- If the current macroblock is a frame macroblock, the horizontal and vertical components of the chroma motion
vector mvCLX are derived by multiplying the corresponding components of luma motion vector mvLX by 2,
through mapping one-quarter sample mvLX units to one-eighth sample mvCLX units

mvCLX[0]=mvLX[0] (8-174)
mvCLX[1]=mvLX[1] (8-175)

- Otherwise (the current macroblock is a field macroblock), only the horizontal component of the chroma motion
vector mvCLX[0] is derived using Equation 8-174. The vertical component of the chroma motion vector
mvCLX][1] is dependent on the parity of the current field or the current macroblock and the reference picture,
which is referred by the reference index refldxLX. mvCLX] 1] is derived from mvLX] 1] according to Table 8-9.

Table 8-9 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions mvCLX][1]
Reference picture (refldxLX) Current field (picture/macroblock)

Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding process for Inter prediction samples

Inputs to this process are

- a macroblock partition mbPartldx,

- a sub-macroblock partition subMbPartIdx.

- variables specifying partition width and height, partWidth and partHeight

- luma motion vectors mvL0 and mvL1 and chroma motion vectors mvCL0 and mvCL1

- reference indices refldxL0 and refldxL1

ITU-T Rec. H.264 (05/2003) 123

- prediction list utilization flags, predFlaglL0 and predFlagL1
Outputs of this process are

- the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples, and two (partWidth/2)x(partHeight/2) arrays predPartc,, predPartc, of prediction chroma samples, one for
each of the chroma components Cb and Cr.

Let predPartL0O; and predPartL1; be (partWidth)x(partHeight) arrays of predicted luma sample values and predPartLOcy,
predPartL1¢y, predPartL0Oc,, and predPartL1c, be (partWidth/2)x(partHeight/2) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagLX, RefPicListX, refldxLX, refPicLX, predPartLX,
the following is specified.

When predFlagLX is equal to 1, the following applies.

- The reference frame consisting of an ordered two-dimensional array refPicLX; of luma samples and two ordered
two-dimensional arrays refPicL X, and refPicL X, of chroma samples is derived by invoking the process specified
in subclause 8.4.2.1 with refldxLLX and RefPicListX given as input.

- The arrays predPartLX;, predPartL. X, and predPartL X, are derived by invoking the process specified in subclause
8.4.2.2 with the current partition specified by mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX, and the
reference arrays with refPicL.X, refPicL X, and refPicLXc, given as input.

For C being replaced by L, Cb, or Cr, the array predPartc of the prediction samples of component C is derived by
invoking the process specified in subclause 8.4.2.3 with the current partition specified by mbPartldx and subMbPartldx
and the array predPartLOc and predPartL 1. as well as predFlagl.0 and predFlagL1 given as input.

8.4.2.1 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX; and two
two-dimensional arrays of chroma samples refPicLXcy, and refPicLX,.

Reference picture list RefPicListX is a list of wvariables PicNum (for short-term reference pictures) and
LongTermPicNum (for long-term reference pictures) of previously decoded reference frames, complementary reference
field pairs, or non-paired reference fields that have been marked as “used for reference” as specified in subclause 8.2.5.

Depending on field pic_flag, the meaning of PicNum and LongTermPicNum is specified as follows.

- Iffield pic_flag is equal to 1, all entries of the RefPicListX are variables PicNum and LongTermPicNum of decoded
reference fields or fields of decoded reference frames.

- Otherwise (field pic flag is equal to 0), all entries of RefPicListX are variables PicNum and LongTermPicNum of
decoded reference frames or complementary reference field pairs.

The reference picture list RefPicListX is derived as specified in subclause 8.2.4.
For the derivation of the reference picture, the following applies.

- If field pic flag is equal tol, the reference field or field of a reference frame referred by
PicNum = RefPicListX[refldxLX] or LongTermPicNum = RefPicListX[refldxLX] shall be the output. The output
reference field or field of a reference frame consists of a (PicWidthInSamples;)x(PicHeightInSamples;) array of luma
samples refPicLX; and two (PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicLXc;, and
refPicLXc,.

- Otherwise (field pic_flag is equal to 0), the following applies.

- If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
referred by PicNum = RefPicListX][refldxLX | or LongTermPicNum = RefPicListX][refldxLX] shall be the
output. The output reference frame or complementary reference field pair consists of a
(PicWidthInSamples;)x(PicHeightInSamples;) array of luma samples refPicLX; and two
(PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicL Xy, and refPicLXc,.

- Otherwise (the current macroblock is a field macroblock), the following applies.

- Let refFrame be the reference frame or complementary reference field pair that is referred by
PicNum = RefPicListX][refldxL.X / 2] or LongTermPicNum = RefPicListX][refldxL.X /2].

- The field of refFrame is selected as follows.

124 ITU-T Rec. H.264 (05/2003)

- IfrefldxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current macroblock shall
be the output.

- Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the current
macroblock shall be the output.

- The output reference field or field of a reference frame consists of a
(PicWidthInSamples;)x(PicHeightInSamples; /2) array of luma samples refPicLX; and two
(PicWidthInSamplesc)x(PicHeightInSamplesc/2) arrays of chroma samples refPicLXc, and refPicL.Xc,.

The reference picture sample arrays refPicLX;, refPicL Xy, refPicLXc, correspond to decoded sample arrays Si, Scp, Scr
derived in subclause 8.7 for previous decoded pictures.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are

- the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
- the width and height partWidth, partHeight of this partition in luma-sample units,

- aluma motion vector mvLX given in quarter-luma-sample units,

- achroma motion vector mvCLX given in eighth-chroma-sample units, and

- the selected reference picture sample arrays refPicLXy, refPicLXcy, and refPicLXc,

Outputs of this process are

- a(partWidth)x(partHeight) array predPartLX; of prediction luma sample values and

- two (partWidth/2)x(partHeight/2) arrays predPartL. Xy, and predPartLXc, of prediction chroma sample values.

Let (XAy, yAr) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInt, yInt;) be a luma location given in full-sample units and (xFracy, yFrac;) be an offset given in quarter-
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside
the reference sample arrays refPicLX, refPicL Xy, and refPicLXc,.

For each luma sample location (0 <=xp <partWidth, 0 <=y, <partHeight) inside the prediction luma sample array
predLX, the corresponding predicted luma sample value predL X[x;, y.] is derived as follows:

xInty = xAp + (mvLX[0]>>2) +x¢ (8-176)
yIntp =yAL +(mvLX[1]>>2)+y_ (8-177)
xFracp =mvLX[0] & 3 (8-178)
yFracp, =mvLX[1] &3 (8-179)

- The prediction sample value predLX;[x, yp] is derived by invoking the process specified in subclause 8.4.2.2.1
with (xInty, yInt;), (xFracy, yFracy) and refPicLX| given as input.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in one-eighth
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside
the reference sample arrays refPicLXcy,, and refPicL.Xc,.

For each chroma sample location (0 <= x¢ < partWidth/2, 0 <=y < partHeight/2) inside the prediction chroma sample
arrays predPartLXc, and predPartLXc,, the corresponding prediction chroma sample values predPartLXcy[Xc, yc] and
predPartLXc,[xc, yc] are derived as follows:

xIntc = (xAL > 1)+ (mvCLX[0]>>3)+ xc (8-180)
ylntc =(yAL>1)+(mvCLX[1]>>3)+yc (8-181)
xFracc=mvCLX[0] & 7 (8-182)
yFracc=mvCLX[1] & 7 (8-183)

- The prediction sample value predPartLXc,[Xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicL X, given as input.

ITU-T Rec. H.264 (05/2003) 125

- The prediction sample value predPartLXc[xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLXc, given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are

- aluma location in full-sample units (xInt;, yInt),

- aluma location offset in fractional-sample units (xFrac;, yFrac;), and
- the luma sample array of the selected reference picture refPicLX

Output of this process is a predicted luma sample value predPartLX; [x;, y. |.

L] L] L] L]

E GabcH‘ m
die|f|g

Innnn
niplqglr

M s [N 7] Q

L] L] & [& L] L]

L] L] L] L]

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation.

The variable refPicHeightEffective;, which is the height of the effective reference picture luma array, is derived as
follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding_ flag is equal to 0, refPicHeightEffective, is set equal to
PicHeightInSamples; .

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding_flag is equal to 1), refPicHeightEffective, is set
equal to PicHeightInSamples; / 2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX; of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX;[x;, y]. The locations (xZ;, yZ;) for each of the corresponding luma
samples Z, where Z may be A,B,C,D,E,F,G,H,LJ, K, L, M, N, P, Q, R, S, T, or U, inside the given array refPicLX
of luma samples are derived as follows:

xZy = Clip3(0, PicWidthInSamples; — 1, xInt; + xDZ;)
yZ, = Clip3(0, refPicHeightEffective, — 1, yInt, + yDZ;) (8-184)

126 ITU-T Rec. H.264 (05/2003)

Table 8-10 specifies (xDZ;, yDZ;) for different replacements of Z.

Table 8-10 — Differential full-sample luma locations

Z

xDZ; | 0 1 0 1 22 -1 |0 1 2 3 2 -1 |0 1 2 3 0 1 0 1

yDZ, | -2 |2 |-1 |-1 |O 0 0 0 0 0 1 1 1 1 1 1 2 2 3 3

Given the luma samples ‘A’ to ‘U’ at full-sample locations (XA, yAL) to (XU, yU), the luma samples ‘a’ to ‘s’ at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions shall
be derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at quarter sample
positions shall be derived by averaging samples at full and half sample positions. The process for each fractional position
is described below.

The samples at half sample positions labelled b shall be derived by first calculating intermediate values denoted as b,
by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h shall be derived by first calculating intermediate values denoted as h; by applying the 6-
tap filter to the nearest integer position samples in the vertical direction:

bi=(E-5*F+20*G+20*H-5*1+1]) (8-185)
h=(A-5*C+20*G+20*M-5*R+T) (8-186)

The final prediction values b and h shall be derived using:

b=Clipl((b, +16)>>5) (8-187)
h=Clipl((h, +16)>>5) (8-188)

The samples at half sample position labelled as j shall be derived by first calculating intermediate value denoted as j;
by applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result.

ji=cc—=5%dd+20*h; +20*m; —5 * ee+ ff, or (8-189)
ji=aa—5%*bb+20*b;+20*s, —5*gg+hh (8-190)

where intermediate values denoted as aa, bb, gg, s; and hh shall be derived by applying the 6-tap filter horizontally in
the same manner as the derivation of b, and intermediate values denoted as cc, dd, ee, m; and ff shall be derived by
applying the 6-tap filter vertically in the same manner as the derivation of h,. The final prediction value j shall be
derived using:

i=Clipl((ji+512)>>10) (8-191)

The final prediction values s and m shall be derived from s; and m; in the same manner as the derivation of b and h,
as given by:

s =Clipl((s; +16)>>5) (8-192)
m=Clipl((m, +16)>>5) (8-193)

The samples at quarter sample positions labelled as a, ¢, d, n, f, 1, k, and q shall be derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using:

a=(G+b+1)>>1 (8-194)
c=(H+b+1)>>1 (8-195)
d=(G+h+1)>>1 (8-196)
n=(M+h+1)>>1 (8-197)
f=(b+j+1)>>1 (8-198)
i=(h+j+1)>>1 (8-199)
k=(j+m+1)>>1 (8-200)
q=(j+s+1)>>1. (8-201)

ITU-T Rec. H.264 (05/2003) 127

The samples at quarter sample positions labelled as e, g, p, and r shall be derived by averaging with upward rounding
of the two nearest samples at half sample positions in the diagonal direction using

e=(b+th+1)>1 (8-202)
g=(b+m+1)>>1 (8-203)
p=(h+s+1)>1 (8-204)
r=(m+s+1)>1. (8-205)

The luma location offset in fractional-sample units (xFrac;, yFrac,) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX; [x;, y.]. This
assignment is done according to Table 8-11. The value of predPartLX [x;, y.] shall be the output.

Table 8-11 — Assignment of the luma prediction sample predPartLX, [x., y. |

xFracp 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracp 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLX [x,yvp] | G | d h n a e i p b f] q c g k r

8.4.2.2.2 Chroma sample interpolation process

Inputs to this process are

a chroma location in full-sample units (xIntc, yIntc),
a chroma location offset in fractional-sample units (xFracc, yFracc), and

chroma component samples from the selected reference picture refPicLXc.

Output of this process is a predicted chroma sample value predPartLX[xc, yc].

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicLX¢ of chroma samples.

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D.

The variable refPicHeightEffectivec, which is the height of the effective reference picture chroma array, is derived as
follows.

If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffectivec is set equal to
PicHeightInSamplesc.

Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding flag is equal to 1), refPicHeightEffectivec is set
equal to PicHeightInSamplesc / 2.

The sample coordinates specified in Equations 8-206 through 8-213 are used for generating the predicted chroma sample
value predPartL X[Xc, yc |-

xAc = Clip3(0, PicWidthInSamplesc — 1, xInt¢) (8-206)
xBc = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1) (8-207)

128 ITU-T Rec. H.264 (05/2003)

xCc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-208)

xD¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1) (8-209)
yAc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-210)
yBc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-211)
yCc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-212)
yDc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-213)

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-206 through 8-213, the
predicted chroma sample value predPartL X[X¢, yc] is derived as follows:

predPartLX [x¢, yc] = ((8 —xFracc) * (8 — yFracc) * A + xFracc * (8 — yFracc) * B+
(8 —xFracc) * yFrace * C + xFracc * yFracc * D +32)>>6 (8-214)
8.4.2.3 Weighted sample prediction process
Inputs to this process are
- mbPartldx: the current partition given by the partition index
- subMbPartldx: the sub-macroblock partition index
- predFlaglL0 and predFlagl1: prediction list utilization flags

- predPartLX;: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagL0 and predFlagl.1)

- predPartLXc, and predPartLX,: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of
the chroma components Cb and Cr (with LX being replaced by L0 or L1 depending on predFlagl.0 and predFlagl.1)

Outputs of this process are
- predPart;: a (partWidth)x(partHeight) array of prediction luma samples and

- predPartcy, and predPartc,: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples, one for each of the
chroma components Cb and Cr.

For macroblocks or partitions with predFlagL.0 equal to 1 in P and SP slices, the following applies.

- If weighted pred flag is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

- Otherwise (weighted pred flag is equal to 1), the explicit weighted prediction process as described in subclause
8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

For macroblocks or partitions with predFlagl0 or predFlagl1 equal to 1 in B slices, the following applies.

- If weighted bipred idc is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

- Otherwise, if weighted bipred idc is equal to 1, the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2, for macroblocks or partitions with predFlagl.0 or predFlagl1 equal to 1 with the same inputs
and outputs as the process described in this subclause.

- Otherwise (weighted bipred idc is equal to 2), the following applies.

- If predFlagLO0 is equal to 1 and predFlagL1 is equal to 1, the implicit weighted sample prediction as described in
subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

- Otherwise (predFlagl0 or predFlagl.l are equal to 1 but not both), the default weighted sample prediction
process as described in subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described
in this subclause.

8.4.2.3.1 Default weighted sample prediction process
Input to this process are the same as specified in subclause 8.4.2.3.
Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the component for which the prediction block is derived, the following applies.

ITU-T Rec. H.264 (05/2003) 129

- If the luma sample prediction values predPart, [X, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

- Otherwise, if the chroma Cb component sample prediction values predPartc,[x,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidth /2 - 1, and y set equal to O .. partHeight / 2 - 1.

- Otherwise (the chroma Cr component sample prediction values predPartc,[X, y] are derived), the following applies
with C set equal to Cr, x set equal to 0 .. partWidth /2 - 1, and y set equal to O .. partHeight /2 - 1.

The prediction sample values are derived as follows.

- IfpredFlagLO is equal to 1 and predFlagl1 is equal to O for the current partition

predPartc[x, y] = predPartLO[x, y] (8-215)

- Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1 for the current partition

predPartc[x, y]= predPartL1c[X, y | (8-216)

- Otherwise (predFlagl0 and predFlagl.1 are equal to 1 for the current partition),

predPartc[x, y] = (predPartLOc[x, y | + predPartL1c[x,y]+ 1) >> 1. (8-217)

8.4.2.3.2 Weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the component for which the prediction block is derived, the following applies.

- If the luma sample prediction values predPart [X, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

- Otherwise, if the chroma Cb component sample prediction values predPartc,[x,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidth /2 - 1, and y set equal to O .. partHeight /2 - 1.

- Otherwise (the chroma Cr component sample prediction values predPartc,[X, y] are derived), the following applies
with C set equal to Cr, x set equal to 0 .. partWidth /2 - 1, and y set equal to O .. partHeight /2 - 1.

The prediction sample values are derived as follows

- If the partition mbPartldx\subMbPartldx has predFlagl0 equal to 1 and predFlagl.1 equal to 0, the final predicted
sample values predPart([x, y] are derived by

if(logWD >=1)
predPartc[x, y] = Clipl(((predPartLOc[X,y] * wo + 2°°¥VP 1) >> logWD) + 0,)

else (8-218)
predPartc[x, y] = Clipl(predPartLOc[x, y] * wo + 0¢)

- Otherwise, if the partition mbPartldx\subMbPartldx has predFlagl.0 equal to 0 and predFlagl.1 equal to 1, the final
predicted sample values predPart([x, y | are derived by

if(logWD >=1)
predPartc[x, y 1= Clipl(((predPartL1c[X,y] * wy +2°¢VP-1)>> JogWD) + 0,)

else (8-219)
predPartc[x, y] = Clipl(predPartL1c[x,y] * w; +0;)

- Otherwise (the partition mbPartldx\subMbPartldx has both predFlagl.0 and predFlagll equal to 1), the final
predicted sample values predPart([x, y | are derived by

predPartc[x, y] = Clip1(((predPartLOc[X,y] * wo + predPartL1c[x, y] * w; + 2"°¢€VP) >>
(logWD+1))+((0p+to;+1)>>1)) (8-220)

The variables in the above derivation for the prediction samples are derived as follows.

- If weighted bipred_idc is equal to 2 and the slice type is equal to B, implicit mode weighted prediction is used as
follows.

logWD =5 (8-221)

130 ITU-T Rec. H.264 (05/2003)

00:()

01:()

(8-222)

(8-223)

and wy and w are derived as follows.

The variables currPicOrField, pic0, and picl are derived as follows:

- If field pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.

Let frame0 be the frame or complementary field pair that is referred to by
RefPicListO[refldxLO /2].

The variable pic0 is derived as follows.

— IfrefldxLO % 2 is equal to 0, picO is the field of frameO that has the same parity as the current
macroblock.

— Otherwise (refldxLO % 2 is not equal to 0), picO is the field of frame0 that has the opposite
parity of the current macroblock.

Let framel be the frame or complementary field pair that is referred to by
RefPicListl[refldxL1/2].

The variable picl is derived as follows.

— IfrefldxL1 % 2 is equal to 0, picl is the field of framel that has the same parity as the current
macroblock.

— Otherwise (refldxL1 % 2 is not equal to 0), picl is the field of framel that has the opposite
parity of the current macroblock.

- Otherwise (field pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField
is the current picture CurrPic, picl is the decoded reference picture referred to by RefPicList1[refldxL1],
and picO is the decoded reference picture referred to by RefPicListO[refldxLO0].

The variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField, pic0, picl using
Equations 8-154, 8-155, 8-150, and 8-151, respectively.

If DiffPicOrderCnt(picl, picO) is equal to 0 or one or both of picl and picO is a long-term reference picture or
(DistScaleFactor >> 2) < -64 or (DistScaleFactor >> 2) > 128, w, and w, are derived as

wo =32 (8-224)

w; =32 (8-225)
Otherwise,

wo = 64 — (DistScaleFactor >> 2) (8-226)

w; = DistScaleFactor >> 2 (8-227)

- Otherwise (weighted pred flag is equal to 1 in P or SP slices or weighted bipred idc equal to 1 in B slices), explicit
mode weighted prediction is used as follows.

The variables refldxLOWP and refldxL1 WP are derived as follows.

- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-228)

refldxL1WP = refldxL1 >> 1 (8-229)

- Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refldxLOWP = refldxL0 (8-230)

refldxL1WP = refldxL1 (8-231)

ITU-T Rec. H.264 (05/2003) 131

- The variables logWD, wy, Wy, 0y, and o, are derived as follows.

- If Cin predPart([x, y] is replaced by L for luma samples

logWD = luma_log2 weight denom (8-232)
wo = luma_weight 10[refldxLOWP] (8-233)
wi = luma_weight 11[refldxL1WP] (8-234)
0o = luma_offset 10[refldxLOWP] (8-235)
0, =luma_offset 11[refldxL1WP] (8-236)

- Otherwise (C in predPartc[x,y] is replaced by Cb or Cr for chroma samples, with iCbCr=0 for Cb,
iCbCr =1 for Cr),

logWD = chroma log2 weight denom (8-237)
wo = chroma_weight 10[refldxLOWP][iCbCr] (8-238)
wi = chroma_weight 11] refldxL1WP][iCbCr] (8-239)
0p = chroma_offset_10[refldxLOWP][iCbCr] (8-240)
0, = chroma_offset 11[refldxLIWP][iCbCr] (8-241)

When explicit mode weighted prediction is used and the partition mbPartldx\subMbPartldx has both predFlagl.0 and
predFlagL1 equal to 1, the following constraint shall be obeyed

128 <=wo + w; <= ((logWD == 7)?127:128) (8-242)

NOTE —For implicit mode weighted prediction, weights w, and w, are each guaranteed to be in the range of -64..128 and the
constraint expressed in Equation 8-242, although not explicitly imposed, will always be met. For explicit mode weighted
prediction with logWD equal to 7, when one of the two weights w, or w; is inferred to be equal to 128 (as a consequence of
luma_weight 10 flag, luma weight 11 _flag, chroma weight 10 flag, or chroma weight 11 flag equal to 0), the other weight (w,
or wy) must have a negative value in order for the constraint expressed in Equation 8-242 to hold (and therefore the other flag
luma_weight 10 flag, luma weight 11 flag, chroma weight 10 flag, or chroma weight 11 flag must be equal to 1).

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral 6x16DCLevel (if available), Intral6x16ACLevel (if available), LumaLevel (if available),
ChromaDCLevel, ChromaACLevel, and available Inter or Intra prediction sample arrays for the current macroblock for
the applicable component pred;, predcyp, or predc;.

NOTE — When decoding a macroblock in Intra_4x4 prediction mode, the luma component of the macroblock prediction array may

not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process for luma samples as specified in subclause 8.3.1
and the process specified in this subclause are iterated.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
component S’r, S’cp, O S’y

NOTE — When decoding a macroblock in Intra_4x4 prediction mode, the luma component of the macroblock constructed sample
arrays prior to the deblocking filter process may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process
for luma samples as specified in subclause 8.3.1 and the process specified in this subclause are iterated.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P _Skip or B Skip, all values of Lumalevel, ChromaDCLevel,
ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for residual blocks

When the current macroblock prediction mode is not equal to Intra_16x16, the variable Lumalevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4Blkldx = 0..15, the following ordered
steps are specified.

132 ITU-T Rec. H.264 (05/2003)

1. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢ as
the input and r as the output.

3. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

4. The 4x4 array u with elements uj; for i, j = 0..3 is derived as
ujj = Clipl(pred, [xO +j,yO +i]+ 1) (8-243)

5. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
luma4x4BIkldx, u as the input and S’ as the output.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
Intral6x16DCLevel as the input and the two-dimensional array ¢ as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in subclause 8.5.6 is invoked with ¢ as the input and dcY as the output.

2. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered steps are specified.

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumalList is the corresponding
value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to the
luma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcYy;, and the numbers in
large squares refer to luma4x4BlkIdx.

Figure 8-6 — Assignment of the indices of dcY to luma4x4BlkIdx.

The elements in lumaList with index k = 1..15 are specified as

lumaList[k] = Intral 6x16ACLevel[luma4x4BIlkIdx][k-1] (8-244)

b. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with lumaList as
the input and the two-dimensional array ¢ as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
¢ as the input and r as the output.

ITU-T Rec. H.264 (05/2003) 133

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4Blkldx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as
the input and the output being assigned to (xO, yO).

e. The 4x4 array u with elements u; for i, j = 0..3 is derived as
u;; = Clipl(pred [xO+j, yO +i]+r15) (8-245)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
luma4x4BIkldx, u as the input and S’ as the output.

8.5.3 Specification of transform decoding process for chroma samples

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients. For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The 2x2 chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed by iCbCr of the
macroblock are decoded.

a. The 2x2 array c is derived using the inverse raster scanning process applied to ChromaDCLevel as follows

3 {ChromaDCLevel [iCbCr][0] ChromaDCLevel[iCbCr][1]} (8-246)

ChromaDCLevel[iCbCr [[2] ChromaDCLevel[iCbCr | 3]

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.7 is
invoked with ¢ as the input and dcC as the output.

2. For each 4x4 chroma block indexed by chroma4x4Blkldx = 0..3 of the component indexed by iCbCer, the following
ordered steps are specified.

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to the
chroma4x4Blkldx. The two numbers in the small squares refer to indices i and j in dcC;;, and the numbers in
large squares refer to chroma4x4BlkIdx.

[oof o]
0 1

i |
2 3

Figure 8-7 — Assignment of the indices of dcC to chroma4x4BlkIdx.

The elements in chromaList with index k = 1..15 are specified as

chromaList[k] = ChromaACLevel[chroma4x4Blkldx][k-1] (8-247)

b. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromaList
as the input and the two-dimensional array ¢ as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢
as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the
macroblock is derived as follows

x0 = InverseRasterScan(chroma4x4BIklIdx, 4, 4, 8, 0) (8-248)
yO = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-249)

e. The 4x4 array u with elements u;; for i, j = 0..3 is derived as

134 ITU-T Rec. H.264 (05/2003)

u;j = Clip(predc[xO +j, yO +1i] + 1) (8-250)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chroma4x4BlkIdx, u as the input and S’ as the output.

8.5.4 Inverse scanning process for transform coefficients
Input to this process is a list of 16 values.

Output of this process is a variable ¢ containing a two-dimensional array of 4x4 values with level assigned to locations in
the transform block.

The decoding process maps the sequence of transform coefficient levels to the transform coefficient level positions. For
this mapping, the two inverse scanning patterns shown in Figure 8-8 are used.

The inverse zig-zag scan shall be used for frame macroblocks and the inverse field scan shall be used for field
macroblocks.

R S
A AL
AR U

Figure 8-8 — a) Zig-zag scan. b) Field scan

Table 8-12 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-dimensional
array c.

Table 8-12 — Specification of mapping of idx to ¢;; for zig-zag and field scan

idx 0|12 3|4 |5]|6[7 |89 |10|11]12]13|14]15

Zig-zag | Coo | Coi | C1o | €20 | €11 | Co2 | Co3 | Ci2 | Co1 | C30 | €31 | Co2 | €13 | €23 | €32 | C33

field | coo | €10 | Coi | €20 | €30 | €11 | €21 | €31 | Co2 | Cia | €22 | €32 | Co3 | Ci3 | €23 | C33

8.5.5 Derivation process for the chroma quantisation parameters and scaling function

Outputs of this process are:
— QP¢: the chroma quantisation parameter
— QSc: the additional chroma quantisation parameter required for decoding SP and SI slices (if applicable)

NOTE - QP quantisation parameter values QPy, QPc, QSy, and QS are always in the range of 0 to 51, inclusive.

The value of QP for chroma is determined from the current value of QPy and the value of chroma qp_index_offset.

NOTE - The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPy. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPy.

The value of QP shall be determined as specified in Table 8-13 based on the index denoted as qP;. The value of qP; shall
be derived as follows.

qP; = Clip3(0, 51, QPy + chroma_qp_index_offset) (8-251)

ITU-T Rec. H.264 (05/2003) 135

Table 8-13 — Specification of QP as a function of qP;

qP; <30 30 [31 |32 |33 |34 |35 36|37 |38 |39 (40|41 |42 |43 |44 |45 |46 |47 |48 |49 | 50 | 51

QPc | =qP; | 29 |30 |31 | 32|32 |33 |34 |34 |35 |35)|36 36|37 |37 |37|38|38)38)39|39]39)39

When the current slice is an SP or SI slice, QSc is derived using the above process, substituting QPy with QSy and QP¢
with QSc.

The function LevelScale(m, i, j) is specified as follows:

VmO fOI' (1,_])6 {(090)7 (0’2)’ (2a0)a (2a2)}7
LevelScale(m,i,j)=1v,, for (i.j)e {(1,1).(13),(3.1),(3.3)}. (8-252)
v, otherwise;

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

10 16 13]
11 18 14
=l s s
16 25 20
|18 29 23]

8.5.6 Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type

Inputs to this process are transform coefficient level values for luma DC transform coefficients of Intra 16x16
macroblocks as a 4x4 array ¢ with elements c;j, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for luma 4x4 blocks of Intra 16x16 macroblocks as a 4x4 array dcY
with elements dcY;.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

1 1 1 1fcy € Cu Cufl 1 1 1

_ 1 1 -1 -1|¢, ¢, ¢, ¢c5|f1 1 -1 -1 . (8-254)
I =1 =1 Ifcy €y €5 Cpffl =1 =1 1
I -1 1 —1jcy €5 €5 cCyfl -1 1 -1

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element fj; of f that exceeds the range of integer values from -2 t0 21, inclusive.

After the inverse transform, scaling is performed as follows.

- If QPy is greater than or equal to 12, the scaled result shall be derived as

deY = (f, * LevelScale (QP, %6, 0,0)) << (QP, /6-2), with 1i,j=0.3. (8-255)

- Otherwise (QPy is less than 12), the scaled result shall be derived as

deY,; = (f; * LevelScale (QPy %6,0,0)+2"")>> (2-QP, /6), with i,j=0.3 (8-256)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element dcY;; of dcY that exceeds the range of integer values from 210 2"°~1, inclusive.
NOTE — When entropy_coding_mode_flag is equal to 0 and QPy is less than 10, the range of values that can be represented for the

elements c;; of ¢ is not sufficient to represent the full range of values of the elements dcYj; of dcY that could be necessary to form a
close approximation of the content of any possible source picture by use of the Intra_16x16 macroblock type.

NOTE - Since the range limit imposed on the elements dcYj; of dcY is imposed after the right shift in Equation 8-256, a larger
range of values must be supported in the decoder prior to the right shift.

136 ITU-T Rec. H.264 (05/2003)

8.5.7 Scaling and transformation process for chroma DC transform coefficients

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as a 2x2 array ¢ with elements c;;, where i and j form a two-dimensional frequency index.

Outputs of this process are 4 scaled DC values as a 2x2 array dcC with elements dcC;;.

The inverse transform for the 2x2 chroma DC transform coefficients is specified by:

I Tfcy co Il 1

1 =1fc, ¢, 1 -1
A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element fj; of f that exceeds the range of integer values from -2 t0 21, inclusive.

After the inverse transform, scaling is performed as follows.

- If QPc is greater than or equal to 6, the scaled result shall be derived as

dcC;; = (f; *LevelScale(QP. %6,0,0)) << (QP./6-1), with 1,j=0,1 (8-258)

- Otherwise (QPc is less than 6), the scaled result shall be derived by

deC, = (f, *LevelScale(QP. %6,0,0)) >>1, with 1i,j=0,1 (8-259)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element dcC;; of dcC that exceeds the range of integer values from -2 10 21, inclusive.

NOTE — When entropy_coding_mode_flag is equal to 0 and QPy is less than 4, the range of values that can be represented for the
elements c;; of ¢ is not sufficient to represent the full range of values of the elements dcC;; of dcC that could be necessary to form a
close approximation of the content of any possible source picture.

NOTE - Since the range limit imposed on the elements dcCj; of dcC is imposed after the right shift in Equation 8-259, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.8 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements ¢;; which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements rj.
The variable sMbFlag is derived as follows.

- If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, sMbFlag is set equal
tol,

- Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice),
sMbFlag is set equal to 0.

The variable qP is derived as follows.

- If the input array c relates to a luma residual block and sMbFlag is equal to 0

qP =QPy (8-260)
- Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1

qP =QSy (8-261)
- Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP¢ (8-262)
- Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP =QSc (8-263)

Scaling of 4x4 block transform coefficient levels c;j proceeds as follows.

ITU-T Rec. H.264 (05/2003) 137

- Ifall of the following conditions are true
- iisequalto0
- jisequaltoO

- c relates to a luma residual block coded using Intra 16x16 prediction mode or c relates to a chroma residual
block

the variable dy is derived by

doo = Coo (8-264)
- Otherwise,
d; =(c; *LevelScale(qP % 6,1, j)) <<(qP/6), with i,j=0..3 except as noted above (8-265)

The bitstream shall not contain data that results in any element d;j of d with i, j = 0..3 that exceeds the range of integer
values from —2" to 2'°~1, inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

e =do+dp, with i=0.3 (8-266)
en =do—dp, with i=0.3 (8-267)
ep=(dy>>1)—ds with i=0.3 (8-268)
es=dy +(ds>>1), with i=0.3 (8-269)

The bitstream shall not contain data that results in any element e;; of e with i, j = 0..3 that exceeds the range of integer
values from —2'° to 2!°~1, inclusive.

Then, the transformed result is computed from these intermediate values as follows.

fo=ejotes with 1=0.3 (8-270)
fii=ej tep, with i=0.3 (8-271)
fo=ej—ep, with i=0.3 (8-272)
fi=eo—e3, with 1=0.3 (8-273)

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —2'° to 2!°~1, inclusive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

goj=fo; + £, with j=0.3 (8274)
gy =fy— fy, with j=0.3 (8-275)
g = (f;>>1)—fy, with j=0.3 (8-276)
gy=f+ (fy>> 1), with j=0.3 (8-277)

The bitstream shall not contain data that results in any element gj; of g with i, j = 0..3 that exceeds the range of integer
values from —2"° to 2'°~1, inclusive.

138 ITU-T Rec. H.264 (05/2003)

Then, the transformed result is computed from these intermediate values as follows.

hoj = goj + g3, with j=0.3 (8-278)
hjj=gy+ gy with j=0.3 (8-279)
hyj=gij— g, with j=0.3 (8-280)
hs; = goj— g5, with j=0.3 (8-281)

The bitstream shall not contain data that results in any element h;; of h with i, j = 0..3 that exceeds the range of integer
values from —2" to 2'°-33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values shall be derived as

r;=(h; +2°)>>6 with i,j=0.3 (8-282)

8.5.9 Picture construction process prior to deblocking filter process

Inputs to this process are
- luma4x4BIlkIdx or chroma4x4BlkIdx

- a4x4 sample array u with elements u;; which is either a luma or chroma block
Outputs of this process are constructed sample blocks s' prior to the deblocking filter process.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample u;; of the 4x4 luma block, the following applies.

- The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the
input and the output being assigned to (xO, yO).

- Depending on the variable MbaffFrameFlag, the following applies.

- If MbaftFrameFlag is equal to 1 and the current macroblock is a field macroblock

S [xP+xO+j,yP+2*(yO+i)]=u; withi,j=0.3 (8-283)
- Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S [xP+xO+j,yP+yO+i]=u; withi,j=0.3 (8-284)

When u is a chroma block, for each sample uy; of the 4x4 chroma block, the following applies.

- The subscript C in the variables S'c and predc is replaced with Cb for the Cb chroma component and with Cr for the
Cr chroma component.

- The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the macroblock is
derived as follows.

xO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 0) (8-285)
yO = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-286)

- Depending on the variable MbaffFrameFlag, the following applies.

- If MbaftFrameFlag is equal to 1 and the current macroblock is a field macroblock
Sc[(xP>1)+x0+],((yP+1)>1)+2*(yO+i)]=u;withi, j=0.3 (8-287)
- Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a frame macroblock),

S' [(XP>>1)+x0+j,((yP+1)>>1)+yO+i]=uywithi,j=0.3 (8-288)

ITU-T Rec. H.264 (05/2003) 139

8.6 Decoding process for P macroblocks in SP slices or SI macroblocks
This process is invoked when decoding P macroblock types in an SP slice type or an SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause specifies the transform coefficient decoding process and picture construction process for P macroblock
types in SP slices and SI macroblock type in SI slices.

NOTE - SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
slice coding. Unlike P slice coding, however, SP slice coding allows identical reconstruction of a slice even when different
reference pictures are being used. SI slices make use of spatial prediction, in a similar manner to I slices. SI slice coding allows
identical reconstruction to a corresponding SP slice. The properties of SP and SI slices aid in providing functionalities for
bitstream switching, splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.
An Sl slice consists of macroblocks coded either as I macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for I
macroblock types in SI slices shall be invoked as specified in subclause 8.5. SI macroblock type shall be decoded as
described below.

When the current macroblock is coded as P_Skip, all values of Lumalevel, ChromaDCLevel, ChromaACLevel are set
equal to 0 for the current macroblock.

8.6.1 SP decoding process for non-switching pictures
This process is invoked, when decoding P macroblock types in SP slices in which sp_for switch_flag is equal to 0.

Inputs to this process are Inter prediction samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause applies to all macroblocks in SP slices in which sp_for switch flag is equal to 0, except those with
macroblock prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to SI slices.

8.6.1.1 Luma transform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred; from subclause 8.4 and the
prediction residual transform coefficient levels, LumaLevel, and the index of the 4x4 luma block luma4x4BlkIdx.

Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (x, y).

Let the variable p be a 4x4 array of prediction samples with element p;; being derived as follows.
pj=pred.[x+j,y+1i] withi,j=0.3 (8-289)

The variable p is transformed producing transform coefficients ¢’ according to:

1 1 1 1P Po Por Pos |1 2 1 1
P = 2 I =1 =20py Pu P Pl I -1 -2 (8-290)
I -1 -1 L{py Pn Pn Pxu|l -1 -1 2
1 1

-2 2 -1]py Pun Pn Py -2 1 -1

The inverse transform coefficient scanning process as described in subclause 8.5.4 1is invoked with
LumaLevel[luma4x4BIlkIdx] as the input and the two-dimensional array ¢' with elements c;" as the output.

The prediction residual transform coefficients ¢' are scaled using quantisation parameter QPy, and added to the transform
coefficients of the prediction block ¢” with i, j = 0..3 as follows.

Cijs = Cijp + (((Cijr * LevelScale(QPY % 6, 1,_]) * Aij) << (QPY /6)) >> 6) (8-291)

140 ITU-T Rec. H.264 (05/2003)

where LevelScale(m, i, j) is specified in Equation 8-252, and where Aj; is specified as:

16 for (i,j)e {(0,0),(0,2),(2,0),(2,2)},
Aij = 25 fOI' (1,_])6 {(lal)a (1’3)7 (3:1)7 (393)}5 (8-292)
20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as:

WmO for (15.]) € {(0’0)5 (052)5 (230)’ (252)}5
LevelScale2(m,1,j)=<w,, for (i,j)e {(1,1),(1,3),(3,1),(3.,3)}, (8-293)
w,, otherwise;

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as:

(13107 5243 8066 |
11916 4660 7490
W 10082 4194 6554 (8-204)
9362 3647 5825
8192 3355 5243

| 7282 2893 4559

The resulting sum, c’, is quantised with a quantisation parameter QSy and with i, j = 0..3 as follows.

cij= (Sign(¢) * (Abs(c;’) * LevelScale2(QSy % 6,1,)+ (1 << (14+QSy/6))))>>(15+QSy/6)
(8-295)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with c as the
input and r as the output.

The 4x4 array u with elements uy; is derived as follows.
u;; = Clip1(1;j) withi,j=0..3 (8-296)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with luma4x4BlkIdx, u
as the input and S’ as the output.

8.6.1.2 Chroma transform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from subclause 8.4 and the
prediction residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4BlkIdx with chroma4x4Blkldx equal
to 0..3, the following applies.

- The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the macroblock is
derived as follows.

x = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8,0) (8-297)
y = InverseRasterScan(chroma4x4BIkldx, 4, 4, 8, 1) (8-298)

- Let p be a 4x4 array of prediction samples with elements p;; being derived as follows.

pj=predc[x+j,y+i] withi,j=0.3 (8-299)

ITU-T Rec. H.264 (05/2003) 141

- The 4x4 array p is transformed producing transform coefficients ¢”(chroma4x4BlkIdx) using Equation 8-290.

- The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows.

chromalList[k] = ChromaACLevel[iCbCr][chroma4x4BIlkldx][k-1] (8-300)

- The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromalList as the
input and the 4x4 array c¢" as the output.

- The prediction residual transform coefficients ¢" are scaled using quantisation parameter QPc, and added to the
transform coefficients of the prediction block c? with i, j = 0..3 except for the combination i =0, j = 0 as follows.

¢ = ¢’ chroma4x4BIklIdx) + (((¢; * LevelScale(QPc % 6,1,j) * A) << (QPc/6))>>6) (8-301)

- The resulting sum, ¢, is quantised with a quantisation parameter QSc and with i, j = 0..3 except for the combination
1=0, j =0 as follows. The derivation of ¢cqo(chroma4x4BlkIdx) is described below in this subclause.

¢;j(chroma4x4BlkIdx) = (Sign(¢;°) * (Abs(¢;*) * LevelScale2(QSc % 6,1,j)+ (1 <<(14+QSc/6))))>>
(15+QSc/6) (8-302)

- The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
¢(chroma4x4BIkIdx) as the input and r as the output.

- The 4x4 array u with elements u;; is derived as follows.
u;; = Clipl(r;) withi,j=0..3 (8-303)

- The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chroma4x4BlkIdx and u as the input and S’ as the output.

The derivation of the DC transform coefficient level cqo(chroma4x4BIklIdx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements co°(chroma4x4BlkIdx) and a 2x2 transform is applied to the DC transform coefficients as follows

dor |t e @ @)1 (8-304)
I -1 Cgo (2) Cgo 31 -1
The chroma DC prediction residual transform coefficient levels, ChromaDCLevel[iCbCr][k] with k=0..3 are scaled

using quantisation parameter QP, and added to the prediction DC transform coefficients as follows.

de* = dc;? + (((ChromaDCLevel[iCbCr][j * 2 +1] * LevelScale(QP¢c % 6, 0, 0) * Ag) << (QPc/6))>>5)
withi,j=0,1 (8-305)

The 2x2 array dc’, is quantised using the quantisation parameter QSc as follows.

de; = (Sign(de;®) * (Abs(de;’) * LevelScale2(QSc % 6,0, 0) + (1 <<(15+QSc/6))))>> (16 +QSc/6)
withi,j=0,1 (8-306)

The 2x2 array f with elements fj; and i, j = 0..1 is derived as follows.

po| b T)deb deo b Ty (8-307)
I —1]de, do, |1 -1

Scaling of the elements fj; of f is performed as follows.

- If QSc is greater than or equal to 6, the cy() are derived by
Coo(j *2+1)=(f;* LevelScale(QS¢ % 6,0,0)) <<(QSc/6-1) withi, j=0,1 (8-308)
- Otherwise (QSc is less than 6), the cy() are derived by

Cooj *2+1i)=(f;* LevelScale(QSc % 6,0,0))>> 1 withi,j=0, 1 (8-309)

142 ITU-T Rec. H.264 (05/2003)

8.6.2 SP and Sl slice decoding process for switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp for switch flag is equal to 1 and
when decoding SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays predp,
predcy,, predc, for the current macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

8.6.2.1 Luma transform coefficient decoding process

Inputs to this process are prediction luma samples pred; and the luma prediction residual transform coefficient levels,
LumaLevel.

Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to Equation
8-290 to produce transform coefficients cP. These transform coefficients are then quantised with the quantisation
parameter QSy, as follows:

¢’ = (Sign(ci”) * (Abs(¢;”) * LevelScale2(QSy % 6,1,j)+ (1 <<(14+QSy/6))))>>(15+QSy/6)
with i, j = 0.3 (8-310)

The inverse transform coefficient scanning process as described in subclause 8.5.4 1is invoked with
LumaLevel[luma4x4BIlkIdx] as the input and the two-dimensional array ¢' with elements c;;" as the output.
The 4x4 array ¢ with elements c;; with i, j = 0..3 is derived as follows.

cj=ci t¢; withi,j=0.3 (8-311)
The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with c as the
input and r as the output.

The 4x4 array u with elements u;; is derived as follows.
Ui = Chpl(Tj) with 1,_] =0..3 (8-312)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with luma4x4BlkIdx, u
as the input and S’ as the output.

8.6.2.2 Chroma transform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4Blkldx equal
to 0..3, the following applies.

1. The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.2, is transformed according to
Equation 8-290 to produce transform coefficients c’(chroma4x4BlkIdx). These transform coefficients are then
quantised with the quantisation parameter QSc, with i, j = 0..3 except for the combination i = 0, j = 0 as follows. The
processing of coo”(chroma4x4BlkIdx) is described below in this subclause.

¢;* = (Sign(¢;"(chroma4x4BIkIdx)) * (8-313)
(Abs(¢;(chroma4x4BIkldx)) * LevelScale2(QSc % 6,1,) + (1 << (14 +QSc¢/6))))>> (15 + QSc/ 6)

- The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows.

chromalList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx [k- 1] (8-314)

- The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromalList as the
input and the two-dimensional array c'(chroma4x4BlkIdx) with elements c;;'(chroma4x4BlkIdx) as the output.

ITU-T Rec. H.264 (05/2003) 143

- The 4x4 array c(chroma4x4Blkldx) with elements c;(chroma4x4Blkldx) with i, j = 0.3 except for the
combination i = 0, j = 0 is derived as follows. The derivation of cyo(chroma4x4Blkldx) is described below.

¢;(chroma4x4BIkIdx) = ¢;'(chroma4x4Blkldx) + ¢;° (8-315)

- The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
c(chroma4x4BlkIdx) as the input and r as the output.

- The 4x4 array u with elements u;; is derived as follows.
u;; = ClipI(r;) withi,j=0..3 (8-316)

- The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chroma4x4BIkIdx, u as the input and S’ as the output.

The derivation of the DC transform coefficient level coo(chromad4x4Blkldx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock, cy’(chroma4x4BIkIdx),
are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform coefficients of these blocks
according to Equation 8-304 resulting in DC transform coefficients dc;".

These DC transform coefficients are then quantised with the quantisation parameter QSc, as given by:

de;® = (Sign(de;®) * (Abs(de;?) * LevelScale2(QSc % 6,0,0) + (1 << (15+QSc/6))))>>
(16+QSc/6) withi,j=0, 1 (8-317)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k =0..3 are added
to these quantised DC transform coefficients of the prediction block, as given by:

dc;j' = dc;j” + ChromaDCLevel[iCbCr][j *2 +1i] withi, j=0, 1 (8-318)

The 2x2 array f with elements fj; and i, j = 0..1 is derived using Equation 8-307.

The 2x2 array f with elements fj; and i, j = 0..1 is copied as follows.

Coo(j *2+1)=1; withi,j=0,1 (8-319)

8.7 Deblocking filter process

A conditional filtering shall be applied to all 4x4 block edges of a picture, except edges at the boundary of the picture
and any edges for which the deblocking filter process is disabled by disable deblocking_filter idc, as specified below.
This filtering process is performed on a macroblock basis after the completion of the picture construction process prior to
deblocking filter process (as specified in subclauses 8.5 and 8.6) for the entire decoded picture, with all macroblocks in a
picture processed in order of increasing macroblock addresses.
NOTE - Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock or
macroblock pair above (if any) and the macroblock or macroblock pair to the left (if any) of the current macroblock are always

available because the deblocking filter process is performed after the completion of the picture construction process prior to
deblocking filter process for the entire decoded picture.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock, vertical
edges are filtered first, from left to right, and then horizontal edges are filtered from top to bottom. The luma deblocking
filter process is performed on four 16-sample edges and the deblocking filter process for each chroma components is
performed on two 8-sample edges, for the horizontal direction as shown on the left side of Figure 8-9 and for the vertical
direction as shown on the right side of Figure 8-9. Sample values above and to the left of the current macroblock that
may have already been modified by the deblocking filter process operation on previous macroblocks shall be used as
input to the deblocking filter process on the current macroblock and may be further modified during the filtering of the
current macroblock. Sample values modified during filtering of vertical edges are used as input for the filtering of the
horizontal edges for the same macroblock.

144 ITU-T Rec. H.264 (05/2003)

16*16 Macroblock 16*16 Macroblock

l--- =—==fh==—=H4===-=h ml
: V\l		
: : : *l\ Horizontal edges		
)	(luma)	
	\l	
:		ll\ Horizontal edges
l *l (Chroma)		
d

Vertical edges Vertical edges
(luma) (chroma)

Figure 8-9 — Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma

boundaries shown with dashed lines)

For each macroblock in ascending order of mbAddr, the following applies.

1.

The variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are
derived as follows.

The variable fieldModeMbFlag is derived as follows.
- Ifany of the following conditions is true, fieldModeMbFlag is set equal to 1.
- field pic flagisequalto 1
- MbaffFrameFlag is equal 1 and the macroblock mbAddr is a field macroblock
- Otherwise, fieldModeMbFlag is set equal to 0.
The variable filterInternalEdgesFlag is derived as follows.

- If disable_deblocking_filter idc for the slice that contains the macroblock mbAddr is equal to 1, the variable
filterInternalEdgesFlag is set equal to 0;

- Otherwise (disable deblocking filter idc for the slice that contains the macroblock mbAddr is not equal
to 1), the variable filterInternalEdgesFlag is set equal to 1.

The variable filterLeftMbEdgeFlag is derived as follows.
- If any of the following conditions is true, the variable filterLeftMbEdgeFlag is set equal to 0.
- the left vertical macroblock edge of the macroblock mbAddr represents a picture boundary
- disable_deblocking filter idc for the slice that contains the macroblock mbAddr is equal to 1

- disable deblocking filter idc for the slice that contains the macroblock mbAddr is equal to 2 and the left
vertical macroblock edge of the macroblock mbAddr represents a slice boundary

- Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.

The variable filterTopMbEdgeFlag is derived as follows.

- Ifany of the following conditions is true, the variable filterTopMbEdgeFlag is set equal to 0.
- the top horizontal macroblock edge of the macroblock mbAddr represents a picture boundary
- disable_deblocking filter idc for the slice that contains the macroblock mbAddr is equal to 1

- disable deblocking filter idc for the slice that contains the macroblock mbAddr is equal to 2 and the top
horizontal macroblock edge of the macroblock mbAddr represents a slice boundary

ITU-T Rec. H.264 (05/2003) 145

2.

146

Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

Given the variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag the
deblocking filtering is controlled as follows.

When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical luma edge is specified as follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, YEi) = (0, k) with k = 0..15 as input and S', as output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified as follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEx) = (4, k) with k =0..15 as input and S',. as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (8, k) with k =0..15 as input and S', as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (12, k) with k= 0..15 as input and S'. as
output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows.

If MbaffFrameFlag is equal to 1, (mbAddr % 2) is equal to 0, mbAddr is greater than or equal to
2 * PicWidthInMbs, the macroblock mbAddr is a frame macroblock, and the macroblock
(mbAddr - 2 * PicWidthInMbs + 1) is a field macroblock, the following applies.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag
= 0, fieldModeFilteringFlag = 1, and (xEy, yEy) = (k, 0) with k = 0..15 as input and S', as output.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag
= 0, fieldModeFilteringFlag = 1, and (xEy, yEx) = (k, 1) with k =0..15 as input and S'. as output.

Otherwise, the process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 0) with k= 0..15 as
input and S', as output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified as
follows.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (k, 4) with k =0..15 as input and S', as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 8) with k =0..15 as input and S'y. as output.

The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (k, 12) with k= 0..15 as input and S'_ as
output.

For both chroma components iCbCr = 0 and 1, the following applies.

When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical chroma edge is specified as follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 1, fieldModeFilteringFlag = 1, and (xEy, yEi) = (0, k) with k= 0..7 as input and S'c
with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified as
follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEx) = (4, k) with k =0..7 as
input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as
follows.

- If MbaffFrameFlag is equal to 1, (mbAddr % 2) is equal to 0, mbAddr is greater than or equal to
2 * PicWidthInMbs, the macroblock mbAddr is a frame macroblock, and the macroblock (mbAddr—
2 * PicWidthInMbs + 1) is a field macroblock, the following applies.

ITU-T Rec. H.264 (05/2003)

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeFilteringFlag = 1, and (xEy, yEy) = (k, 0) with k = 0..7 as input and
S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeFilteringFlag = 1, and (xEy, yEy) = (k, 1) with k= 0..7 as input and
S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

- Otherwise, the process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 0) with k= 0..7 as
input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

- When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is specified as
follows.

- The process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (k, 4) with k= 0..7 as
input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as
output.

NOTE - When field mode filtering (fieldModeFilteringFlag is equal to 1) is applied across the top horizontal

edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary may involve
some samples that extend across an internal block edge that is also filtered internally in frame mode.

NOTE — In all cases, 3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for
Cr are filtered that are internal to a macroblock. When field mode filtering (fieldModeFilteringFlag is equal to 1)
is applied to the top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2
horizontal chroma edges for Cr between the frame macroblock and the above macroblock pair are filtered using
field mode filtering, for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Cb, and 3
horizontal chroma edges for Cr filtered that are considered to be controlled by the frame macroblock. In all other
cases, at most 4 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a particular macroblock.

Finally, the arrays S’;, S’cy,, S’¢; are assigned to the arrays S;, Scp, Scr (Which represent the decoded picture),
respectively.

8.7.1 Filtering process for block edges

Input to this process are mbAddr, chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal
to 1), verticalEdgeFlag, fieldModeFilteringFlag, and a set of sixteen luma (when chromaEdgeFlag is equal to 0) or eight
chroma (when chromaEdgeFlag is equal to 1) sample locations (xEy, yEx), with k=0 .. nE - 1, expressed relative to the
upper left corner of the macroblock mbAddr. The set of sample locations (XEy, yEy) represent the sample locations
immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge
(when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows.

- If chromaEdgeFlag is equal to 0, nE is 16;

- Otherwise (chromaEdgeFlag is equal to 1), nE is 8.

Let s' be a variable specifying a luma or chroma sample array, be derived as follows.

- If chromaEdgeFlag is equal to 0, s' represents the luma sample array S'. of the current picture.

- Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s' represents the chroma sample array S'cy, of the
chroma component Cb of the current picture.

- Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s’ represents the chroma sample array S'c; of the
chroma component Cr of the current picture.

The variable dy is derived as follows.
- If fieldModeFilteringFlag is equal to 1 and MbaftFrameFlag is equal to 1, dy is set equal to 2.
- Otherwise (fieldModeFilteringFlag is equal to 0 or MbaffFrameFlag is equal to 0), dy is set equal to 1.

The position of the upper-left luma sample of the macroblock mbAddr is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with mbAddr as input and the output being assigned to (xP, yP).

ITU-T Rec. H.264 (05/2003) 147

p3 | p2| p1| pOf 9O | g1 g2 | g3

Figure 8-10 — Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (XEy, yEy), k=0 .. nE - 1, the following applies.

- The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as p;
and q; with i = 0..3 as shown in Figure 8-10 with the edge lying between py and qy. p; and g; with i = 0..3 are specified
as follows.

- IfverticalEdgeFlag is equal to 1,
qi=s’[xP +xEy +1i, yP + yE;] (8-320)
pi=s’[xP+xEy—i—1,yP + yE;] (8-321)
- Otherwise (verticalEdgeFlag is equal to 0),
qi=S[xP+xE,, yP+dy * (yEx+1)— (yEx % 2)] (8-322)
pi=s[xP+xE, yP+dy * (yEx—i—1)—(yEx%2)] (8-323)

- The process specified in subclause 8.7.2 is invoked with the sample values p; and q; (i = 0..3), chromaEdgeFlag,
verticalEdgeFlag, and fieldModeFilteringFlag as input, and the output is assigned to the filtered results sample values
p'iand q'; withi=0..2.

- The input sample values p; and g; with i = 0..2 are replaced by the corresponding filtered result sample values p'; and
q'; with i =0..2 inside the sample array s’ as follows.

- IfverticalEdgeFlag is equal to 1,
s’[xP +xE, +1, yP + yE, 1 =((8-324)
s'[xP+xEy—i—1,yP+yE(]=p} (8-325)
- Otherwise (verticalEdgeFlag is equal to 0),
S'[XP +xEy, yP+dy * (yExt1)—(yEx % 2)]=4! (8-326)
[XxP +xE, yP+dy * (yEx—i—1)—(yEx % 2)]=p} (8-327)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values p; and q; with i in the range of 0..3 of a single set of samples across an
edge that is to be filtered, chromaEdgeFlag, verticalEdgeFlag, and fieldModeFilteringFlag.

Outputs of this process are the filtered result sample values p'; and q'; with i in the range of 0..2.
The content dependent boundary filtering strength variable bS is derived as follows.

- If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength
specified in subclause 8.7.2.1 is invoked with py, qo, and verticalEdgeFlag as input, and the output is assigned to bS.

- Otherwise (chromaEdgeFlag is equal to 1), the following applies.

- If fieldModeFilteringFlag is equal to 0, the bS used for filtering a set of samples of a horizontal or vertical chroma
edge shall be set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge,
respectively, that contains the luma sample at location (2 * x, 2 * y) inside the luma array of the frame, where
(x,y) is the location of the chroma sample qq inside the chroma array for that frame.

- Otherwise (fieldModeFilteringFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or
vertical chroma edge shall be set equal to the value of bS for filtering the set of samples of a horizontal or vertical
luma edge, respectively, that contains the luma sample at location (2 * x, 2 * y) inside the luma array of the same
field, where (x, y) is the location of the chroma sample q inside the chroma array for that field.

148 ITU-T Rec. H.264 (05/2003)

The process specified in subclause 8.7.2.2 is invoked with py, qo, p1, 1, chromaEdgeFlag, and bS as input, and the output
is assigned to filterSamplesFlag, indexA, o, and f.

Depending on the variable filterSamplesFlag, the following applies.
- If filterSamplesFlag is equal to 1, the following applies.

- IfbS is less than 4, the process specified in subclause 8.7.2.3 is invoked with p; and q; (i = 0..3), chromaEdgeFlag,
bS, B, and indexA given as input, and the output is assigned to p'; and ¢'; (i = 0..2).

- Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with p; and q; (i = 0..3),
chromaEdgeFlag, o, and B given as input, and the output is assigned to p'; and ¢'; (i = 0..2).

- Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p'; and q'; (i = 0..2) are replaced by the
corresponding input samples p; and g;:

fori=0.2, P =pi (8-328)
fori=0.2, qi=aqi (8-329)

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values py and qo of a single set of samples across an edge that is to be filtered
and verticalEdgeFlag.

Output of this process is the variable bS.
Let the variable mixedModeEdgeFlag be derived as follows.

- If MbaffFrameFlag is equal to 1 and the samples p, and q, are in different macroblock pairs, one of which is a field
macroblock pair and the other is a frame macroblock pair, mixedModeEdgeFlag is set equal to 1

- Otherwise, mixedModeEdgeFlag is set equal to 0.
The variable bS is derived as follows.

- If the block edge is also a macroblock edge and any of the following conditions are true, a value of bS equal to 4
shall be the output:

- the samples pp and qo are both in frame macroblocks and either or both of the samples py or qo is in a
macroblock coded using an Intra macroblock prediction mode

- the samples py and q, are both in frame macroblocks and either or both of the samples py or qp is in a
macroblock that is in a slice with slice type equal to SP or SI

- MbaffFrameFlag is equal to 1 or field pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p, or g is in a macroblock coded using an Intra macroblock prediction mode.

- MbaffFrameFlag is equal to 1 or field pic flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples py or qo is in a macroblock that is in a slice with slice_type equal to SP or SI

- Otherwise, if any of the following conditions are true, a value of bS equal to 3 shall be the output:

- mixedModeEdgeFlag is equal to 0 and either or both of the samples pg or qq is in a macroblock coded using an
Intra macroblock prediction mode

- mixedModeEdgeFlag is equal to 0 and either or both of the samples p, or q is in a macroblock that is in a slice
with slice_type equal to SP or SI

- mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p, or g is
in a macroblock coded using an Intra macroblock prediction mode

- mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p, or qg is
in a macroblock that is in a slice with slice_type equal to SP or SI

- Otherwise, if the following condition is true, a value of bS equal to 2 shall be the output:

- the 4x4 luma block containing sample p, or the 4x4 luma block containing sample g, contains non-zero
transform coefficient levels

- Otherwise, if any of the following conditions are true, a value of bS equal to 1 shall be the output:

- mixedModeEdgeFlag is equal to 1

ITU-T Rec. H.264 (05/2003) 149

- mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock/sub-macroblock partition
containing the sample p, different reference pictures or a different number of motion vectors are used than for
the prediction of the macroblock/sub-macroblock partition containing the sample qp.

NOTE — The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions are
the same or different is based only on which pictures are referenced, without regard to whether a prediction is formed using

an index into list 0 or an index into list 1, and also without regard to whether or not the index position within a reference
picture list is different or not.

- mixedModeEdgeFlag is equal to 0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample p, and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample q, and the absolute difference between the horizontal or vertical component of
the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples.

- mixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to
predict the macroblock/sub-macroblock partition containing the sample po and two motion vectors for the same
two reference pictures are used to predict the macroblock/sub-macroblock partition containing the sample qq
and the absolute difference between the horizontal or vertical component of the two motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions for the same reference picture is greater than or
equal to 4 in units of quarter luma frame samples.

- mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict
the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same
reference picture as used to predict the macroblock/sub-macroblock partition containing the sample p, are used
to predict the macroblock/sub-macroblock partition containing the sample g, and both of the following
conditions are true:

- The absolute difference between the horizontal or vertical component of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical component of the list 1 motion
vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or equal
to 4 in units of quarter luma frame samples.

- The absolute difference between the horizontal or vertical component of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample p, and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample qo is
greater than or equal to 4 in units of quarter luma frame samples or the absolute difference between the
horizontal or vertical component of the list 1 motion vector used in the prediction of the macroblock/sub-
macroblock partition containing the sample p, and list 0 motion vector used in the prediction of the
macroblock/sub-macroblock partition containing the sample qq is greater than or equal to 4 in units of
quarter luma frame samples.

NOTE — A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
luma field samples

- Otherwise, a value of bS equal to 0 shall be the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are the input sample values py, qo, p1 and q; of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, and bS, for the set of input samples, as specified in 8.7.2.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the
value of indexA, and the values of the threshold variables o and B.

Let gP, and qP, be variables specifying quantisation parameter values for the macroblocks containing the samples po and
qo, respectively. The variables qP, (with z being replaced by p or q) are derived as follows.

- If chromaEdgeFlag is equal to 0, the following applies.
- If the macroblock containing the sample z, is an I PCM macroblock, P, is set to 0.

- Otherwise (the macroblock containing the sample z, is not an I PCM macroblock), qP, is set to the value of QPy
of the macroblock containing the sample z.

- Otherwise (chromaEdgeFlag is equal to 1), the following applies.

- If the macroblock containing the sample z, is an I PCM macroblock, qP, is set to the value of QPc that
corresponds to a value of 0 for QPy as specified in subclause 8.5.5.

- Otherwise (the macroblock containing the sample z, is not an I PCM macroblock), qP, is set to the value of QP¢
that corresponds to the value QPy of the macroblock containing the sample z, as specified in subclause 8.5.5.

150 ITU-T Rec. H.264 (05/2003)

Let gqPav be a variable specifying an average quantisation parameter. It is derived as follows.
qPav=(qP,+qP,+1)>>1 (8-330)

NOTE - In SP and SI slices, qP,, is derived in the same way as in other slice types. QSy from Equation 7-17 is not used in the
deblocking filter.

Let indexA be a variable that is used to access the o table (Table 8-14) as well as the tc table (Table 8-15), which is used
in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used to
access the P table (Table 8-14). The variables indexA and indexB are derived as follows, where the values of
FilterOffsetA and FilterOffsetB are the values of those variables specified in subclause 7.4.3 for the slice that contains
the macroblock containing sample q..

indexA = Clip3(0, 51, qP,, + FilterOffsetA) (8-331)
indexB = Clip3(0, 51, qP,, + FilterOffsetB) (8-332)

The threshold variables o and [are specified in Table 8-14 depending on the values of indexA and indexB.

The variable filterSamplesFlag is derived by

filterSamplesFlag = (bS =0 && Abs(po—qo) <o && Abs(pi—po) <P && Abs(qi—qo)<B) (8-333)

Table 8-14 — Derivation of indexA and indexB from offset dependent threshold variables o and B

indexA (for o) or indexB (for B)

o1 (2|34 |5(6|7|8|9 (1011121314 |15]|16|17|18|19]|20|21 22|23 |24]25

a |]O}jO}OfO]JO|]OjO|O]JO|OjO|O]JO|O|O|O]|4|4|5|6]|T7|8]|9|10]|12]13

B lJ]ojojofo|lO|jO|O|OfO|O|O]O]|]O]|]O|O|O|2]|2]2|3|3|3|3|4|4]34

Table 8-14 (concluded) — Derivation of indexA and indexB from offset dependent threshold variables o and B

indexA (for o) or indexB (for)

26 (27 128129 (30|31 (32|33|34[35(36|37(38[39(40|41 |42 |43 |44 |45|46 |47 |48|49]|50] 51

o |15]17120(22]25|28[32(36|40|45|50 (56|63 |71|80|90|101|113]127(144|162|182{203(226|255|255

B le|o6| 7|7 |8|8|9 |9 (10101l |11|12]12(13|13|14|14|15]15|16|16| 17|17 |18 |18

8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values p; and q; (i = 0..2) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, bS, B, and indexA, for the set of input samples, as specified in 8.7.2.

Outputs of this process are the filtered result sample values p'; and q'; (i = 0..2) for the set of input sample values.

The filtered result samples p'y and q'y are derived by

A= Clip3(—tc, te, ((((Qo—Po) <<2)+(pi—qi) +4)>>3)) (8-334)
p'o=Clipl(po+A) (8-335)
q'o=Clipl(qo—A) (8-336)

where the threshold t¢ is determined as follows.

- If chromaEdgeFlag is equal to 0,
tc=tco T ((a,<B)?1:0)+((ag<P)?1:0) (8-337)

- Otherwise (chromaEdgeFlag is equal to 1),

ITU-T Rec. H.264 (05/2003) 151

te =teo+ 1 (8-338)

The threshold tcy is specified in Table 8-15 depending on the values of indexA and bS.

Let a, and a4 be two threshold variables specified by

a, = Abs(p2—po) (8-339)

aq=Abs(g2~ qo) (8-340)
The filtered result sample p'; is derived as follows
- If chromaEdgeFlag is equal to 0 and a, is less than 3,

p'1=p1 + Clip3(—tco, teco, (P2 + ((poT Qo+ 1)>>1)—(p1<<1)) > 1) (8-341)
- Otherwise (chromaEdgeFlag is equal to 1 or a, is greater than or equal to B),

p'i =pi (8-342)
The filtered result sample q'; is derived as follows

- If chromaEdgeFlag is equal to 0 and a, is less than 3,

q'1=q1 + Clip3(~tco, teo, (@2 + ((Po+ Qo+ 1)>>1)-(qi<<1)) >> 1) (8-343)
- Otherwise (chromaEdgeFlag is equal to 1 or a4 is greater than or equal to B),

qdi1=q (8-344)
The filtered result samples p'; and q', are always set equal to the input samples p, and q5:

p2=p> (8-345)

q2=q (8-346)

Table 8-15 — Value of filter clipping variable tc, as a function of indexA and bS

indexA

0123|456 |7|8[9|10/11|12]13|14|15|16|17|18|19|20|21|22|23 24|25

bS=1 oj0j040j0{0}j0f0Oj0|0|0OjOJO|O|O]O]O|O]O|O]O|O|O]1]T1]|1
bS=2 oj0j040j0{0}j0f0j0j]0|0OjOJO|O|O]OJOJO]O|O]O|T 1|1 |11
bS=3 ojojoy0j0{0j0400j0j0[0JO0OjO0O[OjO|O ||| |11

Table 8-15 (concluded) — Value of filter clipping variable tc, as a function of indexA and bS

indexA

26 (27 |2829(30|31(3233|34|35[36(37 3839|4041 42|43|44|45|46|47|48|49 |50 51

bS=1 ry1 (11|11 y1}2{2(22(3[3|3/4(4/4|5|6|6]7|8|9|10(11|13
bS=2 r{rj1 (1 ,1}{2}2(2(2|3[3|3|4/4|5|5]6|7|8|8]10(1112|13]15/|17
bS=3 121222333 |4|/4|4|5|6|6|7|8|9/|10/11|13]14|16|18|20|23|25

8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values p; and q; (i = 0..3) of a single set of samples across an edge that is to be
filtered, the variable chromaEdgeFlag, and the values of the threshold variables o and B for the set of samples, as
specified in subclause 8.7.2.

152 ITU-T Rec. H.264 (05/2003)

Outputs of this process are the filtered result sample values p'; and q'; (i = 0..2) for the set of input sample values.
Let a, and a, be two threshold variables as specified in Equations 8-339 and 8-340, respectively, in subclause 8.7.2.3.
The filtered result samples p'; (i = 0..2) are derived as follows.

- If chromaEdgeFlag is equal to 0 and the following condition holds,
a, <P && Abs(po—qo) <((0>>2)+2) (8-347)

then the variables p'y, p'1, and p', are derived by

p'o=(p2+2%p; +2%pg +2*qo + q1 +4)>>3 (8-348)
pi1=(p2tpitpotqo+2)>>2 (8-349)
p2=(2%p3 +3*py+pr+tpotqot4)>>3 (8-350)

- Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-347 does not hold), the variables p'y, p';, and
p', are derived by

po=(2*pi+tpotq+2)>>2 (8-351)
p’l =P (8-352)
p’z =p2 (8-353)

The filtered result samples q'; (i = 0..2) are derived as follows.

- If chromaEdgeFlag is equal to 0 and the following condition holds,
a,<P && Abs(po—qo) <((a>>2)+2) (8-354)

then the variables q'y, q'1, and q'; are derived by

q'o=(p1+2%pp+2%qp +2*q + qu +4)>>3 (8-355)
q1=(potdotqtq+2)>>2 (8-356)
q2=(2*q+3*q+qtqotpot4)>>3 (8-357)

- Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-354 does not hold), the variables q'y, q';, and
q', are derived by

Qo=(2*q +qotp;+2)>>2 (8-358)

(]'1 =q (8-359)

q2=q2 (8-360)
9 Parsing process

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(Vv), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ae(v) (see subclause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only when
entropy_coding_mode_flag is equal to 0.

ITU-T Rec. H.264 (05/2003) 153

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated
Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current
location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal
to 0. This process shall be equivalent to the following:

leadingZeroBits = -1;

for(b = 0; !b; leadingZeroBits++)

b =read bits(1)

The variable codeNum is then assigned as follows:

codeNum = 2'edingZeroBits _ 1 4 reaq bits(leadingZeroBits)

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into “prefix” and “suffix” bits. The
“prefix” bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The “suffix” bits are those bits that are parsed in the
computation of codeNum and are shown as x; in Table 9-1, with i being in the range 0 to leadingZeroBits - 1, inclusive.
Each x; can take on values 0 or 1.

Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum
1 0
0 1 x, 1-2
0 0 1 X1 Xq 3-6
0001 x, X3 X 7-14
0000 1 X3 X, X1 Xg 15-30
000001 x4 X3 Xy X7 Xo 31-62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum
1 0
010 1
011 2
00100 3
001001 4
00110 5
00111 6
0001000 7
00010001 8

154 ITU-T Rec. H.264 (05/2003)

0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows.
- Ifthe syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

- Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

- Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the
mapping process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

- Otherwise (the syntax element is coded as te(v)), the range of the syntax element shall be determined first. The range
of this syntax element may be between 0 and x, with x being greater than or equal to 1 and is used in the derivation
of the value of a syntax element as follows

- If x is greater than 1, codeNum and the value of the syntax element shall be derived in the same way as for
syntax elements coded as ue(v)

- Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivalent to:

b = read bits(1)
codeNum = !b

9.1.1 Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in subclause 9.1.
Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

k (D! Ceil(k+2)

9.1.2 Mapping process for coded block pattern
Input to this process is codeNum as specified in subclause 9.1.
Output of this process is a value of the syntax element coded block pattern coded as me(v).

Table 9-4 shows the assignment of coded block pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4 or Inter.

ITU-T Rec. H.264 (05/2003) 155

Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

codeNum coded_block pattern
Intra_4x4 Inter

0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
27 42 40
28 44 39
29 1 43
30 2 45
31 4 46
32 8 17

156 ITU-T Rec. H.264 (05/2003)

33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 41 41
9.2 CAVLC parsing process for transform coefficient levels

This process is invoked when parsing syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.1 and when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BIkIdx or the chroma block index chroma4x4BlkIdx of the current block
of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
luma4x4BIlkIdx or the chroma block with block index chroma4x4BlkIdx.

The process is specified in the following ordered steps:
1. All transform coefficient levels, with indices from 0 to maxNumCoeff - 1, in the list coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff token) and the number of trailing one
transform coefficient levels TrailingOnes(coeff token) are derived by parsing coeff token (see subclause 9.2.1) as
follows.

- If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to 0, the list coeffLevel
containing 0 values is returned and no further step is carried out.

- Otherwise, the following steps are carried out.

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level prefix, and
level suffix (see subclause 9.2.2).

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived
by parsing total zeros and run_before (see subclause 9.2.3).

¢. The level and run information are combined into the list coeffLevel (see subclause 9.2.4).

9.2.1 Parsing process for total number of transform coefficient levels and trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BIkIdx or the chroma block index chroma4x4Blkldx of the current block
of transform.

ITU-T Rec. H.264 (05/2003) 157

Outputs of this process are TotalCoeff(coeff token) and TrailingOnes(coeff token).

The syntax element coeff token is decoded using one of the five VLCs specified in five right-most columns of
Table 9-5. Each VLC specifies both TotalCoeff(coeff token) and TrailingOnes(coeff token) for a given codeword
coeff token. VLC selection is dependent upon a variable nC that is derived as follows.

- Ifthe CAVLC parsing process is invoked for ChromaDCLevel, nC is set equal to —1,

- Otherwise, the following applies.

When the CAVLC parsing process is invoked for Intral 6x16DCLevel, luma4x4BlkIdx is set equal to 0.
The variables blkA and blkB are derived as follows.

If the CAVLC parsing process is invoked for Intral6x16DCLevel, Intral6x16ACLevel, or Lumalevel, the
process specified in subclause 6.4.7.3 is invoked with luma4x4BlkIdx as the input, and the output is assigned
to mbAddrA, mbAddrB, luma4x4BlkldxA, and luma4x4BlkldxB. The 4x4 luma block specified by
mbAddrA\luma4x4BlkldxA is assigned toblkA, and the 4x4 Iuma block specified by
mbAddrB\luma4x4BlkIdxB is assigned to blkB.

Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in subclause
6.4.7.4 is invoked with chroma4x4Blkldx as input, and the output is assigned to mbAddrA, mbAddrB,
chromad4x4BlkldxA, and chroma4x4BlkldxB. @ The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BlkIdxA is assigned to blkA, and the 4x4 chroma block specified by
mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.

Let nA and nB be the number of non-zero transform coefficient levels (given by TotalCoeff(coeff token)) in
the block of transform coefficient levels blkA located to the left of the current block and the block of transform
coefficient levels blkB located above the current block, respectively.

With N replaced by A and B, in mbAddrN, blkN, and nN the following applies.

If any of the following conditions is true, nN is set equal to 0.
- mbAddrN is not available

- The current macroblock is coded using an Intra prediction mode, constrained intra_pred flag is equal
to 1 and mbAddrN is coded using Inter prediction and slice data partitioning is in use (nal_unit_type is in
the range of 2 to 4, inclusive).

- The macroblock mbAddrN has mb_type equal to P_Skip or B_Skip

- All AC residual transform coefficient levels of the neighbouring block blkN are equal to 0 due to the
corresponding bit of CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0

Otherwise, if mbAddrN is an I PCM macroblock, nN is set equal to 16.

Otherwise, nN is set equal to the value TotalCoeff(coeff token) of the neighbouring block blkN.

NOTE - The values nA and nB that are derived using TotalCoeff(coeft token) do not include the DC transform
coefficient levels in Intra_16x16 macroblocks or DC transform coefficient levels in chroma blocks, because these
transform coefficient levels are decoded separately. When the block above or to the left belongs to an Intra_16x16
macroblock, or is a chroma block, nA and nB is the number of decoded non-zero AC transform coefficient levels.

NOTE - When parsing for Intral6x16DCLevel, the values nA and nB are based on the number of non-zero
transform coefficient levels in adjacent 4x4 blocks and not on the number of non-zero DC transform coefficient
levels in adjacent 16x16 blocks.

Given the values of nA and nB, the variable nC is derived as follows.
- If both mbAddrA and mbAddrB are available, the variable nC is set equal to (nA +nB + 1) >>1.

- Otherwise (mbAddrA is not available or mbAddrB is not available), the variable nC is set equal to nA + nB.

The value of TotalCoeff(coeff token) resulting from decoding coeff token shall be in the range of 0 to maxNumCoeff,
inclusive.

158

ITU-T Rec. H.264 (05/2003)

Table 9-5 — coeff_token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)

TrailingOnes TotalCoeff 0 <=nC <2 2 <=nC <4 4 <=nC<8(8<=nC|nC==-1
(coeff_token) | (coeff_token)

0 0 1 11 1111 0000 11 01

0 1 0001 01 0010 11 0011 11 0000 00 0001 11
1 1 01 10 1110 0000 01 1

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00
1 2 0001 00 00111 01111 0001 01 0001 10
2 2 001 011 1101 0001 10 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11
1 3 0000 0110 0010 10 01100 001001 0000 011
2 3 0000 101 0010 01 01110 0010 10 0000 010
3 3 0001 1 0101 1100 0010 11 0001 01
0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10
1 4 0000 0011 0 0001 10 01010 0011 01 0000 0011
2 4 0000 0101 0001 01 01011 0011 10 0000 0010
3 4 0000 11 0100 1011 0011 11 0000 000
0 5 0000 0000 111 0000 0100 0001 011 0100 00 -

1 5 0000 0001 10 0000 110 01000 0100 01 -

2 5 0000 0010 1 0000 101 0100 1 0100 10 -

3 5 0000 100 00110 1010 0100 11 -

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 -

1 6 0000 0000 110 0000 0110 0011 10 0101 01 -

2 6 0000 0001 01 0000 0101 001101 0101 10 -

3 6 0000 0100 0010 00 1001 0101 11 -

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 -

1 7 0000 0000 0111 0 0000 0011 0 0010 10 011001 -

2 7 0000 0000 101 0000 0010 1 0010 01 011010 -

3 7 0000 0010 0 0001 00 1000 011011 -

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 -

1 8 0000 0000 0101 0 0000 0001 110 0001 110 011101 -

2 8 0000 0000 0110 1 0000 0001 101 0001 101 011110 -

3 8 0000 0001 00 0000 100 01101 0111 11 -

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 1000 01 -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 -

ITU-T Rec. H.264 (05/2003)

159

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11
0 10 0000 0000 0010 11 0000 0000 1011 00000111 1 1001 00
1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01
2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 1001 10
3 10 0000 0000 01100 0000 0001 100 0001 100 1001 11
0 11 0000 0000 0001 111 | 0000 0000 1000 0000 0101 1 1010 00
1 11 0000 0000 0001 110 | 0000 0000 1010 00000111 0 1010 01
2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10
3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11
0 12 0000 0000 0001 011 | 0000 0000 01111 | 0000 0100 0 1011 00
1 12 0000 0000 0001 010 | 0000 0000 01110 | 0000 0101 0 1011 01
2 12 0000 0000 0001 101 | 0000 0000 01101 | 00000110 1 1011 10
3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11
0 13 0000 0000 0000 1111 | 0000 0000 01011 | 0000 0011 01 1100 00
1 13 0000 0000 0000 001 | 0000 0000 0101 0 | 0000 0011 1 1100 01
2 13 0000 0000 0001 001 | 0000 0000 01001 | 0000 0100 1 1100 10
3 13 0000 0000 0001 100 | 0000 0000 01100 | 000001100 1100 11
0 14 0000 0000 0000 1011 | 0000 0000 00111 | 0000 0010 01 1101 00
1 14 0000 0000 0000 1110 | 0000 0000 0010 11 [0000 0011 00 | 1101 01
2 14 0000 0000 0000 1101 | 0000 0000 00110 | 0000 0010 11 1101 10
3 14 0000 0000 0001 000 | 0000 0000 01000 [0000 0010 10 | 1101 11
0 15 0000 0000 0000 0111 | 0000 0000 0010 01 | 0000 0001 01 1110 00
1 15 0000 0000 0000 1010 | 0000 0000 0010 00 [0000 0010 00 | 111001
2 15 0000 0000 0000 1001 | 0000 0000 0010 10 [0000 0001 11 1110 10
3 15 0000 0000 0000 1100 | 0000 0000 00001 [00000001 10 | 111011
0 16 0000 0000 0000 0100 | 0000 0000 0001 11 [0000 0000 01 1111 00
1 16 0000 0000 0000 0110 | 0000 0000 0001 10 [0000 0001 00 | 1111 01
2 16 0000 0000 0000 0101 | 0000 0000 0001 01 [0000 0000 11 1111 10
3 16 0000 0000 0000 1000 | 0000 0000 0001 00 [0000 0000 10 | 1111 11

9.2.2 Parsing process for level information

Inputs to this process are bits

from slice data,

the number of non-zero transform coefficient levels
TotalCoeff(coeff token), and the number of trailing one transform coefficient levels TrailingOnes(coeff token).

Output of this process is a list with name level containing transform coefficient levels.

Initially an index i is set equal to 0. Then the following procedure is iteratively applied TrailingOnes(coeff token) times

to decode the trailing one transform coefficient levels (if any):

- A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows.

160 ITU-T Rec. H.264 (05/2003)

- Iftrailing ones_sign flag is equal to 0, the value +1 is assigned to level[i].
- Otherwise (trailing_ones_sign flag is equal to 1), the value -1 is assigned to level[i].
- The index i is incremented by 1.
Following the decoding of the trailing one transform coefficient levels, a variable suffixLength is initialised as follows.

- If TotalCoeff(coeff token) is greater than 10 and TrailingOnes(coeff token) is less than 3, suffixLength is set
equal to 1.

- Otherwise (TotalCoeff(coeff token) is less than or equal to 10 or TrailingOnes(coeff token) is equal to 3),
suffixLength is set equal to 0.

The following procedure is then applied iteratively (TotalCoeff(coeff token) — TrailingOnes(coeff token)) times to
decode the remaining levels (if any):

- The syntax element level prefix is decoded using the VLC specified in Table 9-6.

- The variable levelSuffixSize is set equal to the variable suffixLength with the exception of the following two cases.
- When level prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.

- When level prefix is equal to 15, levelSuffixSize is set equal to 12.

- The syntax element level suffix is decoded as follows.

- If levelSuffixSize is greater than 0, the syntax element level suffix is decoded as unsigned integer representation
u(v) with levelSuffixSize bits.

- Otherwise (levelSuffixSize is equal to 0), the syntax element level suffix shall be inferred to be equal to 0.
- A variable levelCode is set equal to (level prefix << suffixLength) + level suffix.
- When level prefix is equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.

- When the index i is equal to TrailingOnes(coeff token) and TrailingOnes(coeff token) is smaller than 3,
levelCode is incremented by 2.

- The variable level[i] is derived as follows.
- IflevelCode is an even number, the value (levelCode + 2) >> 1 is assigned to level[i].
- Otherwise, the value (-levelCode — 1) >> 1 is assigned to level[i].

- When suffixLength is equal to 0, suffixLength is set equal to 1.

- When the absolute value of level[i] is greater than (3 << (suffixLength — 1)) and suffixLength is less than 6,
suffixLength is incremented by 1.

- The index i is incremented by 1.

ITU-T Rec. H.264 (05/2003) 161

Table 9-6 — Codeword table for level prefix

level prefix | bit string

0 1

1 01

2 001

3 0001

4 0000 1

5 0000 01

6 0000 001

7 0000 0001

8 0000 0000 1

9 0000 0000 01

10 0000 0000 001

11 0000 0000 0001

12 0000 0000 0000 1
13 0000 0000 0000 01
14 0000 0000 0000 001
15 0000 0000 0000 0001

9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient Ilevels
TotalCoeff(coeff token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient levels
called run.

Initially, an index i is set equal to 0.
The variable zerosLeft is derived as follows.

- If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to the maximum number of
non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

- Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff token) is less than the maximum
number of non-zero transform coefficient levels maxNumCoef¥), total zeros is decoded and zerosLeft is set equal to
its value.

The VLC used to decode total zeros is derived as follows:

- If maxNumCoeff is equal to 4 one of the VLCs specified in Table 9-9 is used.

- Otherwise (maxNumCoeff is not equal to 4), VLCs from Table 9-7 and Table 9-8 are used.
The following procedure is then applied iteratively (TotalCoeff(coeff token) — 1) times:

- The variable run[i] is derived as follows.

- If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i] is
set equal to run_before.

- Otherwise (zerosLeft is equal to 0), run[i] is set equal to 0.

- The value of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the subtraction
shall be greater than or equal to 0.

- The index i is incremented by 1.

162 ITU-T Rec. H.264 (05/2003)

Finally the value of zerosLeft is assigned to run[i].

Table 9-7 — total_zeros tables for 4x4 blocks with TotalCoeff(coeff token) 1 to 7

total_zeros TotalCoeff(coeff token)
1 2 3 4 5 6 7
0 1 111 0101 0001 1 | 0101 0000 01 | 0000 01
1 011 110 111 111 0100 00001 | 00001
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 0001 1 0101 0011 101 101 100 11
6 0001 0 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 00011 | 00011 | 0010 0000 1 | 001 0000 00
10 0000 010 00010 | 00010 | 00010 | 0001 0000 00
11 0000 0011 0000 11 | 000001 | 0000 1 | 0000 O
12 0000 0010 0000 10 | 00001 | 00000
13 0000 0001 1 | 0000 01 [0000 00
14 0000 0001 0 | 0000 00
15 0000 0000 1

Table 9-8 — total_zeros tables for 4x4 blocks with TotalCoeff(coeff_token) 8 to 15

total_zeros TotalCoeff(coeff_token)
8 9 10 11 12 13 [14]15
0 0000 01 | 000001 | 0000 1 | 0000 | 0000 [000 | 00 | O
1 0001 0000 00 | 00000 [0001 [0001 | 001 | O1 | 1
2 00001 | 0001 001 001 | 01 1 1
3 011 11 11 010 |1 01
4 11 10 10 1 001
5 10 001 01 011
6 010 01 0001
7 001 0000 1
8 0000 00

ITU-T Rec. H.264 (05/2003)

163

Table 9-9 — total_zeros tables for chroma DC 2x2 blocks

total zeros | TotalCoeff(coeff token)
1 2 3

0 1 1 1

1 01 01 0

2 001 00

3 000

Table 9-10 — Tables for run_before

run_before | zerosLeft
112 3 4 5 6 >6
0 1]1 11 | 11 11 11 111
1 0{01|10|10 |10 | 000 | 110
2 - 1001|0101 011 | 001 | 101
3 - |- |00]|o001|O010]O0Ll | 100
4 - |- |- |000] 001|010 o011
5 - - - - 000 | 101 | 010
6 - - -] - 100 | 001
7 SO T . - - 0001
3 - |- |- |- |- | ooo01
9 - - -] - - 000001
10 - - - - - 0000001
11 - - - - - - 00000001
12 -l- - |- - - 000000001
13 SO T . - - 0000000001
14 - - - - - - 00000000001

9.24 Combining level and run information

Input to this process are a list of transform coefficient levels called level, a list of runs called run, and the number of non-
zero transform coefficient levels TotalCoeff(coeff token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to -1 and an index i is set equal to (TotalCoeff(coeff token) — 1). The following
procedure is iteratively applied TotalCoeff(coeff token) times:

- coeffNum is incremented by run[i] + 1.
- coeffLevel[coeffNum] is set equal to level[i].

- The index i is decremented by 1.

164 ITU-T Rec. H.264 (05/2003)

9.3 CABAC parsing process for slice data

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when
entropy_coding mode flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing
process is invoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in subclause 9.3.3.

For each bin of the binarization of the syntax element, which is indexed by the variable binldx, a context index ctxIdx is
derived as specified in subclause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in subclause 9.3.3.2.

The resulting sequence (by .. bpinax) Of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value shall be
assigned to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value of
mb_type is I PCM, the decoding engine shall be initialised after the decoding of the pcm_alignment zero bit and all
pcm_byte data as specified in subclause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

ITU-T Rec. H.264 (05/2003) 165

CABACParsing(SE)

First SE in Yes

slice ? v
Initialisation of

context variables

No Initialisation of
decoding engine
I

A

Get Binarization(SE

binldx++

Get ctxldx(binldx

l

DecodeBin(ctxIdx)

(Bgserssb yinigy) I
Binarization(SE) ?

E ==mb_type
&& value(bg,.,b ;a,) ==

Yesﬁ
I_PCM?

Initialisation of
decoding engine
No ‘

Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)

9.3.1 Initialisation process
Outputs of this process are initialised CABAC internal variables.

The processes in subclauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in
subclause 7.3.4.

The process in subclause 9.3.1.2 is also invoked after decoding the pcm_alignment_zero_bit and all pcm_byte data for a
macroblock of type I PCM.

9.3.1.1 Initialisation process for context variables
Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Table 9-12 to Table 9-23 contain the values of the variables n and m used in the initialisation of context variables that are
assigned to all syntax elements in subclauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateldx and valMPS are initialised.

NOTE - The variable pStateldx corresponds to a probability state index and the variable valMPS corresponds to the value of the
most probable symbol as further described in subclause 9.3.3.2.

The two values assigned to pStateldx and vaIMPS for the initialisation are derived from SliceQPy, which is derived in
Equation 7-16. Given the two table entries (m, n),

1. preCtxState = Clip3(1, 126, ((m * SliceQPy)>>4)+n)
2. if(preCtxState <= 63) {
pStateldx = 63 - preCtxState

166 ITU-T Rec. H.264 (05/2003)

valMPS =0

}else {
pStateldx = preCtxState - 64
valMPS = 1

}

In Table 9-11, the ctxIdx for which initialisation is needed for each of the slice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialisation. For P, SP and B slice type, the initialisation
depends also on the value of the cabac_init_idc syntax element. Note that the syntax element names do not affect the
initialisation process.

Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
Syntax element Table
SI I P, SP B
. Table 9-13
- mb_skip flag Table 9-14 11-13 24-26
slice_data()
mb_field decoding_flag Table 9-18 70-72 70-72 70-72 70-72
Table 9-12,
mb_type Table 9-13, 0-10 3-10 14-20 27-35
Table 9-14.

coded_block_pattern

macroblock_layer() (luma) Table 9-18 73-76 73-76 73-76 73-76

coded_block_pattern Table 9-18 | 77-84 | 77-84 | 77-84 | 77-84

(chroma)
mb_gp_delta Table 9-17 | 60-63 | 60-63 | 60-63 | 60-63
prev_intra4x4 pred mode flag | Table 9-17 68 68 68 68
mb_pred() rem_intra4x4 _pred_mode Table 9-17 69 69 69 69

intra_chroma pred mode Table 9-17 64-67 64-67 64-67 64-67

ref_idx_10 Table 9-16 5459 | 54-59
ref_idx_11 Table 9-16 54-59
b, pred() and mvd 10[][][0] Table 9-15 40-46 | 40-46
b mb d
sub_mb_pred() mvd 1[][][0] Table 9-15 40-46
mvd 10[][][1] Table 9-15 4753 | 47-53
mvd 1[][][1] Table 9-15 47-53
Table 9-13
sub_mb_pred() sub_mb_type 21-23 36-39
Table 9-14
coded block flag Table 9-18 85-104 85-104 85-104 85-104

Table 9-19, | 105-165, | 105-165, | 105-165, | 105-165,

significant_coeff_flag]] Table 9-22. | 277-337 | 277-337 | 277-337 | 277-337

residual_block cabac()
Table 9-20, | 166-226, | 166-226, | 166-226, | 166-226,

last_significant_coeff_flagl] | 1.110 923" | 338398 | 338-398 | 338-308 | 338-398

coeff _abs_level_minusl[] Table 9-21 | 227-275 | 227-275 | 227-275 | 227-275

NOTE - ctxIdx equal to 276 is associated with the end of slice flag and the bin of mb_type, which specifies the I PCM
macroblock type. The decoding process specified in subclause 9.3.3.2.4 applies to ctxIdx equal to 276. This decoding process,

ITU-T Rec. H.264 (05/2003) 167

however, may also be implemented by using the decoding process specified in subclause 9.3.3.2.1. In this case, the initial values
associated with ctxIdx equal to 276 are specified to be pStateldx = 63 and valMPS = 0, where pStateldx = 63 represents a non-
adapting probability state.

Table 9-12 — Values of variables m and n for ctxIdx from 0 to 10

Initialisation ctxldx
variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 -28 -23 -6 -1 7
n -15 54 74 -15 54 74 127 104 53 54 51
Table 9-13 — Values of variables m and n for ctxIdx from 11 to 23
Value of Initialisation ctxldx
cabac_init_ide | variables n | 12| 13 14|15 16| 17 18 | 19 | 20 | 21 | 22 | 23
0 m 23 23 21 1 0 37 5 -13 -11 1 12 -4 17
n 33 2 0 9 49 118 57 78 65 62 49 73 50
1 m 22 34 16 -2 4 -29 2 -6 -13 5 9 -3 10
n 25 0 0 9 41 118 65 71 79 52 50 70 54
2 m 29 25 14 -10 -3 =27 26 -4 -24 5 6 -17 14
n 16 0 0 51 62 99 16 85 102 57 57 73 57
Table 9-14 — Values of variables m and n for ctxIdx from 24 to 39
Value of Initialisation ctxldx
cabac_init_ide | variables | | 55 | 26 | 27 | 28 | 20 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39
0 m 18 9 29 26 16 9 -46 | -20 1 -13 -11 1 -6 -17 -6 9
n 64 43 0 67 90 104 | 127 | 104 67 78 65 62 86 95 61 45
1 m 26 19 40 57 41 26 -45 | -15 -4 -6 -13 5 6 -13 0 8
n 34 22 0 2 36 69 127 | 101 76 71 79 52 69 90 52 43
2 m 20 20 29 54 37 12 =32 | 22 -2 -4 -24 5 -6 -14 -6 4
n 40 10 0 0 42 97 127 | 117 74 85 102 57 93 88 44 55
168 ITU-T Rec. H.264 (05/2003)

Table 9-15 — Values of variables m and n for ctxIdx from 40 to 53

Value of Initialisation ctxldx
cabac_init_idc | variables 40 | 41 | 42 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | ;2 | s3
(1} m -3 -6 -11 6 7 -5 2 0 -3 -10 5 4 -3 0
n 69 81 96 55 67 86 88 58 76 94 54 69 81 88
1 m -2 -5 -10 2 2 -3 -3 1 -3 -6 0 -3 -7 -5
n 69 82 96 59 75 87 100 56 74 85 59 81 86 95
2 m -11 -15 21 19 20 4 6 1 -5 -13 5 6 3 -1
n 89 103 116 57 58 84 96 63 85 106 63 75 90 101
Table 9-16 — Values of variables m and n for ctxIdx from 54 to 59
Value of Initialisation ctxldx
cabac_init_ide variables 54 55 56 57 58 59
0 m -7 -5 -4 -5 -7 1
n 67 74 74 80 72 58
1 m -1 -1 1 2 -5 0
n 66 77 70 86 72 61
2 m 3 -4 2 -12 -7 1
n 55 79 75 97 50 60
Table 9-17 — Values of variables m and n for ctxIdx from 60 to 69
Initialisation ctxldx
variables 60 61 62 | 63 | 64 | 65 | 66 67 68 | 69
m 0 0 0 0 -9 4 0 -7 13 3
n 41 63 63 63 83 86 97 72 41 62
ITU-T Rec. H.264 (05/2003) 169

Table 9-18 — Values of variables m and n for ctxIdx from 70 to 104

T and SI Value of cabac_init_idc Value of cabac_init_idc
. -~ I and SI - =
slices slices
ctxldx 0 1 2 ctxIdx 0 1 2
m n m n m n m n m n m n m n m n

70 0 11 0 45 13 15 7 34 88 -11 | 115 | -13 | 108 | -4 92 5 78

71 1 55 -4 78 7 51 -9 88 89 -12 | 63 -3 46 0 39 -6 55

72 0 69 -3 96 2 80 | -20 | 127 90 -2 68 -1 65 0 65 4 61

73 -17 | 127 | 27 | 126 | -39 | 127 | -36 | 127 91 -15 | 84 -1 57 | -15 | 84 | -14 | 83

74 -13 (102 | -28 | 98 | -18 | 91 | -17 | 91 92 -13 { 104 | -9 93 | 35 | 127 | 37 | 127

75 0 82 [-25 101 | -17 | 96 | -14 | 95 93 -3 70 -3 74 -2 73 -5 79

76 -7 74 | 23 | 67 | -26 | 81 | 25| 84 94 -8 93 -9 92 | -12 | 104 | -11 | 104

71 -21 | 107 | 28 | 82 | -35 | 98 | -25 | 86 95 -10 | 90 -8 87 -9 91 | -11 | 91

78 27 | 127 | 20 | 94 | 24 | 102 | -12 | 89 96 -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127

79 31 (127 | -16 | 83 | 23| 97 | -17 | 91 97 -1 74 5 54 3 55 0 65

80 =24 | 127 | -22 | 110 | -27 | 119 | -31 | 127 98 -6 97 6 60 7 56 -2 79

81 18 | 95 | 21 | 91 | 24| 99 | -14 | 76 99 -7 91 6 59 7 55 0 72

82 -27 | 127 | -18 | 102 | -21 | 110 | -18 | 103 100 -20 | 127 | 6 69 8 61 -4 92

83 =21 | 114 | -13 | 93 | -18 | 102 | -13 | 90 101 -4 56 -1 48 -3 53 -6 56

84 =30 | 127 | 29 | 127 | -36 | 127 | -37 | 127 102 -5 82 0 68 0 68 3 68

85 -17 | 123 | -7 92 0 80 11 80 103 -7 76 -4 69 -7 74 -8 71

86 12 [115 | -5 89 -5 89 5 76 104 S22 1 125 | -8 88 -9 88 | -13 | 98

87 -16 | 122 | -7 96 -7 94 2 84

170 ITU-T Rec. H.264 (05/2003)

Table 9-19 — Values of variables m and n for ctxIdx from 105 to 165

1 :lril;lesSI Value of cabac_init_idc I ar‘l dsI Value of cabac_init_idc
ctxldx 1 ctxldy | SHeCS 0 1 2

m n m n m n m | n m n m n | m|n m n
105 -7 93 -2 85 | -13 | 103 | 4 | 86 136 -13 | 101 5 531 0 | 58] -5 75
106 -11 | 87 -6 78 | <131 91 | -12 | 88 137 -13 1 91 2 (61| -1 |60 -8 80
107 -3 77 -1 75 -9 89 -5 82 138 -12 | 94 0 | 56| -3 |61]|-21] 83
108 -5 71 -7 77 | -14 | 92 3172 139 -10 | 88 0 | 56| -8 | 67| -21]| 64
109 -4 63 2 54 -8 76 -4 | 67 140 -16 | 84 | -13 [63 | -25 | 84 | -13 | 31
110 -4 68 5 50 | -12 | 87 -8 |72 141 -10 | 86 S5 160 | -14| 74| 25| 64
111 -12 | 84 -3 68 | -23 | 110 | -16 | 89 142 -7 83 -1 62 -5 6529 %4
112 -7 62 1 50 | 24| 105 | -9 | 69 143 -13 | 87 4 |57 5 |52 9 75
113 -7 65 6 42 | -10 | 78 -1 |59 144 -19 | 94 6 [69| 2 |57 | 17 | 63
114 8 61 -4 81 | 20 | 112 | 5 | 66 145 1 70 4 |57 0 |61 | -8 74
115 5 56 1 63 | -17 | 99 4 | 57 146 0 72 14 {39 9 | 69| -5 35
116 -2 66 -4 70 | <78 | 127 | 4 | 71 147 -5 74 4 |51]-11 |70 | -2 27
117 1 64 0 67 | <70 | 127 | -2 | 71 148 18 | 59 13 {68 18 | 55| 13 | 91
118 0 61 2 57 | -50 | 127 | 2 | S8 149 81102 3 |64 -4 |71 3 65
119 -2 78 -2 76 | 46 | 127 | -1 | 74 150 -15 | 100 1 61 0 | 58| -7 69
120 1 50 11 35 -4 66 4 | 44 151 0 95 9 | 63| 7 |61 8 77
121 7 52 4 64 -5 78 -1 | 69 152 -4 75 7 |50 9 |41]-10] 66
122 10 | 35 1 61 -4 71 0 | 62 153 2 72 16 {39 18 | 25| 3 62
123 0 44 11 35 -8 72 -7 | 51 154 -11] 75 5 |44 9 |32 -3 68
124 11 38 18 | 25 2 59 -4 | 47 155 -3 71 4 | 52| 5 | 43| -20] 81
125 1 45 12 | 24 -1 55 -6 | 42 156 15 | 46 11 [48] 9 |47] O 30
126 0 46 13 | 29 -7 70 3| 41 157 -13] 69 S5 160 0 |44 1 7
127 5 44 13 | 36 -6 75 -6 | 53 158 0 62 -1 59 0 |51 -3 23
128 31 17 | -10 | 93 -8 89 8 | 76 159 0 65 0 |59 2 |46]| 21| 74
129 1 51 -7 73 | 34| 119 -9 | 78 160 21 37 | 22 |33 19 |38 16 | 66
130 7 50 -2 73 -3 75 | -11 | 83 161 -15] 72 5 |44 | 4 |66 | -23|124
131 28 19 13 | 46 | 32 | 20 9 | 52 162 9 57 14 | 43| 15 | 38 | 17 | 37
132 16 | 33 9 49 | 30 | 22 0 | 67 163 16 | 54 -1 [78 12 | 42 | 44 | -18
133 14 | 62 -7 | 100 | -44 | 127 | -5 | 90 164 0 62 0 |60 9 [34] 50 | -34
134 -13] 108 | 9 53 0 54 1 67 165 12 | 72 9 |69 0 |8 | -22] 127
135 -15] 100 | 2 53 -5 61 | -15| 72

ITU-T Rec. H.264 (05/2003)

171

Table 9-20 — Values of variables m and n for ctxIdx from 166 to 226

I and SI Value of cabac_init_idc Value of cabac_init_idc
. -~ I and SI - =
slices slices
ctxIdx 0 1 2 ctxIdx 0 1 2
m n m | n m n m n m n m n m n m n

166 241 0 11 | 28 4 45 4 | 39 197 26 | -17 | 28 3 36 | -28 | 28 -3

167 151 9 2 (40| 10 | 28 | O | 42 198 30 | -25 | 28 4 38 | -28 | 24 10

168 8 | 25| 3 |44 | 10 | 31 7 | 34 199 28 | -20 | 32 0 38 | 27 | 27 0

169 13 | 18 0 [49 | 33 | -11 | 11 | 29 200 33123134 -1 34 | -18 | 34 | -14

170 151 9 0 |46 | 52 | 43| 8 | 31 201 37| -27 | 30 6 35 | -16 | 52 | -44

171 1319 | 2 |44 18 15 6 | 37 202 33| -23 | 30 6 34 | -14 | 39 | -24

172 10 | 37 | 2 | 51| 28 0 7| 42 203 40 | -28 | 32 9 32 -8 19 17

173 12| 18 | 0 | 47| 35 | 22| 3 | 40 204 38| -17 | 31 | 19 | 37 -6 31 25

174 6 | 29| 4 |39 38 [-25] 8 | 33 205 33| -11 [26| 27 | 35 0 36 | 29

175 20 | 33 2 |62 34 0 13| 43 206 40 | -15 |1 26 | 30 | 30 10 | 24 | 33

176 1530 | 6 |46 | 39 | -18 | 13| 36 207 41 | -6 | 37| 20 | 28 18 | 34 15

177 4 | 45 | 0 | 54| 32 |-12 | 4 | 47 208 38 1 28 | 34 | 26 | 25 | 30 | 20

178 1 58 3 54]102]-94 | 3 55 209 41 | 17 | 17| 70 | 29 | 41 22 73

179 0] 62 | 2 |58 0 0 2 | S8 210 30 | -6 1 67 0 75 | 20 | 34

180 7 | 61 4 |63 56 |-15] 6 | 60 211 271 3 5 59 2 72 19 | 31

181 12 | 38 6 | 51| 33 -4 8 | 44 212 26 | 22 9 67 8 77 | 27 | 44

182 11| 45 | 6 | 57| 29 10 | 11 | 44 213 37| -16 | 16 | 30 14 | 35 19 16

183 1539 | 7 | 53| 37 50 14 42 214 351 4 | 18 | 32 18 | 31 15 36

184 11| 42 | 6 | 52| 51 |-29| 7 | 48 215 38 -8 | 18 | 35 17 | 35 15 36

185 13| 44 | 6 | 55| 39 -9 4 | 56 216 38 -3 122 29 | 21 30 | 21 28

186 16 | 45 | 11 | 45| 52 | -34 | 4 | 52 217 371 3 24 | 31 17 | 45 | 25 | 21

187 12 | 41 | 14 |36 | 69 | -58 | 13| 37 218 38 5 23| 38 | 20 | 42 | 30 | 20

188 10 | 49 | 8 | 53| 67 | -63 | 9 | 49 219 421 0 18 | 43 18 | 45 | 31 12

189 30| 34 | -1 | 82 | 44 -5 | 19| 58 220 351 16 | 20 | 41 27 | 26 | 27 16

190 18 | 42 | 7 | 55| 32 7 10 | 48 221 391 22 | 11| 63 16 54 | 24 | 42

191 10 | 55 | -3 | 78 | 55 | 29 | 12| 45 222 14| 48 | 9 59 7 66 0 93

192 17 | 51 | 15| 46 | 32 1 0 | 69 223 271 37 | 9 64 16 | 56 14 | 56

193 17 | 46 | 22 | 31 0 0 |20 33 224 21 | 60 | -1 94 11 73 15 57

194 0|8 | -1 |8 | 27 | 36 | 8 | 63 225 12 | 68 | -2 | &9 10 | 67 | 26 | 38

195 26 | -19 | 25| 7 33 | 25 | 35 | -18 226 2197 | -9 | 108 | -10 | 116 | -24 | 127

196 22 | <17 | 30| -7 | 34 | -30 | 33 | -25

172 ITU-T Rec. H.264 (05/2003)

Table 9-21 — Values of variables m and n for ctxIdx from 227 to 275

1 :]Iil;le sSI Value of cabac_init_idc I ar‘l dsI Value of cabac_init_idc

ctxldx 1 ctxldy | SHeCS 0 1 2
m [n m n m n m n m n m n | m|n m n
227 3171 -6 76 | 23 | 112 | -24 | 115 252 -12 | 73 6 |55 -16|72|-14| 75
228 -6 | 42| -2 44 | -15 | 71 | 22| 82 253 -8 76 0 | 58| -7 |69]|-10]| 79
229 S5 1500 45 -7 61 -9 62 254 -7 80 0 |64] -4 [69] -9 83
230 305410 52 0 53 0 53 255 -9 88 3074 5 | 7412 92
231 2 162 -3 64 -5 66 0 59 256 -17 1 110 | -10 [90 | -9 | 86 | -18 | 108
232 0 | 58] -2 59 | -11 | 77 | -14 | 85 257 -11] 97 0 |70 2 (66| -4 79
233 1 63 | -4 70 -9 80 | -13 | 89 258 -20 | 84 4 129 9 | 34|22 69
234 2 (72| 4 75 -9 84 | -13 | 94 259 -11] 79 5 |31 1 32| -16 | 75
235 -1 (74 -8 82 | -10 | 87 | -11 | 92 260 -6 73 7 |42 11 [31] -2 58
236 9 [91| -17 | 102 | -34 | 127 | -29 | 127 261 -4 74 1 591 5 |52 1 58
237 S 167 -9 77 | -21 | 101 | -21 | 100 262 -13 | 86 2 [58] -2 |55 -13 | 78
238 S 027) 03 24 -3 39 | -14 | 57 263 -13 | 96 3072 -2 67| -9 83
239 313910 42 -5 53 | -12 | 67 264 -11] 97 -3 |81 0 |73 | 4 81
240 22 144 0 48 -7 61 | -11 | 71 265 19| 117 | <11 [97 | -8 | 89 | -13 | 99
241 0 |46 | O 55 | -11 | 75 | -10 | 77 266 -8 78 0 | 58| 3 |52]-13] 81
242 -16 | 64 | -6 59 | 15| 77 | 21| 85 267 -5 33 8 5 7 4 -6 38
243 -8 | 68| -7 71 | -17 | 91 | -16 | 88 268 -4 | 48 10 [14] 10 | 8 | -13 | 62
244 -10 | 78 | <12 | 83 | -25 | 107 | -23 | 104 269 -2 53 14 [18] 17 | 8 -6 58
245 -6 | 77 | -11 | 87 | -25 | 111 | -15 | 98 270 -3 62 13 {27] 16 | 19| 2 59
246 -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127 271 -13 1 71 2 |40 3 [37|-16] 73
247 -12] 92 1 58 | -11 | 76 | -10 | 82 272 -10 | 79 0 |58 -1 |61]-10] 76
248 -15 |55 | -3 29 | -10 | 44 -8 48 273 -12 | 86 3170 -5 | 73| -13 | 86
249 -10 | 60 | -1 36 | -10 | 52 -8 61 274 -13 1 90 6 [79 -1 | 70 | -9 83
250 -6 | 62 1 38 | -10 | 57 -8 66 275 -14 | 97 -8 [8 | 4 | 78 | -10 | 87
251 4 65| 2 43 -9 58 -7 70

ITU-T Rec. H.264 (05/2003)

173

174

Table 9-22 — Values of variables m and n for ctxIdx from 277 to 337

I :lril;lesSI Value of cabac_init_idc I al'l dsi Value of cabac_init_idc
ctxldx 1 ctxldx | SHeeS 0 1 2

m n m n m n m n m | n | m|n m | n m | n
277 -6 93 | -13 | 106 | -21 | 126 | -22 | 127 308 -16 | 96 | -1 | 51 | -16 | 77 | -10 | 67
278 -6 84 | -16 | 106 | -23 | 124 | -25 | 127 309 718 | 7 49| -2 | 64 1 68
279 -8 79 | -10 | 87 | -20 | 110 | -25 | 120 310 8 [8| 8 |52 2 |el 0 |77
280 0 66 | -21 | 114 | -26 | 126 | -27 | 127 311 718 9 |41 6 |67 2 |64
281 -1 71 | -18 | 110 | -25 | 124 | -19 | 114 312 9 [8| 6 |47 -3 |64 | 0 |68
282 0 62 | -14 | 98 | -17 | 105 | -23 | 117 313 -13 1 88 | 2 |55 2 |57 -5 |78
283 -2 60 | -22 | 110 | 27 | 121 | -25 | 118 314 4 | 66| 13|41 | -3 |65| 7 |55
284 -2 59 | 21 | 106 | -27 | 117 | -26 | 117 315 3177110144 -3 |66(5 |59
285 -5 75 | <18 | 103 | -17 | 102 | -24 | 113 316 3176 6 |50 0 |62 2 |65
286 -3 62 | -21 | 107 | 26 | 117 | -28 | 118 317 6 [76| 5 (53] 9 |51 14|54
287 -4 58 | -23 | 108 | -27 | 116 | -31 | 120 318 10 [58 | 13 149 | -1 |66 | 15 | 44
288 -9 66 | -26 | 112 | -33 | 122 | -37 | 124 319 -1 {76 4 (63 2|71 5 | 60
289 -1 79 | -10 | 96 | -10 | 95 | -10 | 94 320 -1 [8 6 |64 2|75 2 |70
290 0 71 | <12 | 95 | -14 | 100 | -15 | 102 321 71992169 -1 |70 -2 |76
291 3 68 -5 91 -8 95 | -10 | 99 322 14195 215 -9 |72]-18] 86
292 10 | 44 -9 93 | -17 | 111 | -13 | 106 323 2 |95 6 | 70| 14 |60 12 | 70
293 -7 62 | -22 | 94 | -28 | 114 | -50 | 127 324 0 |76 | 10 |44 | 16 |37 | 5 | 64
294 15 | 36 -5 86 -6 89 -5 92 325 S 174109 |31 0 |47 |-12 |70
295 14 | 40 9 67 -2 80 17 | 57 326 0 |70 | 12 | 43 | 18 | 35| 11 | 55
296 16 | 27 -4 80 -4 82 -5 86 327 11|75 3 | S3 | 1L |37 5 |56
297 12 | 29 | -10 | 85 -9 85 | -13 | 94 328 1 68 | 14| 34 | 12 | 41 0 | 69
298 1 44 -1 70 -8 81 | -12 | 91 329 0 | 65|10 |38 | 10 |41 | 2 | 65
299 20 | 36 7 60 -1 72 -2 77 330 14| 73| 3|52 2 |48 -6 | 74
300 18 | 32 9 58 5 64 0 71 331 3 62 | 13|40 | 12 | 41 5 | 54
301 5 42 5 61 1 67 -1 73 332 4 |62 (17321 13 |41 7 | 54
302 1 48 12 | 50 9 56 4 64 333 -1 [68 7 [44 0 |59 -6 |76
303 10 | 62 15 50 0 69 -7 81 334 13075 7 |38 3 |50 -11] 82
304 17 | 46 18 | 49 1 69 5 64 335 11 | 55|13 (50| 19 |40 | -2 | 77
305 9 64 17 | 54 7 69 15 | 57 336 5 |64 | 10|57 | 3 |66 -2 |77
306 -12 | 104 | 10 | 41 -7 69 1 67 337 12 | 70 | 26 | 43 | 18 | 50 | 25 | 42
307 -11 | 97 7 46 -6 67 0 68

ITU-T Rec. H.264 (05/2003)

Table 9-23 — Values of variables m and n for ctxIdx from 338 to 398

I :lllilge SSl Value of cabac_init_idc I al'l dsI Value of cabac_init_idc
ctxIdx 0 1 ctxldx | SHeeS 1 2
m n m n m | n m | n m | n m | n | m n m n

338 15 6 14 11 |19 -6 |17]-13 369 32| 26 | 31| 4 |40 | -37 | 37 | -17
339 6 19 11 14 | 18| -6 [16| -9 370 37 130 [27| 6 | 38| -30 | 32 1
340 7 16 9 11 | 1441 0 17 | -12 371 44 | 32 | 34| 8 | 46 | -33 | 34 15
341 12 14 18 11] 26| -12 | 27 | -21 372 34 | -18 [30| 10 | 42 | -30 | 29 15
342 18 13 | 21 9 31 | -16 | 37 | -30 373 34 | -15 |24 |22 |40 | 24 | 24 | 25
343 13 11 23 -2 | 33| -25 | 41 | -40 374 40 | -15 | 33 | 19 | 49 | -29 | 34 | 22
344 13 15 | 32 | -15 | 33| 22| 42 | 41 375 33| -7 [223238 -12] 31 16
345 15 16 | 32 | -15 | 37 | -28 | 48 | -47 376 351 -5 [26| 31 |40]| -10| 35 18
346 12 | 23 | 34 | 21 | 39| -30 | 39 | -32 377 331 0 [21]41(38] -3 31 | 28
347 13 | 23 | 39 | -23 | 42| -30 | 46 | -40 378 381 2 (26|44 46| -5 | 33 | 41
348 15 | 20 | 42 | -33 | 47 | 42| 52 | -51 379 33 1 13 [23|47 |31 | 20 | 36 | 28
349 14 | 26 | 41 | -31 | 45| -36 | 46 | -41 380 23 | 35 | 16 | 65 | 29 | 30 | 27 | 47
350 14 | 44 | 46 | 28 | 49 | -34 | 52 | -39 381 13] 58 | 14|71 [25] 44 | 21 62
351 17 | 40 | 38 | -12 | 41 | -17 | 43 | -19 382 29 | -3 8 | 60 | 12| 48 | 18 | 31
352 17 | 47 | 21 29 (32 9 |32 11 383 26 | 0 6 | 63| 11| 49 | 19 | 26
353 24 17 | 45 | 24 | 69 | -71 | 61 | -55 384 22 |1 30 | 17 | 65|26 | 45 | 36 | 24
354 21 21 53 | 45 | 63 | -63 | 56 | -46 385 31| -7 (21|24 (22| 22 | 24 | 23
355 25 | 22 | 48 | 26 | 66 | -64 | 62 | -50 386 350 -15 (23|20 |23 | 22 | 27 16
356 31 27 | 65 | 43 | 77 | -74 | 81 | -67 387 341 -3 [2623 (27| 21 | 24 30
357 22 | 29 | 43 | -19 | 54| -39 | 45 | -20 388 341 3 [27]32(33] 20 | 31 29
358 19 | 35 | 39 | -10 | 52| -35 |35 | -2 389 36 | -1 [2823 |26 28 | 22 | 41
359 14 | 50 | 30 9 |41]-10| 28| 15 390 341 5 (2824 (30| 24 | 22| 42
360 10 | 57 18 | 26 |36 | 0 |34 1 391 32| 11 | 23]40 (27| 34 | 16 | 60
361 7 63 | 20 | 27 [40| -1 | 39 1 392 350 5 (24|32 |18 42 | 15 | 52
362 -2 77 0 57 (30| 14 | 30 | 17 393 341 12 [28129 (25| 39 | 14 | 60
363 -4 82 | -14 | 82 [28| 26 | 20 | 38 394 39| 11 [23|42 | 18| 50 3 78
364 -3 94 -5 75 | 23| 37 | 18 | 45 395 30029 (19|57 12| 70 | -16 | 123
365 9 69 | <19 97 [12| 55 | 15| 54 396 341 26 [22|53 (21| 54| 21 53
366 -12 1109 | 35 [125 | 11 | 65 | O | 79 397 291 39 (22|61 | 14| 71 | 22 | 56
367 36 | -35 | 27 0 37 1 -33 | 36 | -16 398 19 66 | 11 | 8 | 11 | 83 | 25 | 61
368 36 | -34 | 28 0 39 | -36 | 37 | -14

ITU-T Rec. H.264 (05/2003)

175

9.3.1.2 Initialisation process for the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of the
pcm_alignment zero bit and all pcm_byte data for a macroblock of type I PCM.

Outputs of this process are the initialised decoding engine registers codI[Range and codlOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codlRange and codIOffset. In the
initialisation procedure of the arithmetic decoding process, codIRange is set equal to 0x01FE and codlIOffset is set equal
to the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most
significant bit written first.

NOTE — The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register
precision. However, the minimum register precision for the variables codIRange and codIOffset is 9 bits.

9.3.2 Binarization process
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element, maxBinldxCtx, ctxIdxOffset, and bypassFlag.

Table 9-24 specifies the type of binarization process, maxBinldxCtx, and ctxIdxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGKk) binarization process, and the fixed-length (FL) binarization process are given in
subclauses 9.3.2.1 to 9.3.2.4, respectively. Other binarizations are specified in subclauses 9.3.2.5 t0 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in subclause 9.3.2.5 consist of bin
strings given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in 9.3.2.3, which is
used for the binarization of the syntax elements mvd 1X (X =0, 1) and coeff abs level minusl, and the binarization of
the coded block pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in subclause 9.3.3.
The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization
suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxIdxOffset) variable and a specific value of the maxBinldxCtx variable as given in Table 9-24. When two values for
each of these variables are specified for one syntax element in Table 9-24, the value in the upper row is related to the
prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

The use of the DecodeBypass process and the variable bypassFlag is derived as follows.

- Ifno value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-24 labelled
as “na”, all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part shall be
decoded by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassFlag is set
equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the
DecodeBypass process shall be applied.

- Otherwise, for each possible value of binldx up to the specified value of MaxBinldxCtx given in Table 9-24, a
specific value of the variable ctxIdx is further specified in subclause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxIdx are in the range of 0 to 398, inclusive. The value assigned to ctxIdxOffset
specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a syntax
element.

ctxldx = ctxIdxOffset = 276 is assigned to the syntax element end_of slice flag and the bin of mb_type, which specifies
the I PCM macroblock type as further specified in subclause 9.3.3.1. For parsing the value of the corresponding bin
from the bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in
subclause 9.3.3.2.4 shall be applied.

NOTE — The bins of mb_type in I slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of

binldx share the same ctxIdx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B slices
may share the same ctxIdx.

176 ITU-T Rec. H.264 (05/2003)

Table 9-24 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinldxCtx ctxIdxOffset
mb_type prefix and suffix prefix: 0 prefix: 0
(SI slices only) as specified in subclause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in subclause 9.3.2.5 6 3
mb_skip_flag _
(P, SP slices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SP slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 17
sub_mb_type . .
(P, SP slices only) as specified in subclause 9.3.2.5 2 21
mb_skip_flag _
(B slices only) FL, cMax=1 0 24
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 32
sub_mb_type (B slices only) as specified in subclause 9.3.2.5 3 36
prefix: 4 prefix: 40
mvd_I0[][]0], mvd_II[][0]) :
prefix and suffix as given by UEG3 suffix: na suffix: na (uses DecodeBypass)
ith signedValFlag=1, uCoff=9
mvd 100 J[J01 T mvd 1[I 1] with signedVaitag=1, ut-o prefix: 4 prefix: 47
- ’ - suffix: na suffix: na (uses DecodeBypass)
ref_idx_10, ref idx_11 U 2 54
mb_qp_delta as specified in subclause 9.3.2.7 2 60
intra_chroma_pred_mode TU, cMax=3 1 64
prev_intra4x4 pred_mode flag FL, cMax=1 0 68
rem_intra4x4_pred_mode FL, cMax=7 0 69
mb_field_decoding_ flag FL, cMax=1 0 70
prefix and suffix prefix: 3 prefix: 73
coded_block_pattern as specified in subclause 9.3.2.6 suffix: 1 suffix: 77
coded block flag FL, cMax=1 0 85
significant_coeff flag _
(frame coded blocks only) FL, cMax=1 0 105
last_significant coeff flag _
(frame coded blocks only) FL, cMax=1 0 166
£ abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 227
coetl_abs_fevel_minus with signedValFlag=0, uCoft=14 suffix: na suffix: na, (uses DecodeBypass)
coeff sign flag FL, cMax=1 0 na, (uses DecodeBypass)
end_of slice flag FL, cMax=1 0 276
significant_coeff flag _
(field coded blocks only) FL, cMax=1 0 277
last_significant_coeff flag FL. cMax=1 0 338

(field coded blocks only)

ITU-T Rec. H.264 (05/2003)

177

9.3.2.1 Unary (U) binarization process
Input to this process is a request for a U binarization for a syntax element.
Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a bit string of length synElVal + 1
indexed by Binldx. The bins for binldx less than synElVal are equal to 1. The bin with binldx equal to synElVal is equal
to 0.

Table 9-25 illustrates the bin strings of the unary binarization for a syntax element.

Table 9-25 — Bin string of the unary binarization (informative)

Value of syntax element Bin string
0 0
1 110
2 1|10
3 1|11]1]0
4 1{1|{1]1]0
5 L{1|{1j1|1]0
binldx 0|1 2(3|4]5

9.3.2.2 Truncated unary (TU) binarization process
Input to this process is a request for a TU binarization for a syntax element and cMax.
Output of this process is the TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in subclause 9.3.2.1
is invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being
equal to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process
Input to this process is a request for a UEGk binarization for a syntax element, signedValFlag and uCoff.
Output of this process is the UEGk binarization of the syntax element.

A UEGKk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is
specified by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synElVal)) of a syntax element
value synElVal as specified in subclause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The UEGKk bin string is derived as follows.

- If one of the following is true, the bin string of a syntax element having value synElVal consists only of a prefix bit
string,

- signedValFlag is equal to 0 and the prefix bit string is not equal to the bit string of length uCoff with all bits
equal to 1.

- signedValFlag is equal to 1 and the prefix bit string is equal to the bit string that consists of a single bit with
value equal to 0.

- Otherwise, the bin string of the UEGk suffix part of a syntax element value synElVal is specified by a process
equivalent to the following pseudo-code:

if(Abs(synElVal) >= uCoff) {
sufS = Abs(synElVal) — uCoff

178 ITU-T Rec. H.264 (05/2003)

stopLoop =0
do {
if(sufS >= (1<<k)){
put(1)
sufS = sufS — (1<<k)
k++
} else {
put(0)
while(k——)
put((sufS>>k) & 0x01)
stopLoop =1

} while(!stopLoop)

H
if(signedValFlag && synElVal ! = 0)
if(synElVal > 0)

put(0)
else

put(1)

NOTE - The specification for the k-th order Exp-Golomb (EGK) code uses 1’s and 0’s in reverse meaning for the unary part of the
Exp-Golomb code of 0-th order as specified in subclause 9.1.

9.3.2.4 Fixed-length (FL) binarization process
Input to this process is a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using an fixedLength-bit unsigned integer bin string of the syntax element value,
where fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx =0
relates to the least significant bit with increasing values of binldx towards the most significant bit.

9.3.2.5 Binarization process for macroblock type and sub-macroblock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type.
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-26.

For macroblock types in SI slices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by by = ((mb_type == SI)? 0:1). For the syntax
element value for which by is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which by is equal to 1, the binarization is given by concatenating the prefix by and the suffix bit string as specified in
Table 9-26 for macroblock type in I slices indexed by subtracting 1 from the value of mb_type in SI slices.

ITU-T Rec. H.264 (05/2003) 179

Table 9-26 — Binarization for macroblock types in I slices

Value (name) of mb_type | Bin string

0 (I_4x4) 0

1(1_16x16_0_0_0) 1 0 0 0 0 0
2(1_16x16_1 0 0) 1 0 0 0 0 1
3(I_16x16_2 0_0) 1 0 0 0 1 0

41 16x16_3 0_0) 1 0 0 0 1 1

5 16x16_0_1_0) 1 0 0 1 0 0 0
6 (I 16x16_1 1 0) 1 0 0 1 0 0 1
71 16x16 2 1 0) 1 0 0 1 0 1 0
8 (I_16x16_3_1 0) 1 0 0 1 0 1 1
9(I_16x16_0_2_0) 1 0 0 1 1 0 0
10 (I_16x16_1_2_0) 1 0 0 1 1 0 1
11 (I 16x16 2 2 0) 1 0 0 1 1 1 0
12 (I_16x16_3_2_0) 1 0 0 1 1 1 1
13 (1_16x16_0_0_1) 1 0 1 0 0 0

14 (1_16x16_1 0_1) 1 0 1 0 0 1

151 _16x16_2 0_1) 1 0 1 0 1 0

16 (I_16x16_3 0_1) 1 0 1 0 1 1

17 (1_16x16_0_1_1) 1 0 1 1 0 0 0
18 (I 16x16_1 1 1) 1 0 1 1 0 0 1
19 (1 16x16 2 1 1) 1 0 1 1 0 1 0
20 (I_16x16_3_1 1) 1 0 1 1 0 1 1
21 (1_16x16_0 2 1) 1 0 1 1 1 0 0
22 (I_16x16_1_2 1) 1 0 1 1 1 0 1
23 (L 16x16 2 2 1) 1 0 1 1 1 1 0
24 (1_16x16_3_2 1) 1 0 1 1 1 1 1
25 (I_PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-27.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-27 and a suffix as
specified in Table 9-26, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed..

180 ITU-T Rec. H.264 (05/2003)

For I macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-27 and suffix bit strings as specified in Table 9-26, indexed by
subtracting 23 from the value of mb_type.

Table 9-27 — Binarization for macroblock types in P, SP, and B slices

Slice type | Value (name) of mb_type | Bin string
0 (P_LO_l6x16) 0 0 0
1 (P_LO_LO_16x8) 0 1 1
2 (P_LO_LO_8x16) 0 1 0

P, SP slice
3 (P_8x8) 0 0 1
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0 0
2(B_L1_16x16) 1 0 1
3 (B_Bi_16x16) 1 1 0 0 0 0
4 (B_LO_LO_16x8) 1 1 0 0 0 1
5(B_L0O_LO_8x16) 1 1 0 0 1 0
6(B_L1 L1 _16x8) 1 1 0 0 1 1
7(B_L1_L1_8x16) 1 1 0 1 0 0
8 (B_LO_L1_16x8) 1 1 0 1 0 1
9(B_LO L1 _8x16) 1 1 0 1 1 0
10 (B_L1_LO_16x8) 1 1 0 1 1 1
11 (B_L1_LO_8x16) 1 1 1 1 1 0

B slice
12 (B_LO_Bi_16x8) 1 1 1 0 0 0 0
13 (B_LO_Bi_8x16) 1 1 1 0 0 0 1
14 (B_L1_Bi_16x8) 1 1 1 0 0 1 0
15 (B_L1 Bi 8x16) 1 1 1 0 0 1 1
16 (B_Bi_L0_16x8) 1 1 1 0 1 0 0
17 (B_Bi_L0_8x16) 1 1 1 0 1 0 1
18 (B_Bi_L1 _16x8) 1 1 1 0 1 1 0
19 (B_Bi_L1_8x16) 1 1 1 0 1 1 1
20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1 1
23 to 48 (Intra, prefix only) | 1 1 1 1 0 1

binldx 0 1 2 3 4 5 6

ITU-T Rec. H.264 (05/2003) 181

For P, SP, and B slices the specification of the binarization for sub_mb_type is given in Table 9-28.

Table 9-28 — Binarization for sub-macroblock types in P, SP, and B slices

Slice type | Value (name) of sub_mb_type | Bin string
0 (P_LO_8x8) 1
1 (P_LO_8x4) 0 0
P, SP slice
2 (P_LO_4x8) 0 1 1
3 (P_LO_4x4) 0 1 0
0 (B_Direct_8x8) 0
1 (B_LO 8x8) 1 0 0
2 (B_L1_8x8) 1 0 1
3 (B_Bi_8x8) 1 1 0 0 0
4 (B_LO_8x4) 1 1 0 0 1
5 (B_LO_4x8) 1 1 0 1 0
B slice 6(B_L1_8x4) 1 1 0 1 1
7 (B_L1_4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1 _4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1
binldx 0 1 2 3 4 5

9.3.2.6 Binarization process for coded block pattern
Input to this process is a request for a binarization for the syntax element coded block pattern.
Output of this process is the binarization of the syntax element.

The binarization of coded block pattern consists of a concatenation of a prefix part and a suffix part. The prefix part of
the binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. The suffix part consists of
the TU binarization of CodedBlockPatternChroma with cMax = 2. The relationship between the value of the syntax
element coded block pattern and the values of CodedBlockPatternLuma and CodedBlockPatternChroma is given as
specified in subclause 7.4.5.

9.3.2.7 Binarization process for mb_qp_delta
Input to this process is a request for a binarization for the syntax element mb_qp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_qp_delta is derived by the U binarization of the mapped value of the syntax element mb_qp_delta,
where the assignment rule between the signed value of mb_qp delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxIdxOffset as
specified in subclause 9.3.2.

Output of this process is the value of the syntax element.

182 ITU-T Rec. H.264 (05/2003)

This process specifies how each bit of a bit string is parsed for each syntax element.

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies.

- If'the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
- Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binldx is incremented by 1 starting with binldx being set equal to 0 for the first bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the
variable binldx is set equal to 0 for the first bin of each part of the bin string (prefix part or suffix part). In this case, after
parsing the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in subclauses
9.3.2.3 and 9.3.2.5 is invoked depending on the resulting prefix bit string as specified in subclauses 9.3.2.3 and 9.3.2.5.
Note that for the binarization of the syntax element coded block pattern, the suffix bit string is present regardless of the
prefix bit string of length 4 as specified in subclause 9.3.2.6.

Depending on the variable bypassFlag, the following applies.

- If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 shall be applied for
parsing the value of the bins from the bitstream.

- Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:
1. Given binldx, maxBinldxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause 9.3.3.1.

2. Given ctxIdx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxIdx
Inputs to this process are binldx, maxBinldxCtx and ctxIdxOffset.
Output of this process is ctxIdx.

Table 9-29 shows the assignment of ctxIdx increments (ctxIdxInc) to binldx for all ctxIdxOffset values except those
related to the syntax elements coded block flag, significant coeff flag, last significant coeff flag, and
coeff abs_level minusl.

The ctxIdx to be used with a specific binldx is specified by first determining the ctxIdxOffset associated with the given
bin string or part thereof. The ctxIdx is determined as follows.

- If the ctxIdxOffset is listed in Table 9-29, the ctxIdx for a binldx is the sum of ctxIdxOffset and ctxIdxInc, which is
found in Table 9-29. When more than one value is listed in Table 9-29 for a binldx, the assignment process for
ctxIdxInc for that binldx is further specified in the subclauses given in parenthesis of the corresponding table entry.

- Otherwise (ctxIdxOffset is not listed in Table 9-29), the ctxIdx is specified to be the sum of the following terms:
ctxIdxOffset and ctxIdxBlockCatOffset(ctxBlockCat) as specified in Table 9-30 and ctxIdxInc(ctxBlockCat).
Subclause 9.3.3.1.3 specifies which ctxBlockCat is used. Subclause 9.3.3.1.1.9 specifies the assignment of
ctxldxInc(ctxBlockCat) for coded block flag, and subclause 9.3.3.1.3 specifies the assignment of
ctxIdxInc(ctxBlockCat) for significant coeff flag, last significant coeff flag, and coeff abs level minusl.

All bins with binldx greater than maxBinldxCtx are parsed using ctxIdx assigned to maxBinldxCtx.

All entries in Table 9-29 labelled with “na” correspond to values of binldx that do not occur for the corresponding
ctxIdxOffset.

ctxldx =276 is assigned to the binldx of mb type indicating the I PCM mode. For parsing the value of the
corresponding bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in
subclause 9.3.3.2.4 shall be applied.

ITU-T Rec. H.264 (05/2003) 183

Table 9-29 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax
elements coded_block_flag, significant_coeff flag, last significant_coeff flag, and coeff _abs level minusl

binldx
ctxIdxOffset 0 1 2 3 4 5 =6
0 0,1,2 na na na na na na
(subclause 9.3.3.1.1.3)
0,1,2 _ 5,6 6,7
3 (subclause 9.3.3.1.1.3) ctxldx=276 3 4 (subclause | (subclause | 7
9.3.3.1.2) | 93.3.1.2)
11 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
2,3
14 0 1 (subclause na na na na
9.3.3.1.2)
2,3
17 0 ctxIdx=276 1 2 (subclause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
24 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
4,5
0,1,2 3 (subclause
27 (subclause 9.3.3.1.1.3) 9.3.3.1.2) 3 > > 3
2,3
32 0 ctxIdx=276 1 2 (subclause 3 3
9.3.3.1.2)
2,3
36 0 1 (subclause 3 3 3 na
9.3.3.1.2)
0,1,2
40 (subclause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2
47 (subclause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2,3
>4 (subclause 9.3.3.1.1.6) 4 3 3 > > 3
0,1
60 (subclause 9.3.3.1.1.5) 2 3 3 3 3 3
0,1,2
64 (subclause 9.3.3.1.1.8) 3 3 na na na na
68 0 na na na na na na
69 0 0 0 na na na na
70 0,1,2 na na na na na na
(subclause 9.3.3.1.1.2)
0,1,2,3 0,1,2,3 0,1,2,3
0,1,2,3
73 (subclause 9.3.3.1.1.4) (subclause (subclause | (subclause na na na
""" 9.3.3.1.14) | 9.33.1.14) | 93.3.1.14)
4,5,6,7
0,1,2,3 o
77 > (subclause na na na na na
(subclause 9.3.3.1.1.4) 9.33.1.14)
276 0 na na na na na na

Table 9-30 shows the values of ctxIdxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl. The specification of
ctxBlockCat is given in Table 9-32.

184 ITU-T Rec. H.264 (05/2003)

Table 9-30 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded_block flag,
significant_coeff flag, last_significant_coeff flag, and coeff abs_level minusl

ctxBlockCat (as specified in Table 9-32)
Syntax element

0 1 2 3 4
coded_block flag 0 4 8 12 16
significant_coeff flag 0 15 29 44 47
last_significant coeff flag | 0 15 29 44 47
coeff abs_level minusl 0 10 20 30 39

9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax element mb_skip flag.

Subclause 9.3.3.1.1.2 specifies the derivation process of ctxIdxInc for the syntax element mb_field decoding flag.
Subclause 9.3.3.1.1.3 specifies the derivation process of ctxIdxInc for the syntax element mb_type.

Subclause 9.3.3.1.1.4 specifies the derivation process of ctxIdxInc for the syntax element coded block pattern.
Subclause 9.3.3.1.1.5 specifies the derivation process of ctxIdxInc for the syntax element mb_qp_delta.

Subclause 9.3.3.1.1.6 specifies the derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx I1.
Subclause 9.3.3.1.1.7 specifies the derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11.
Subclause 9.3.3.1.1.8 specifies the derivation process of ctxIdxInc for the syntax element intra_chroma pred mode.

Subclause 9.3.3.1.1.9 specifies the derivation process of ctxIdxInc for the syntax element coded block flag.

9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip_flag
Output of this process is ctxIdxInc.

When MbaffFrameFlag is equal to 1 and mb_field decoding_flag has not been decoded (yet) for the current macroblock
pair with top macroblock address 2 * (CurrMbAddr/2), the inference rule for the syntax element
mb_field decoding_flag as specified in subclause 7.4.4 shall be applied.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

- If mbAddrN is not available or mb_skip flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set equal
to 0.

- Otherwise (mbAddrN is available and mb_skip flag for the macroblock mbAddrN is equal to 0), condTermFlagN is
set equal to 1.

The variable ctxIdxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB ©-1)

9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field_decoding_flag
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
subclause 6.4.6 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for
the syntax element mb_field decoding flag as specified in subclause 7.4.4 shall be applied for the macroblock
mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

- Ifany of the following conditions is true, condTermFlagN is set equal to 0,

ITU-T Rec. H.264 (05/2003) 185

mbAddrN is not available

the macroblock mbAddrN is a frame macroblock.

Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-2)

9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type

Input to this process is ctxIdxOffset.

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

If any of the following conditions is true, condTermFlagN is set equal to 0

mbAddrN is not available

ctxIdxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to SI

ctxIdxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I 4x4
ctxIdxOffset is equal to 27 and the macroblock mbAddrN is skipped

ctxIdxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to B_Direct 16x16

Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + condTermFlagB (9-3)

9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded_block_pattern

Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Depending on the value of the variable ctxIdxOffset, the following applies.

- If etxIdxOffset is equal to 73, the following applies

The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.7.2 is invoked with
luma8x8BlkIdx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BIlkIdxA, and
luma8x8BIkIdxB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
- Ifany of the following conditions is true, condTermFlagN is set equal to 0

- mbAddrN is not available

- mb_type for the macroblock mbAddrN is equal to [PCM

- the macroblock mbAddrN is not skipped and ((CodedBlockPatternLuma >> luma8x8BIkIdxN) & 1) is
not equal to 0 for the macroblock mbAddrN

- Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxldxInc = condTermFlagA + 2 * condTermFlagB 9-4)

- Otherwise (ctxIdxOffset is equal to 77), the following applies.

186

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

ITU-T Rec. H.264 (05/2003)

- Let the variable condTermFlagN (with N being either A or B) be derived as follows.

- If mbAddrN is available and mb_type for the macroblock mbAddrN is equal to I PCM, condTermFlagN is set
equal to 1

- Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 0

- mbAddrN is not available or the macroblock mbAddrN is skipped

- binldx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to 0

- binldx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2
- Otherwise, condTermFlagN is set equal to 1.

- The variable ctxIdxInc is derived as
ctxIdxInc = condTermFlagA + 2 * condTermFlagB + ((binldx == 1)?4:0) (9-5)

NOTE —When a macroblock uses an Intra 16x16 prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-8.

9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp_delta
Output of this process is ctxIdxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxIdxInc be derived as follows.

- Ifany of the following conditions is true, ctxIdxInc is set equal to 0
- prevMbAddr is not available or the macroblock prevMbAddr is skipped
- mb_type of the macroblock prevMbAddr is equal to I PCM

- The macroblock prevMbAddr is not coded in Intra 16x16 prediction mode and both CodedBlockPatternLuma
and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to 0

- mb_gp_delta for the macroblock prevMbAddr is equal to 0

- Otherwise, ctxIdxInc is set equal to 1.

9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx_I1
Inputs to this process are mbPartldx and the reference picture list suffix 1X, where X =0 or 1.
Output of this process is ctxIdxInc.

Let currSubMbType be set equal to sub_mb_type[mbPartldx].

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx,
currSubMbType, and subMbPartldx =0 as input and the output is assigned to mbAddrA\mbPartldxA and
mbAddrB\mbPartldxB.

With ref idx IX[mbPartldxN] (with N being either A or B) specifying the syntax element for the macroblock
mbAddrN, let the variable refldxZeroFlagN be derived as follows.

- If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock

refldxZeroFlagN = ((ref idx IX[mbPartldxN]>1)?0:1) (9-6)
- Otherwise,
refldxZeroFlagN = ((ref idx_1X[mbPartldxN]>0)?0:1) 9-7)

Let the variable predModeEqualFlag be specified as follows.
- If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

ITU-T Rec. H.264 (05/2003) 187

- If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.
- Otherwise, the following applies.

- If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
- If any of the following conditions is true, condTermFlagN is set equal to 0

- mbAddrN is not available

- the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip

- The macroblock mbAddrN is coded in Intra prediction mode

- predModeEqualFlag is equal to 0

- refldxZeroFlagN is equal to 1
- Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB (9-8)

9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd_10 and mvd_11

Inputs to this process are mbPartldx, subMbPartldx, the reference picture list suffix 1X, and ctxIdxOffset
Output of this process is ctxIdxInc.

Let currSubMbType be set equal to sub_mb_type[mbPartldx].

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx,
currSubMbType, and subMbPartldx as input and the output is assigned to mbAddrA\mbPartldxA\subMbPartldxA and
mbAddrB\mbPartldxB\subMbPartIdxB.

Let the variable compldx be derived as follows.

- If etxIdxOffset is equal to 40, compldx is set equal to 0.

- Otherwise (ctxIdxOffset is equal to 47), compldx is set equal to 1.

Let the variable predModeEqualFlag be specified as follows.

- If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

- If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.
- Otherwise, the following applies.

- If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlag is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

- Otherwise, predModeEqualFlag is set equal to 1.
Let the variable absMvdCompN (with N being either A or B) be derived as follows.
- If any of the following conditions is true, absMvdCompN is set equal to 0

- mbAddrN is not available

188 ITU-T Rec. H.264 (05/2003)

- the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip
- The macroblock mbAddrN is coded in Intra prediction mode
- predModeEqualFlag is equal to 0

- Otherwise, the following applies

- If compldx is equal to 1, MbaftfFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is a field macroblock

absMvdCompN = Abs(mvd_1X[mbPartIdxN][subMbPartIldxN][compldx]) * 2 (9-9)

- Otherwise, if compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field macroblock,
and the macroblock mbAddrN is a frame macroblock

absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartldxN][compldx])/2 (9-10)
- Otherwise,
absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) (9-11)

The variable ctxIdxInc is derived as follows

- If (absMvdCompA + absMvdCompB) is less than 3, ctxIdxInc is set equal to 0.

- Otherwise, if (absMvdCompA + absMvdCompB) is greater than 32, ctxIdxInc is set equal to 2.

- Otherwise ((absMvdCompA + absMvdCompB) is in the range of 3 to 32, inclusive), ctxIdxInc is set equal to 1.

9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma_pred_mode
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows.
- If any of the following conditions is true, condTermFlagN is set equal to 0

- mbAddrN is not available

- The macroblock mbAddrN is coded in Inter prediction mode

- mb_type for the macroblock mbAddrN is equal to I PCM

- intra_chroma pred mode for the macroblock mbAddrN is equal to 0
- Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-12)

9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded_block_flag

Input to this process is ctxBlockCat and additional input is specified as follows.

- If ctxBlockCat is equal to 0, no additional input

- Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4BlkIdx

- Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr

- Otherwise (ctxBlockCat is equal to 4), chroma4x4BlklIdx and the chroma component index compldx
Output of this process is ctxIdxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows.

- If ctxBlockCat is equal to 0, the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

ITU-T Rec. H.264 (05/2003) 189

- The variable transBlockN is derived as follows.

- If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 prediction mode, the luma DC
block of macroblock mbAddrN is assigned to transBlockN

- Otherwise, transBlockN is marked as not available.
Otherwise, if ctxBlockCat is equal to 1 or 2, the following applies.

- The derivation process for neighbouring 4x4 luma blocks specified in subclause 6.4.7.3 is invoked with
luma4x4BIlkldx as input and the output is assigned to mbAddrN, luma4x4BlkIdxN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to I PCM, and ((CodedBlockPatternLuma >> (luma4x4BIkIdxN >>2)) & 1) is not equal to O for
the macroblock mbAddrN, the 4x4 luma block with luma4x4BIkIdxN of macroblock mbAddrN is assigned to
transBlockN.

- Otherwise, transBlockN is marked as not available.
Otherwise, if ctxBlockCat is equal to 3, the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to I PCM, and CodedBlockPatternChroma is not equal to O for the macroblock mbAddrN, the
chroma DC block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.
Otherwise (ctxBlockCat is equal to 4), the following applies.

- The derivation process for neighbouring 4x4 chroma blocks specified in subclause 6.4.7.4 is invoked with
chroma4x4BlkIdx as input and the output is assigned to mbAddrN, chroma4x4BlkIdxN (with N being either A or
B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is
not equal to I PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4
chroma block with chroma4x4BIkIdxN of the chroma component iCbCr of macroblock mbAddrN is assigned
to transBlockN.

- Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

If any of the following conditions is true, condTermFlagN is set equal to 0
- mbAddrN is not available and the current macroblock is coded in Inter prediction mode

- mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not equal to
I PCM

- The current macroblock is coded in Intra prediction mode, constrained intra pred flag is equal to 1, the
macroblock mbAddrN is available and coded in Inter prediction mode, and slice data partitioning is in use
(nal_unit_type is in the range of 2 through 4, inclusive).

Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 1
- mbAddrN is not available and the current macroblock is coded in Intra prediction mode
- mb_type for the macroblock mbAddrN is equal to | PCM

Otherwise, condTermFlagN is set equal to the value of the coded block flag of the transform block transBlockN that
was decoded for the macroblock mbAddrN.

The variable ctxIdxInc(ctxBlockCat) is derived by

ctxIdxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-13)

190 ITU-T Rec. H.264 (05/2003)

9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin values

Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Table 9-31 contains the specification of ctxIdxInc for the given values of ctxIdxOffset and binldx.

For each value of ctxIdxOffset and binldx, ctxIdxInc is derived by using some of the values of prior decoded bin values
(bg, by, ba,..., by), where the value of the index k is less than the value of binldx.

Table 9-31 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldx

Value (name) of ctxIdxOffset | binldx ctxIdxInc

4 (bs 1= 0)?75:6
3

5 (bs 1= 0)?6:7
14 2 (by I=1)?2:3
17 4 (bs !1=0)?72:3
27 2 (by 1=0)?74:5
32 4 (bs 1=0)?2:3
36 2 (by 1=0)72:3

9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag, last_significant_coeff flag,
and coeff_abs_level minusl

Inputs to this process are ctxIdxOffset and binldx.
Output of this process is ctxIdxInc.

The assignment process of ctxldxInc for syntax elements significant coeff flag, last significant coeff flag, and
coeff abs level minusl as well as for coded block flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categories is given in Table 9-32.

Table 9-32 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff ctxBlockCat
block of luma DC transform coefficient levels (for macroblock coded in Intra 16x16 16 0
prediction mode)
block of luma AC transform coefficient levels (for macroblock coded in Intra 16x16 15 |
prediction mode)
block of luma transform coefficient levels (for macroblock not coded in Intra 16x16 16 5
prediction mode)
block of chroma DC transform coefficient levels 4 3
block of chroma AC transform coefficient levels 15 4

For the syntax elements significant_coeff flag and last significant coeff flag the scanning position scanningPos within
the regarded block is assigned to ctxldxInc, where scanningPos ranges from 0 to maxNumCoeff - 2, inclusive:

ctxIdxInc = scanningPos (9-14)

The scanning position for frame coded blocks relates to the zig-zag scan; the scanning position for field coded blocks
relates to the field scan.

Let numDecodAbsLevelEql denotes the accumulated number of decoded transform coefficient levels with absolute
value equal to 1, and let numDecodAbsLevelGtl denotes the accumulated number of decoded transform coefficient

ITU-T Rec. H.264 (05/2003) 191

levels with absolute value greater than 1. Both numbers are related to the same transform coefficient block, where the
current decoding process takes place. Then, for decoding of coeff abs level minusl, ctxIdxInc for
coeff abs level minusl is specified depending on binldx as follows.

- Ifbinldx is equal to 0, ctxIdxInc is derived by

ctxIdxInc = ((numDecodAbsLevelGtl !=0) ? 0: Min(4, 1 + numDecodAbsLevelEql)) (9-15)

- Otherwise (binldx is greater than 0), ctxIdxInc is derived by

ctxIdxInc = 5 + Min(4, numDecodAbsLevelGtl) (9-16)

9.3.3.2 Arithmetic decoding process

Inputs to this process are the bypassFlag, ctxIdx as derived in subclause 9.3.3.1, and the state variables codIRange and
codlOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-2 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdx), which is specified as follows.

- IfbypassFlag is equal to 1, DecodeBypass() as specified in subclause 9.3.3.2.3 is invoked.

- Otherwise, if bypassFlag is equal to 0 and ctxIdx is equal to 276, DecodeTerminate() as specified in subclause
9.3.3.2.4 is invoked.

- Otherwise (bypassFlag is equal to 0 and ctxIdx is not equal to 276), DecodeDecision() as specified in subclause
9.3.3.2.1 shall be applied.

DecodeBin(ctxldx)
Yes j

bypassFlag
=1?
DecodeBypass
No
ctxldx==2767 Yes‘l

DecodeTerminate

No

v

‘ ‘ DecodeDecision(ctxldx) ‘ ‘

1 A 4

Done

Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)

NOTE - Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and
p(1)=1-p(0) of abinary decision (0, 1), an initially given code sub-interval with the range codIRange will be subdivided into
two sub-intervals having range p(0) * codIRange and codIRange — p(0) * codIRange, respectively. Depending on the decision,
which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing
into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable
symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather
than 0 or 1. Given this terminology, each context is specified by the probability p; ps of the LPS and the value of MPS (valMPS),
which is either 0 or 1.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

- The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64
different representative probability states { ppps(pStateldx) |0 <= pStateldx <64 } for the LPS probability prps. The
numbering of the states is arranged in such a way that the probability state with index pStateldx = 0 corresponds to an LPS
probability value of 0.5, with decreasing LPS probability towards higher state indices.

192 ITU-T Rec. H.264 (05/2003)

- The range codIRange representing the state of the coding engine is quantised to a small set {Q,...,Q4} of pre-set
quantisation values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed
product values of Q; * prps(pStateldx) allows a multiplication-free approximation of the product
codIRange * pypg(pStateldx).

- For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a
separate simplified encoding and decoding bypass process is used.

9.3.3.2.1 Arithmetic decoding process for a binary decision

Inputs to this process are ctxIdx, codIRange, and codIOffset.

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset.
Figure 9-3 shows the flowchart for decoding a single decision (DecodeDecision).

1. The value of the variable cod[RangeLPS is derived as follows.

- Given the current value of codIRange, the variable qCodIRangeldx is derived by

gCodIRangeldx =(codIRange >> 6) & 0x03 9-17)

- Given gCodIRangeldx and pStateldx associated with ctxIdx, the value of the variable rangeTabLPS as specified
in Table 9-33 is assigned to codI[RangeL.PS:

codIRangeLLPS = rangeTabLPS[pStateldx][qCodIRangeldx] (9-18)

2. The variable codIRange is set equal to codIRange — cod[RangeLLPS and the following applies.

- If codlOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 - valMPS, codlOffset is
decremented by codIRange, and codIRange is set equal to codIRangeLPS.

- Otherwise, the variable binVal is set equal to vaIMPS.

Given the value of binVal, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the
current value of codIRange, renormalization is performed as specified in subclause 9.3.3.2.2.

9.3.3.2.1.1 State transition process

Inputs to this process are the current pStateldx, the decoded value binVal and valMPS values of the context variable
associated with ctxIdx.

Outputs of this process are the updated pStateldx and valMPS of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valMPS associated with ctxIdx is
derived as follows:

if(binVal == valMPS)
pStateldx = transIdxMPS(pStateldx)
else { (9-19)
if(pStateldx == 0)
valMPS =1 — vaIMPS
pStateldx = transIdxLPS(pStateldx)

}

Table 9-34 specifies the transition rules transIdxMPS() and transIdxLPS() after decoding the value of valMPS and
1 — valMPS, respectively.

ITU-T Rec. H.264 (05/2003) 193

194

DecodeDecision (ctxldx)

qCodIRangeldx = (codIRange>>6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codIRange = codIRange - codlRangeLPS

Yes

codlOffset >= codlRange

No—

binVal = lvalMPS

codIRange = codlRangeLPS

codlOffset = codlOffset - codiRange

binVal =
pStateldx = transl

valMPS
dxMPS[pStateldx]

Yesj

valMPS =1 - valMPS

l‘

pStateldx = transldxLPS[pStateldx] ‘

v

RenormD

Figure 9-3 — Flowchart for decoding a decision

ITU-T Rec. H.264 (05/2003)

Table 9-33 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldx

qCodIRangeldx qCodIRangeldx
pStateldx pStateldx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

ITU-T Rec. H.264 (05/2003) 195

Table 9-34 — State transition table

pStateldx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transldxLPS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transldxMPS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStateldx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transldxLPS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transldxMPS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStateldx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transIdxLPS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transldxMPS 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStateldx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transIdxLPS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transldxMPS 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.3.2.2 Renormalization process in the arithmetic decoding engine
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.
Outputs of this process are the updated variables codIRange and codlOffset.

A flowchart of the renormalization is shown in Figure 9-4. The current value of codIRange is first compared to 0x0100
and further steps are specified as follows.

- If codIRange is greater than or equal to 0x0100, no renormalization is needed and the RenormD process is finished;

- Otherwise (codlRange is less than 0x0100), the renormalization loop is entered. Within this loop, the value of
codIRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into codlOffset by using read bits(1).

codIRange< 0x0100

Yes
h 4

codIRange = codIRange << 1
codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

Figure 9-4 — Flowchart of renormalization

9.3.3.2.3 Bypass decoding process for binary decisions
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variable codIOffset and the decoded value binVal.

196 ITU-T Rec. H.264 (05/2003)

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-5 shows a flowchart of the
corresponding process.

First, the value of codlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using
read_bits(1). Then, the value of codlOffset is compared to the value of codIRange and further steps are specified as
follows.

- If codlOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codIOffset is
decremented by codIRange.

- Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0.

DecodeBypass

codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)
lers

codlOffset >= No
codIRange —l
binVal =1

codlOffset = codlOffset - codlRange binval =0

| |

Figure 9-5 — Flowchart of bypass decoding process

9.3.3.2.4 Decoding process for binary decisions before termination
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.
Outputs of this process are the updated variables codIRange and codIOffset, and the decoded value binVal.

This special decoding routine applies to decoding of end of slice flag and of the bin indicating the I PCM mode
corresponding to ctxIdx equal to 276. Figure 9-6 shows the flowchart of the corresponding decoding process, which is
specified as follows.

First, the value of codIRange is decremented by 2. Then, the value of codlOffset is compared to the value of codIRange
and further steps are specified as follows.

- If codIOffset is greater than or equal to codlRange, the variable binVal is set equal to 1, no renormalization is
carried out, and CABAC decoding is terminated. The last bit inserted in register codlOffset is equal to 1. When
decoding end_of slice flag, this last bit inserted in register codlOffset is interpreted as rbsp_stop _one_bit.

- Otherwise (codlOffset is less than codIRange), the variable binVal is set equal to 0 and renormalization is performed
as specified in subclause 9.3.3.2.2.

NOTE - This procedure may also be implemented using DecodeDecision(ctxIdx) with ctxldx = 276. In the case where
the decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxIdx) and a decoding process
would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.

ITU-T Rec. H.264 (05/2003) 197

DecodeTerminate

‘ codIRange = codIRange-2 ‘

Yes codlOffset >= codIRange

binVal = 1 binVal = 0

=

Figure 9-6 — Flowchart of decoding a decision before termination

9.3.4 Arithmetic encoding process (informative)

This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine
described in subclause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures
are called in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision,
EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and
DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable
codILow pointing to the lower end of a sub-interval and a value of the variable codIRange specifying the corresponding
range of that sub-interval.

9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a slice, and after encoding the pcm_alignment zero_bit
and all pcm_byte data for a macroblock of type I PCM.

Outputs of this process are the values codlLow, codIRange, firstBitFlag, bitsOutstanding, and symCnt of the arithmetic
encoding engine.

In the initialisation procedure of the encoder, codlLow is set equal to 0, and codIRange is set equal to OxO1FE.
Furthermore, a firstBitFlag is set equal to 1, and bitsOutstanding and symCnt counters are set equal to 0.

NOTE — The minimum register precision required for codILow is 10 bits and for CodIRange is 9 bits. The precision required for
the counters bitsOutstanding and symCnt should be sufficiently large to prevent overflow of the related registers. When
MaxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice, the minimum register
precision required for the variables bitsOutstanding and symCnt is given by Ceil(Log2(MaxBinCountInSlice + 1)).

9.3.4.2 Encoding process for a binary decision (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded, and the variables codIRange,
codILow and symCnt.

Outputs of this process are the variables codIRange, codlLow, and symCnt.

Figure 9-7 shows the flowchart for encoding a single decision. In a first step, the variable codIRangeLPS is derived as
follows.

Given the current value of codlRange, codlRange is mapped to the index qCodIRangeldx of a quantised value of
codIRange by using Equation 9-17. The value of qCodIRangeldx and the value of pStateldx associated with ctxIdx are
used to determine the value of the variable rangeTabLPS as specified in Table 9-33, which is assigned to cod[RangeLPS.
The value of codIRange — codIRangeLPS is assigned to codIRange.

198 ITU-T Rec. H.264 (05/2003)

In a second step, the value of binVal is compared to valMPS associated with ctxIdx. When binVal is different from
valMPS, codIRange is added to codlLow and codIRange is set equal to the value codIRangeLPS. Given the encoded
decision, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of
codIRange, renormalization is performed as specified in subclause 9.3.4.3. Finally, the variable symCnt is incremented
by 1.

6\codeDecision(cthdx,binV@

qCodIRangeldx = (codIRange >>6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codlRange = codlRange - codIRangeLPS

lers

codlLow = codlLow + codIRange No
codIRange = codlRangeLPS
No—i

pStateldx !=0
valMPS =1 - valMPS

Yes
$ A
pStateldx = transldxLPS[pStateldx] pStateldx = transldxMPS[pStateldx]

binVal !=
valMPS

:

RenormE

!

‘ symCnt = symCnt + 1 ‘

Figure 9-7 — Flowchart for encoding a decision

9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables codIRange, codlLow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codlRange, codlLow,
firstBitFlag, and bitsOutstanding.

Renormalization is illustrated in Figure 9-8.

ITU-T Rec. H.264 (05/2003) 199

RenormE

codlLow < 0x100

Yes

codlLow >= 0x200

codlLow = codlLow - 0x100

bitsOutstanding = bitsOutstanding + codlLow = codlLow - 0x200

{

No 4
PutBit(0) PutBit(1)

4

codIRange = codlRange << 1

codlLow = codlLow << 1

Figure 9-8 — Flowchart of renormalization in the encoder

The PutBit() procedure described in Figure 9-9 provides carry over control. It uses the function WriteBits(B, N) that
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the
encoding process.

PutBit(B)

firstBitFlag = 0 WriteBits(B, 1)

Yes T

WriteBits(1 - B, 1)
No bitsOutstanding = bitsOutstanding - 1

%

Figure 9-9 — Flowchart of PutBit(B)

9.3.4.4 Bypass encoding process for binary decisions (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

200 ITU-T Rec. H.264 (05/2003)

Inputs to this process are the variables binVal, codILow, codIRange, bitsOutstanding, and symCnt.
Output of this process is a bit written to the RBSP and the updated variables codILow, bitsOutstanding, and symCnt.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-10.

EncodeBypass(binVal)

codlLow = codlLow << 1

[i

codlLow = codiLow + codIRange

Yes codlLow < 0x200

PutBit(1)
No ¢

PutBit(0) codlLow = codILow - 0x400

codlLow = codlLow - 0x200
bitsOutstanding = bitsOutstanding + 1

|
:

symCnt = symCnt + 1

Figure 9-10 — Flowchart of encoding bypass

9.3.4.5 Encoding process for a binary decision before termination (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables binVal, codIRange, codILow, bitsOutstanding, and symCnt.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codlLow, codlRange,
bitsOutstanding, and symCnt.

This encoding routine shown in Figure 9-11 applies to encoding of the end of slice flag and of the bin indicating the
I PCM mb_type both associated with ctxIdx equal to 276.

ITU-T Rec. H.264 (05/2003) 201

EncodeTerminate(binVal)

codIlRange = codIRange - 2

codlLow = codlLow + codIRange

RenormE

v

symCnt = symCnt + 1

=

Figure 9-11 — Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in
Figure 9-12 is applied. In this flushing procedure, the last bit written by WriteBits(B, N) is equal to 1. When encoding
end of slice flag, this last bit is interpreted as the rbsp_stop _one_bit.

codIRange =2

v

RenormE

v

PutBit((codlLow >> 9) & 1)

!

WriteBits(((codlLow >>7) & 3) | 1, 2)

Figure 9-12 — Flowchart of flushing at termination

9.3.4.6 Byte stuffing process (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
This process is invoked after encoding the last macroblock of the last slice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesInVcINALunits of all VCL NAL units of a picture, the number
of macroblocks PicSizeInMbs in the picture, and the number of binary symbols BinCountsInNALunits resulting from
encoding the contents of all VCL NAL units of the picture.

Outputs of this process are zero or more bytes appended to the NAL unit.

202 ITU-T Rec. H.264 (05/2003)

Let the variable k be set equal to Ceil((Ceil((3 * BinCountsInNALunits — 3 * 96 * PicSizeInMbs) / 32) —
NumBytesInVcINALunits) / 3). Depending on the variable k the following applies.

If k is less than or equal to 0, no cabac_zero_word is appended to the NAL unit.

Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after
encapsulation, where the first two bytes 0x0000 represent a cabac_zero word and the third byte 0x03 represents an
emulation_prevention_three byte.

ITU-T Rec. H.264 (05/2003) 203

Annex A

Profiles and levels
(This annex forms an integral part of this Recommendation | International Standard)

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams.
Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE - This Recommendation | International Standard does not include individually selectable “options” at the decoder, as this
would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to
that profile.

NOTE - Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Recommendation | International Standard. The same set of level definitions is used with all profiles, but individual
implementations may support a different level for each supported profile. For any given profile, levels generally
correspond to decoder processing load and memory capability.

Al Requirements on video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels specified in this Annex. For each
such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile idc and level idc. All other values of
profile_idc and level idc are reserved for future use by ITU-T | ISO/IEC.

NOTE - Decoders should not infer that when a reserved value of profile_idc or level idc falls between the values specified in this
Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels, as
there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A2 Profiles

A.2.1 Baseline profile

Bitstreams conforming to the Baseline profile shall obey the following constraints:
— Only I and P slice types may be present.
— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
— Sequence parameter sets shall have frame mbs only flag equal to 1.
— Picture parameter sets shall have weighted pred flag and weighted bipred_idc both equal to 0.
— Picture parameter sets shall have entropy coding_mode flag equal to 0.
— Picture parameter sets shall have num_slice groups minusl in the range of 0 to 7, inclusive.

— The level constraints specified for the Baseline profile in subclause A.3 shall be fulfilled.
Conformance of a bitstream to the Baseline profile is specified by profile_idc being equal to 66.

Decoders conforming to the Baseline profile at a specific level shall be capable of decoding all bitstreams in which
profile idc is equal to 66 or constraint_setQ_flag is equal to 1 and in which level idc represents a level less than or equal
to the specified level.

A.2.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:
— Only I, P, and B slice types may be present.
— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
— Arbitrary slice order is not allowed.
— Picture parameter sets shall have num_slice groups minusl equal to O only.

— Picture parameter sets shall have redundant pic_cnt_present flag equal to O only.

204 ITU-T Rec. H.264 (05/2003)

— The level constraints specified for the Main profile in subclause A.3 shall be fulfilled.
Conformance of a bitstream to the Main profile is specified by profile idc being equal to 77.

Decoders conforming to the Main profile at a specified level shall be capable of decoding all bitstreams in which
profile idc is equal to 77 or constraint_setl flag is equal to 1 and in which level idc represents a level less than or equal
to the specified level.

A.2.3 Extended profile

Bitstreams conforming to the Extended profile shall obey the following constraints:
— Sequence parameter sets shall have direct 8x8 inference flag equal to 1.
— Picture parameter sets shall have entropy coding_mode flag equal to 0.
— Picture parameter sets shall have num_slice groups minusl in the range of 0 to 7, inclusive.
— The level constraints specified for the Extended profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the Extended profile is specified by profile idc being equal to 88.

Decoders conforming to the Extended profile at a specified level shall be capable of decoding all bitstreams in which
profile_idc is equal to 88 or constraint_set2 flag is equal to 1 and in which level idc represents a level less than or equal
to specified level.

Decoders conforming to the Extended profile at a specified level shall also be capable of decoding all bitstreams in
which profile idc is equal to 66 or constraint set0 flag is equal to 1, in which level idc represents a level less than or
equal to the specified level.

A3 Levels
The following is specified for expressing the constraints in this Annex.
- Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

- Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

A.3.1 Profile-independent level limits

Let the variable fR be derived as follows.

- Ifpicture nis a frame, fR is set equal to 1 + 172.

- Otherwise (picture n is a field), fR is set equal to 1 + (172 * 2).

Bitstreams conforming to any profile at a specified level shall obey the following constraints:

a) The nominal removal time of access unit n (with n > 0) from the CPB as specified in subclause C.1.2, satisfies
the constraint that t.,(n)-t(n-1) is greater than or equal to Max(PicSizeInMbs + MaxMBPS, R), where
MaxMBPS is the value specified in Table A-1 that applies to picture n, and PicSizeInMbs is the number of
macroblocks in picture n.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
satisfies the constraint that At, 4,p(n) >= Max(PicSizeInMbs +~ MaxMBPS, fR), where MaxMBPS is the value
specified in Table A-1 for picture n, and PicSizeInMbs is the number of macroblocks of picture n, provided that
picture n is a picture that is output and is not the last picture of the bitstream that is output.

¢) The sum of the NumBytesInNALunit variables for access unit 0 1is less than or equal to
256 * ChromaFormatFactor * (PicSizeInMbs + MaxMBPS * (t,(0) - t,4,(0)))+ MinCR, where MaxMBPS
and MinCR are the values specified in Table A-1 that apply to picture 0 and PicSizeInMbs is the number of
macroblocks in picture 0.

d) The sum of the NumBytesInNALunit variables for access unit n (with n > 0) is less than or equal to
256 * ChromaFormatFactor * MaxMBPS * (t(n)-t(n—1))+ MinCR, where MaxMBPS and MinCR are
the values specified in Table A-1 that apply to picture n.

e) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1
f) PicWidthInMbs <= Sqrt(MaxFS * 8)
g) FrameHeightInMbs <= Sqrt(MaxFS * §)

ITU-T Rec. H.264 (05/2003) 205

h)

i)

k)

D)

max_dec frame buffering <= MaxDpbSize, where MaxDpbSize is equal to
Min(1024 * MaxDPB / (PicWidthInMbs * FrameHeightInMbs * 256 * ChromaFormatFactor), 16) and
MaxDPB is given in Table A-1 in units of 1024 bytes. max dec frame buffering is also called DPB size.

For the VCL HRD parameters, BitRate[SchedSelldx | <= 1000 * MaxBR and CpbSize[SchedSelldx] <= 1000
* MaxCPB for at least one value of SchedSelldx, where BitRate[SchedSelldx] is given by Equation E-13 and
CpbSize[SchedSelldx] is given by Equation E-14 when vcl hrd parameters present flag is equal to 1.
MaxBR and MaxCPB are specified in Table A-1 in units of 1000 bits/s and 1000 bits, respectively. The
bitstream shall satisfy these conditions for at least one value of SchedSelldx in the range 0 to cpb_cnt minusl,
inclusive. CpbSize[SchedSelldx] is also called CPB size.

For the NAL HRD parameters, BitRate[SchedSelldx] <= 1200 * MaxBR and CpbSize[SchedSelldx] <= 1200
* MaxCPB for at least one value of SchedSelldx, where BitRate[SchedSelldx] is given by Equation E-13 and
CpbSize[SchedSelldx] is given by Equation E-14 when nal_hrd parameters_present flag equal to 1. MaxBR
and MaxCPB are specified in Table A-1 in units of 1200 bits/s and 1200 bits, respectively. The bitstream shall
satisfy these conditions for at least one value of SchedSelldx in the range 0 to cpb_cnt_minusl.

Vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1

Horizontal motion vector range does not exceed the range of -2048 to 2047.75, inclusive, in units of luma
samples

Number of motion vectors per two consecutive macroblocks in decoding order (also applying to the total from
the last macroblock of a slice and the first macroblock of the next slice in decoding order) does not exceed
MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The number of motion vectors for each
macroblock is the value of the variable MvCnt after the completion of the intra or inter prediction process for
the macroblock.

Number of bits of macroblock layer() data for any macroblock is not greater than 128 + 2048 *
ChromaFormatFactor. Depending on entropy coding mode flag, the bits of macroblock layer() data are
counted as follows.

- If entropy coding mode flag is equal to 0, the number of bits of macroblock layer() data is given by the
number of bits in the macroblock layer() syntax structure for a macroblock.

- Otherwise (entropy coding_mode flag is equal to 1), the number of bits of macroblock layer() data for a
macroblock is given by the number of times read bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock layer() associated with the macroblock.

Table A-1 below specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a
corresponding limit.

Conformance to a particular level shall be specified by setting the syntax element level idc equal to a value of ten times
the level number specified in Table A-1.

206

ITU-T Rec. H.264 (05/2003)

Table A-1 — Level limits

Max Max Max Vertical MV
macroblock Max decoded video Max component Max number of
processing frame picture bit rate CPB size range Min motion vectors
rate size buffer size MaxBR MaxCPB MaxVmvR |compression per two
Level | MaxMBPS | MaxFS | MaxDPB | (1000 bits/s or | (1000 bits or | (luma frame ratio consecutive MBs
number (MB/s) (MBs) | (1024 bytes) | 1200 bits/s) 1200 bits) samples) MinCR |MaxMyvsPer2Mb
1 1485 99 148.5 64 175 [-64,+63.75] 2 -
1.1 3 000 396 337.5 192 500 [-128,+127.75] 2 -
1.2 6 000 396 891.0 384 1 000 [-128,+127.75] 2 -
1.3 11 880 396 891.0 768 2 000 [-128,+127.75] 2 -
2 11 880 396 891.0 2 000 2 000 [-128,+127.75] 2 -
2.1 19 800 792 1782.0 4 000 4 000 [-256,+255.75] 2 -
2.2 20250 1 620 30375 4 000 4 000 [-256,+255.75] 2 -
3 40 500 1620 30375 10 000 10 000 [-256,+255.75] 2 32
3.1 108 000 3 600 6 750.0 14 000 14 000 [-512,+511.75] 4 16
3.2 216 000 5120 7 680.0 20 000 20 000 [-512,+511.75] 4 16
4 245 760 8192 12 288.0 20 000 25 000 [-512,+511.75] 4 16
4.1 245 760 8192 12 288.0 50 000 62 500 [-512,+511.75] 2 16
4.2 491 520 8192 12 288.0 50 000 62 500 [-512,+511.75] 2 16
5 589 824 22 080 41 400.0 135000 135000 [-512,+511.75] 2 16
5.1 983 040 36 864 69 120.0 240 000 240 000 [-512,+511.75] 2 16

Levels with non-integer level numbers in Table A-1 are referred to as “intermediate levels”.
NOTE - All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.3 shows the effect of these limits on frame rates for several example picture formats.

A32
a)

b)

d)

e)

Profile-specific level limits

In bitstreams conforming to the Main profile, the removal time of access unit 0 shall satisfy the constraint that
the number of slices in picture 0 is less than or equal to
(PicSizeInMbs + MaxMBPS * (t(0)-t,(0))) = SliceRate, where SliceRate is the value specified in
Table A-3 that applies to picture 0.

In bitstreams conforming to the Main profile, the difference between consecutive removal time of access units
n and n - 1 (with n > 0) shall satisfy the constraint that the number of slices in picture n is less than or equal to
MaxMBPS * (t(n)-t(n- 1))~ SliceRate, where SliceRate is the value specified in Table A-3 that applies
to picture n.

In bitstreams conforming to the Main profile, sequence parameter sets shall have direct 8x8 inference flag
equal to 1 for the levels specified in Table A-3.

NOTE - direct_8x8_inference flag is not relevant to the Baseline profile as it does not allow B slice types (specified in
subclause A.2.1), and direct 8x8 inference flag is equal to 1 for all levels of the Extended profile (specified in subclause
A.2.3).

In bitstreams conforming to the Main and Extended profiles, sequence parameter sets shall have
frame _mbs_only flag equal to 1 for the levels specified in Table A-3 for the Main profile and in Table A-4 for
the Extended profile.

NOTE - frame_mbs_only_flag is equal to 1 for all levels of the Baseline profile (specified in subclause A.2.1).

In bitstreams conforming to the Main and Extended profiles, the value of sub_mb_type in B macroblocks shall
not be equal to B Bi 8x4, B Bi 4x8, or B_Bi_4x4 for the levels in which MinLumaBiPredSize is shown as
8x8 in Table A-3 for the Main profile and in Table A-4 for the Extended profile.

ITU-T Rec. H.264 (05/2003) 207

f) In bitstreams conforming to the Baseline and Extended profiles, (xInty. — XIntyy, + 6) * (ylnty. — yInty, +6)
<= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8, P 8x8ref0 or B 8x8 for all
invocations of the process specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array for
a single list (list O or list 1) for each 8x8 sub-macroblock, where NumSubMbPart(sub_mb_type) > 1, where
MaxSubMbRectSize is specified in Table A-2 for the Baseline profile and in Table A-4 for the Extended profile
and

— xInty,, is the minimum value of xInt; among all luma sample predictions for the sub-macroblock
— xInty,, is the maximum value of xInt; among all luma sample predictions for the sub-macroblock
— ylnty;, is the minimum value of yInt; among all luma sample predictions for the sub-macroblock

— ylnt,,, is the maximum value of yInt; among all luma sample predictions for the sub-macroblock

A.3.2.1 Baseline profile limits

Table A-2 specifies limits for each level that are specific to bitstreams conforming to the Baseline profile. Entries marked
"-" in Table A-2 denote the absence of a corresponding limit.

Table A-2 — Baseline profile level limits

Level number | MaxSubMbRectSize
1 576
1.1 576
1.2 576
1.3 576
2 576
2.1 576
2.2 576
3 576
3.1 -
3.2 -
4 -
4.1 -
4.2 -
5 -
5.1 -

A.3.2.2 Main profile limits

Table A-3 specifies limits for each level that are specific to bitstreams conforming to the Main profile. Entries marked
"-" in Table A-3 denote the absence of a corresponding limit.

208 ITU-T Rec. H.264 (05/2003)

Table A-3 — Main profile level limits

Level number | SliceRate MinLumaBiPredSize direct_8x8 inference_flag frame_mbs_only flag
1 - - - 1
1.1 - - - 1
1.2 - - - 1
1.3 - - - 1
2 - - - 1
2.1 - - - -
2.2 - - - -
3 22 - 1 -
3.1 60 8x8 1 -
3.2 60 8x8 1 -
4 60 8x8 1 -
4.1 24 8x8 1 -
4.2 24 8x8 1 1
5 24 8x8 1 1
5.1 24 8x8 1 1

A.3.2.3 Extended Profile Limits

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Extended profile. Entries
marked "-" in Table A-4 denote the absence of a corresponding limit.

Table A-4 — Extended profile level limits

Level number

MaxSubMbRectSize | MinLumaBiPredSize

frame_mbs_only flag

1 576 - 1
1.1 576 - 1
1.2 576 - 1
1.3 576 - 1

2 576 - 1
2.1 576 - -
2.2 576 - -

3 576 - -
3.1 - 8x8 -
3.2 - 8x8 -

4 - 8x8 -
4.1 - 8x8 -
4.2 - 8x8 1

5 - 8x8 1
5.1 - 8x8 1

ITU-T Rec. H.264 (05/2003)

209

A.3.3 Effect of level limits on frame rate (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Table A-5 — Maximum frame rates (frames per second) for some example frame sizes

Level number: 1 1.1 1.2 1.3 2 2.1 2.2
Max frame size (macroblocks): 99 396 396 396 396 792 1620
Max macroblocks/second: 1485 3000 6 000 11 880 11 880 19 800 20 250
Max frame size (samples): 25344 101 376 101 376 101 376 101 376 202752 414 720
Max samples/second: 380 160 768 000| 1536000| 3041280| 3041280 5068 800 5184 000
Luma| Luma MBs Luma
Format Width | Height Total| Samples
SQCIF 128 96 48 12 288 30.9 62.5 125.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 15.0 30.3 60.6 120.0 120.0 172.0 172.0
QVGA 320 240 300 76 800 - 10.0 20.0 39.6 39.6 66.0 67.5
525 SIF 352 240 330 84 480 - 9.1 18.2 36.0 36.0 60.0 61.4
CIF 352 288 396 101 376 - 7.6 15.2 30.0 30.0 50.0 51.1
525 HHR 352 480 660 168 960 - - - - - 30.0 30.7
625 HHR 352 576 792 202752 - - - - - 25.0 25.6
VGA 640 480 1200 307 200 - - - - - - 16.9
525 4SIF 704 480 1320 337920 - - - - - - 153
525 SD 720 480 1350 345 600 - - - - - - 15.0
4CIF 704 576 1584 405504 - - - - - - 12.8
625 SD 720 576 1620| 414720 - - - - - - 12.5
SVGA 800 600 1900 486 400 - - - - - - -
XGA 1024 768 3072 786 432 - - - - - - -
720p HD 1280 720 3600 921 600 - - - - - - -
4VGA 1280 960| 4800| 1228800 - - - - - - -
SXGA 1280 1024 5120] 1310720 - - - - - - -
525 16SIF 1408 960 5280| 1351680 - - - - - - -
16CIF 1408 1152 6336 1622016 - - - - - - -
4SVGA 1600 1200| 7500| 1920000 - - - - - - -
1080 HD 1920 1088 8160| 2088 960 - - - - - - -
2Kx1K 2048 1024 8192| 2097152 - - - - - - -
4XGA 2048 1536| 12288| 3145728 - - - - - - -
16VGA 2560 1920 19200| 4915200 - - - - - - -
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 - - - - - - -
3672x1536 (2.39:1) 3680 1536| 22080| 5652480 - - - - - - -
4Kx2K 4096 2048 | 32768 8388608 - - - - - - -
4096x2304 (16:9) 4096 2304| 36864 | 9437184 - - - - - - -
Table A-5 (continued) — Maximum frame rates (frames per second) for some example frame sizes
Level number: 3 3.1 3.2 4 4.1 4.2
Max frame size (macroblocks): 1620 3600 5120 8192 8192 8192
Max macroblocks/second: 40 500 108 000 216 000 245760 245760 589 824
Max frame size (samples): 414 720 921600| 1310720| 2097 152 2097 152 2097 152
Max samples/second: 10 368 000 | 27 648 000 | 55296 000 | 62 914 560 | 62 914 560 | 125 829 120
Luma| Luma MBs Luma
Format Width | Height Total| Samples
SQCIF 128 96 48 12288 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 300 76 800 135.0 172.0 172.0 172.0 172.0 172.0
525 SIF 352 240 330 84 480 122.7 172.0 172.0 172.0 172.0 172.0
CIF 352 288 396 101 376 102.3 172.0 172.0 172.0 172.0 172.0
525 HHR 352 480 660 168 960 61.4 163.6 172.0 172.0 172.0 172.0
625 HHR 352 576 792 202 752 S1.1 136.4 172.0 172.0 172.0 172.0
VGA 640 480 1200 307 200 33.8 90.0 172.0 172.0 172.0 172.0
525 4SIF 704 480 1320 337920 30.7 81.8 163.6 172.0 172.0 172.0
525 SD 720 480 1350 345 600 30.0 80.0 160.0 172.0 172.0 172.0
4CIF 704 576 1584 405504 25.6 68.2 1364 155.2 155.2 172.0
625 SD 720 576 1620| 414720 25.0 66.7 1333 151.7 151.7 172.0
SVGA 800 600 1900] 486 400 - 56.8 113.7 1293 129.3 172.0
XGA 1024 768 3072 786432 - 352 70.3 80.0 80.0 160.0
720p HD 1280 720 3600 921 600 - 30.0 60.0 68.3 68.3 136.5
4VGA 1280 960 4800| 1228800 - - 45.0 51.2 51.2 102.4
SXGA 1280 1024| 5120| 1310720 - - 42.2 48.0 48.0 96.0
525 16SIF 1408 960 5280| 1351680 - - - 46.5 46.5 93.1
16CIF 1408 1152 6336] 1622016 - - - 38.8 38.8 77.6
4SVGA 1600 1200| 7500| 1920000 - - - 32.8 32.8 65.5
1080 HD 1920 1088 8160 2088960 - - - 30.1 30.1 60.2
2Kx1K 2048 1024 8192] 2097152 - - - 30.0 30.0 60.0
4XGA 2048 1536 12288| 3145728 - - - - - -
16VGA 2560 1920 19200| 4915200 - - - - - -
3616x1536 (2.35:1) 3616 1536 21696| 5554176 - - - - - -
3672x1536 (2.39:1) 3680 1536 22080| 5652480 - - - - - -
4Kx2K 4096 2048| 32768| 8388608 - - - - - -
4096x2304 (16:9) 4096 2304 36864| 9437184 - - - - - -

210 ITU-T Rec. H.264 (05/2003)

Table A-5 (concluded) — Maximum frame rates (frames per second) for some example frame sizes

Level number: 5 5.1
Max frame size (macroblocks): 21 696 36 864
Max macroblocks/second: 589 824 983 040
Max frame size (samples): 5554176 9437 184
Max samples/second: 150994 944 | 251 658 240
Luma| Luma MBs Luma

Format Width | Height Total| Samples

SQCIF 128 96 48 12 288 172.0 172.0
QCIF 176 144 99 25 344 172.0 172.0
QVGA 320 240 300 76 800 172.0 172.0
525 SIF 352 240 330 84 480 172.0 172.0
CIF 352 288 396 101 376 172.0 172.0
525 HHR 352 480 660 168 960 172.0 172.0
625 HHR 352 576 792 202 752 172.0 172.0
VGA 640 480 1200 307 200 172.0 172.0
525 4SIF 704 480 1320 337920 172.0 172.0
525 SD 720 480 1350 345 600 172.0 172.0
4CIF 704 576 1584 405 504 172.0 172.0
625 SD 720 576 1620 414 720 172.0 172.0
SVGA 800 600 1900 486 400 172.0 172.0
XGA 1024 768 3072 786 432 172.0 172.0
720p HD 1280 720 3 600 921 600 163.8 172.0
4VGA 1280 960 4800] 1228800 122.9 172.0
SXGA 1280 1024 5120] 1310720 115.2 172.0
525 16SIF 1408 960 5280| 1351680 111.7 172.0
16CIF 1408 1152 6336] 1622016 93.1 1552
4SVGA 1600 1200 7500] 1920000 78.6 131.1
1080 HD 1920 1088 8160 | 2 088 960 72.3 120.5
2Kx1K 2048 1024 8192| 2097152 72.0 120.0
4XGA 2048 1536 12288| 3145728 48.0 80.0
16VGA 2560 1920 19200| 4915200 30.7 51.2
3616x1536 (2.35:1) 3616 1536 21696| 5554176 27.2 45.3
3672x1536 (2.39:1) 3680 1536 22080| 5652480 26.7 44.5
4Kx2K 4096 2048 | 32768 | 8388608 - 30.0
4096x2304 (16:9) 4096 2304 36864| 9437184 - 26.7

The following should be noted.

- This Recommendation | International Standard is a variable-frame-size specification. The specific frame sizes in
Table A-5 are illustrative examples only.

- As used in Table A-5, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue scan
lines (of which approximately 576 lines contain the visible picture region).

- XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF
aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka
625 ITU-R BT.601.

- Frame rates given are correct for progressive scan modes. The frame rates are also correct for interlaced video coding
for the cases of frame height divisible by 32.

ITU-T Rec. H.264 (05/2003) 211

Annex B

Byte stream format
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as ITU-T Recommendation H.222.0 | ISO/IEC 13818-1 systems or
ITU-T Recommendation H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to
start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal unit(NumBytesInNALunit) syntax structure. It may
(and under some circumstances, it shall) also contain an additional zero byte syntax element. It may also contain one or
more additional trailing_zero_ 8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may
also contain one or more additional leading_zero_ 8bits syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Byte stream NAL unit syntax

byte stream nal unit(NumBytesInNALunit) { C Descriptor

while(next_bits(24) != 0x000001 &&
next_bits(32) != 0x00000001)

leading_zero_8bits /* equal to 0x00 */ f(8)
if(next bits(24) !=0x000001)

zero_byte /* equal to 0x00 */ f(8)
if(more_data in byte stream()) {

start_code_prefix_one_3bytes /* equal to 0x000001 */ f(24)

nal_unit(NumBytesInNALunit)

§
while(more data in byte stream() &&
next_bits(24) != 0x000001 &&
next bits(32) !=0x00000001)
trailing_zero_8bits /* equal to 0x00 */ f(8)

B.1.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the
byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the same
access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.

NOTE - The leading_zero 8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as
shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the
four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one 3bytes) will be
considered to be trailing_zero 8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.

When any of the following conditions are fulfilled, the zero_byte syntax element shall be present.
— the nal unit_type within the nal unit() is equal to 7 (sequence parameter set) or § (picture parameter set)

— the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as
specified by subclause 7.4.1.2.3.

212 ITU-T Rec. H.264 (05/2003)

start_code_ prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a
start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of
the byte stream. It then extracts and discards each leading zero 8bits syntax element (if present), moving the current
position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next
four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax
structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means)
and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte
stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte
stream is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start code prefix one 3bytes) is extracted and
discarded and the current position in the byte stream is set equal to the position of the byte following this three-
byte sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte
stream up to and including the last byte that precedes the location of any of the following conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or
b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or
c. The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is
advanced by NumBytesInNALunit bytes. This sequence of bytes is nal unit(NumBytesInNALunit) and is
decoded using the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified
means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the
next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts
and discards each trailing_zero 8bits syntax element, moving the current position in the byte stream forward
one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form
the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by
unspecified means).

B.3 Decoder byte-alignment recovery (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the
bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the
positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder’s byte
stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000
00000001" (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the
first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned
with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte
sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

ITU-T Rec. H.264 (05/2003) 213

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three byte to be
discarded as specified in subclause 7.4.1.

The byte alignment detection procedure described in this subclause is functionally equivalent to searching a byte
sequence for three consecutive zero-valued bytes (0x000000), starting at any alignment position. Detection of this
pattern indicates that the next non-zero byte contains the end of a start code prefix (as a conforming byte stream cannot
contain more than 23 consecutive zero-valued bits without containing 31 or more consecutive zero-valued bits, allowing
detection of 0x000000 relative to any starting alignment position), and the first non-zero bit in that next non-zero byte is
the last bit of an aligned byte and is the last bit of a start code prefix.

214 ITU-T Rec. H.264 (05/2003)

Annex C

Hypothetical reference decoder
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this Recommendation | International Standard.
The first such type of bitstream, called Type I bitstream, is a NAL unit stream containing only the VCL NAL units and
filler data NAL units for all access units in the bitstream. The second type of bitstream, called a Type II bitstream,
contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of
the following.

— additional non-VCL NAL units other than filler data NAL units

— all leading_zero_ 8bits, zero_byte, start code prefix _one 3bytes, and trailing_zero 8bits syntax elements
that form a byte stream from the NAL unit stream (as specified in Annex B)

Figure C-1 shows the types of bitstream conformance points checked by the HRD.
VCL NAL units

Non-VCL NAL units other

Filler data NAL units than filler data NAL units

Byte stream format
encapsulation
(see Annex B)

Type Il HRD Type Il HRD
Type | HRD conformance point when conformance point when
conformance point not using using
byte stream format byte stream format

Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the
HRD, are specified in the semantic subclauses of clause 7 and Annexes D and E.

Two types of HRD parameter sets are used. The HRD parameter sets are signalled through video usability information
as specified in subclauses E.1 and E.2, which is part of the sequence parameters set syntax structure.

In order to check conformance of a bitstream using the HRD, all sequence parameter sets and picture parameters sets
referred to in the VCL NAL units, and corresponding buffering period and picture timing SEI messages shall be
conveyed to the HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other means not
specified in this Recommendation | International Standard.

In Annexes C, D and E, the specification for "presence" of non-VCL NAL units is also satisfied when those NAL units
(or just some of them) are conveyed to decoders (or to the HRD) by other means not specified by this

ITU-T Rec. H.264 (05/2003) 215

Recommendation | International Standard. For the purpose of counting bits, only the appropriate bits that are actually
present in the bitstream are counted.
NOTE - As an example, synchronization of a non-VCL NAL unit, conveyed by means other than presence in the bitstream, with
the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the non-
VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of a non-VCL NAL unit is conveyed for the application by some means other than presence within the
bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax specified in
this annex.
NOTE - When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
requirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present

in the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data is
supplied by some other means not specified in this Recommendation | International Standard.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB),
and output cropping as shown in Figure C-2.

Hypothetical
stream scheduler
(HSS)

Type | or type Il bitstream
h 4

Coded picture
buffer (CPB)

Access units

\ 4

_ | Decoding process
(instantaneous)

_ Reference Fields or frames
fields or frames

\ 4

Decoded picture
buffer (DPB)

Fields or frames

4

A

Output cropping

l Output cropped fields or frames

Figure C-2 — HRD buffer model

The CPB size (number of bits) is specified by CpbSize[SchedSelldx] in Annex E. DPB size (number of frame buffers)
is specified as Max(1, max_dec frame buffering) in Annex E.

The HRD operates as follows. Data associated with access units that flow into the CPB according to a specified arrival
schedule are delivered by the HSS. The data associated with each access unit are removed and decoded instantaneously
by the instantaneous decoding process at CPB removal times. Each decoded picture is placed in the DPB at its CPB
removal time unless it is output at its CPB removal time and is a non-reference picture. When a picture is placed in the
DPB it is removed from the DPB at the later of the DPB output time or the time that it is marked as "unused for
reference".

The operation of the CPB is specified in subclause C.1. The instantaneous decoder operation is specified in clauses 8
and 9. The operation of the DPB is specified in subclause C.2. The output cropping is specified in subclause C.2.2.

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and
buffer sizes is specified in subclauses E.1.1, E.1.2, E.2.1 and E.2.2. The HRD is initialised as specified by the buffering
period SEI message as specified in subclauses D.1.1 and D.2.1. The removal timing of access units from the CPB and

216 ITU-T Rec. H.264 (05/2003)

output timing from the DPB are specified in the picture timing SEI message as specified in subclauses D.1.2 and D.2.2.
All timing information relating to a specific access unit shall arrive prior to the CPB removal time of the access unit.

The HRD is used to check conformance of bitstreams and decoders as specified in subclauses C.3 and C.4, respectively.

NOTE - While conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the
bitstream match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or
specified value.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the
number of bits in a CPB just prior to or after removal of an access unit is not necessarily an integer.

The variable t. is derived as follows and is called a clock tick.
t. =num_units_in_tick + time scale (C-1)

The following is specified for expressing the constraints in this Annex.
- Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

- Let picture n be the primary coded picture or the decoded primary picture of access unit n.

C.1 Operation of coded picture buffer (CPB)

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the
Type I and Type II conformance points shown in Figure C-1.

C.1.1 Timing of bitstream arrival

The HRD may be initialised at any one of the buffering period SEI messages. Prior to initialisation, the CPB is empty.
NOTE - After initialisation, the HRD is not initialised again by subsequent buffering period SEI messages.

Each access unit is referred to as access unit n, where the number n identifies the particular access unit. The access unit
that is associated with the buffering period SEI message that initializes the CPB is referred to as access unit 0. The value
of n is incremented by 1 for each subsequent access unit in decoding order.

The time at which the first bit of access unit n begins to enter the CPB is referred to as the initial arrival time t,;(n).
The initial arrival time of access units is derived as follows.
- Ifthe access unit is access unit 0, t;;(0) =0,
- Otherwise (the access unit is access unit n with n > 0), the following applies.
- Ifcbr flag[SchedSelldx] is equal to 1, the initial arrival time for access unit n, is equal to the final arrival time

(which is derived below) of access unitn - 1, i.e.

ty(n) =ty(n—-1) (C-2)
- Otherwise (cbr_flag[SchedSelldx] is equal to 0), the initial arrival time for access unit n is derived by

tai(n) =Max(te(n—1), taj carties(0)) (C-3)

where ty earliest(11) 1 derived as follows

- Ifaccess unit n is not the first access unit of a subsequent buffering period, t; cariest(11) is derived as

tai,earliest(n) = tr,n(n) -
(initial cpb_removal delay[SchedSelldx]+ initial cpb_removal delay offset[SchedSelldx]) + 90000 (C-4)

with t,,(n) being the nominal removal time of access unit n from the CPB as specified in subclause C.1.2
and initial cpb_removal delay[SchedSelldx | and initial cpb_removal delay offset] SchedSelldx] being
specified in the previous buffering period SEI message.

- Otherwise (access unit n is the first access unit of a subsequent buffering period), tu; eariest(n) is derived as
taicarliest(N) = trn(1) — (initial_cpb_removal delay[SchedSelldx]+ 90000) (C-5)

with initial cpb removal delay[SchedSelldx] being specified in the buffering period SEI message
associated with access unit n.

ITU-T Rec. H.264 (05/2003) 217

The final arrival time for access unit n is derived by
t.(n) =t;(n)+ b(n)+ BitRate[SchedSelldx] (C-6)

where b(n) is the size in bits of access unit n, counting the bits of the VCL NAL units and the filler data NAL units for
the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the Type I and
Type 1l conformance points are as shown in Figure C-1.

The values of SchedSelldx, BitRate[SchedSelldx], and CpbSize[SchedSelldx] are constrained as follows.

- If access unit n and access unit n- 1 are part of different coded video sequences and the content of the active
sequence parameter sets of the two coded video sequences differ, the HSS selects a value SchedSelldx1 of
SchedSelldx from among the values of SchedSelldx provided for the coded video sequence containing access unit n
that results in a BitRate[SchedSelldx1] or CpbSize[SchedSelldx1] for the second of the two coded video
sequences (which contains access unit n). The value of BitRate[SchedSelldx1] or CpbSize[SchedSelldx1 | may
differ from the value of BitRate[SchedSelldx0] or CpbSize[SchedSelldx0] for the value SchedSelldx0 of
SchedSelldx that was in use for the coded video sequence containing access unitn - 1.

- Otherwise, the HSS continues to operate with the previous values of SchedSelldx, BitRate[SchedSelldx | and
CpbSize[SchedSelldx].

When the HSS selects values of BitRate[SchedSelldx] or CpbSize[SchedSelldx] that differ from those of the previous
access unit, the following applies.

- the variable BitRate[SchedSelldx] comes into effect at time t,;(n)

- the variable CpbSize[SchedSelldx] comes into effect as follows.
- If the new value of CpbSize[SchedSelldx] exceeds the old CPB size, it comes into effect at time t,;(n),
- Otherwise, the new value of CpbSize[SchedSelldx] comes into effect at the time t,(n).

C.1.2 Timing of coded picture removal

For access unit 0, the nominal removal time of the access unit from the CPB is specified by
t.2(0) =initial cpb removal delay[SchedSelldx] + 90000 (C-7)

For the first access unit of a buffering period that does not initialise the HRD, the nominal removal time of the access
unit from the CPB is specified by

ton(n) =tn(ny)+t * cpb_removal delay(n) (C-8)

where t.,(n,) is the nominal removal time of the first access unit of the previous buffering period and
cpb_removal delay(n) is the value of cpb_removal delay specified in the picture timing SEI message associated with
access unit n.

When an access unit n is the first access unit of a buffering period, n, is set equal to n at the removal time of access
unit n.

The nominal removal time t.,(n) of an access unit n that is not the first access unit of a buffering period is given by
ta(n)=t4(ny)+t * cpb removal delay(n) (C-9)

where t.,(n,) is the nominal removal time of the first access unit of the current buffering period and
cpb_removal delay(n) is the value of cpb_removal delay specified in the picture timing SEI message associated with
access unit n.

The removal time of access unit n is specified as follows.

- Iflow delay hrd flagis equal to O or t,,(n) >=t,(n), the removal time of access unit n is specified by
t(n)=t(n) (C-10)

- Otherwise (low_delay hrd flag is equal to 1 and t, ,(n) <t,{(1)), the removal time of access unit n is specified by
t(n)=t(n)+t*Ceil((ta(n)-tn(n))+t) (C-11)

NOTE — The latter case indicates that the size access unit n, b(n), is so large that it prevents removal at the nominal removal time.

218 ITU-T Rec. H.264 (05/2003)

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame buffers. Each of the frame buffers may contain a decoded frame, a decoded
complementary field pair or a single (non-paired) decoded field that are marked as "used for reference" (reference
pictures) or are held for future output (reordered or delayed pictures). Prior to initialisation, the DPB is empty (the DPB
fullness is set to zero). The following steps of the subclauses of this subclause all happen instantaneously at t,(n) and in
the sequence listed.

C.2.1 Decoding of gaps in frame_num and storage of '""'non-existing" frames

If applicable, gaps in frame num are detected by the decoding process and the generated frames are marked and inserted
into the DPB as specified below.

Gaps in frame _num are detected by the decoding process and the generated frames are marked as specified in subclause
8.2.5.2.

After the marking of each generated frame, each picture m marked by the “sliding window” process as “unused for
reference” is removed from the DPB when it is also marked as "non-existing" or its DPB output time is less than or equal
to the CPB removal time of the current picture n; i.e., t, gon(m) <= t(n). When a frame or the last field in a frame buffer
is removed from the DPB, the DPB fullness is decremented by one. The “non-existing” generated frame is inserted into
the DPB and the DPB fullness is incremented by one.

C.2.2 Picture decoding and output

Picture n is decoded and its DPB output time t, g,»(1) is derived by
toapp(1) =t n)+ t. * dpb_output_delay(n) (C-12)

The output of the current picture is specified as follows.

- Ifty gpp(n) = t(n), the current picture is output.
NOTE - When the current picture is a reference picture it will be stored in the DPB

- Otherwise (togp(n) >t(n)), the current picture is output later and will be stored in the DPB (as specified in
subclause C.2.4) and is output at time t,4,,(n) unless indicated not to be output by the decoding or inference of
no_output_of prior_pics_flag equal to 1 at a time that precedes t, 4,,(n).

The output picture shall be cropped, using the cropping rectangle specified in the sequence parameter set for the
sequence.

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of At, gy»(n)
is defined as:

Ato,dpb(n) = to,dpb(n,) - to,dpb(n) (C'l 3)

where n, indicates the picture that follows after picture n in output order.

The decoded picture is temporarily stored (not in the DPB).

C.2.3 Removal of pictures from the DPB before possible insertion of the current picture
The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows.

- If the decoded picture is an IDR picture the following applies.

- All reference pictures in the DPB are marked as "unused for reference" as specified in subclauses 8.2.5.3 and
8.2.54.

- When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or FrameHeightInMbs
or max_dec frame buffering derived from the active sequence parameter set is different from the value of
PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the sequence parameter set that
was active for the preceding sequence, respectively, no _output of prior pics flag is inferred to be equal to 1 by
the HRD, regardless of the actual value of no_output of prior pics flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard
to changes in PicWidthInMbs or FrameHeightInMbs.

- When no_output_of prior pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are
emptied without output of the pictures they contain, and DPB fullness is set to 0.

- Otherwise (the decoded picture is not an IDR picture), the following applies.

ITU-T Rec. H.264 (05/2003) 219

- If the slice header of the current picture includes memory management control operation equal to 5, all
reference pictures in the DPB are marked as "unused for reference".

- Otherwise (the slice header of the current picture does not include memory management control operation equal
to 5), the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

All pictures m in the DPB, for which all of the following conditions are true, are removed from the DPB.

- picture m is marked as “unused for reference” or picture m is a non-reference picture. When a picture is a reference
frame, it is considered to be marked as "unused for reference" only when both of its fields have been marked as
"unused for reference".

- picture m is marked as "non-existing" or its DPB output time is less than or equal to the CPB removal time of the
current picture n; i.e., togp(M) <=t n)

When a frame or the last field in a frame buffer is removed from the DPB, the DPB fullness is decremented by one.
C.24 Current decoded picture marking and storage

C.2.4.1 Marking and storage of a reference decoded picture into the DPB
When the current picture is a reference picture it is stored in the DPB as follows.

- If the current decoded picture is a second field (in decoding order) of a complementary reference field pair, and the
first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.2.4.2 Storage of a non-reference picture into the DPB

When the current picture is a non-reference picture and current picture n has t, gp»(n) > ti(n), it is stored in the DPB as
follows.

- If the current decoded picture is a second field (in decoding order) of a complementary non-reference field pair, and
the first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

CJ3 Bitstream conformance

A bitstream of coded data conforming to this Recommendation | International Standard fulfils the following
requirements.

The bitstream is constructed according to the syntax, semantics, and constraints specified in this
Recommendation | International Standard outside of this Annex.

The bitstream is tested by the HRD as specified below:

For Type I bitstreams, the number of tests carried out is equal to cpb_cnt minusl + 1 where cpb_cnt minusl is either the
syntax element of hrd parameters() following the vcl_hrd parameters_present flag or is determined by the application
by other means not specified in this Recommendation | International Standard. One test is carried out for each bit rate
and CPB size combination specified by hrd parameters() following the vcl hrd parameters present flag. Each of these
tests is conducted at the Type I conformance point shown in Figure C-1.

For Type Il bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt minus] + 1
where cpb_cnt_minusl is either the syntax element of hrd parameters() following the vcl hrd parameters present flag
or is determined by the application by other means not specified in this Recommendation | International Standard. One
test is carried out for each bit rate and CPB size combination. Each of these tests is conducted at the Type I conformance
point shown in Figure C-1. For these tests, only VCL and filler data NAL units are counted for the input bit rate and
CPB storage.

The number of tests of the second set, for Type II bitstreams, is equal to cpb_cnt minusl + 1 where cpb_cnt minusl is
either the syntax element of hrd parameters() following the nal hrd parameters present flag or is determined by the
application by other means not specified in this Recommendation | International Standard. One test is carried out for each
bit rate and CPB size combination specified by hrd_parameters() following the nal hrd parameters present flag. Each

220 ITU-T Rec. H.264 (05/2003)

of these tests is conducted at the Type II conformance point shown in Figure C-1. For these tests, all NAL units (of a

Type II NAL unit stream) or all bytes (of a byte stream) are counted for the input bit rate and CPB storage.
NOTE — NAL HRD parameters established by a value of SchedSelldx for the Type Il conformance point shown in Figure C-1 are
sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C-1 for the same values of
initial cpb_removal delay[SchedSelldx], ~BitRate[SchedSelldx], and CpbSize[SchedSelldx] for the VBR case
(cbr_flag[SchedSelldx] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow
into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the
time a next picture is scheduled to begin to arrive. For example, when NAL HRD parameters are provided for the Type II
conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in item j of
subclause A.3.1 but also fall within the bounds set for VCL HRD parameters for profile conformance in item i of subclause A.3.1,
conformance of the VCL HRD for the Typel conformance point is also assured to fall within the bounds of item i of
subclause A.3.1.

For conforming bitstreams, all of the following conditions shall be fulfilled for each of the tests.

- For each access unit n, with n>0, associated with a buffering period SEI message, with At, oo(1) specified by
Atgo0(n) =90000 * (t;n(n)-t,{n-1)) (C-14)

The value of initial cpb_removal delay[SchedSelldx] shall be constrained as follows.
- Ifcbr_flag[SchedSelldx] is equal to 0,

initial_cpb_removal_delay[SchedSelldx] <= Ceil(Atggo(1)) (C-15)
- Otherwise (cbr_flag[SchedSelldx] is equal to 1),
Floor(Atgoo(n)) <= initial_cpb_removal_delay[SchedSelldx] <= Ceil(Atg9o(1)) (C-16)

NOTE — The exact number of bits in the CPB at the removal time of each picture may depend on which buffering period SEI
message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified constraints must be
obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the HRD may be initialised at any
one of the buffering period SEI messages.

- A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB
size. The CPB shall never overflow.

- A CPB underflow is specified as the condition in which t;,(n) is less then t,(n). When low_delay_hrd_flag is equal
to 0, the CPB shall never underflow.

- The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall
satisfy the constraints on t,,(n) and t(n) expressed in subclauses A.3.1 and A.3.2 for the profile and level specified
in the bitstream.

- Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall be less than or equal to the
DPB size as constrained by Annexes A, D, and E for the profile and level specified in the bitstream.

- All reference pictures shall be present in the DPB when needed for prediction. Each picture shall be present in the
DPB at its DPB output time unless it is not stored in the DPB at all, or is removed from the DPB before its output
time by one of the processes specified in subclause C.2.

- The value of Aty 4,(n) as given by Equation C-13, which is the difference between the output time of a picture and
that of the picture immediately following it in output order, shall satisfy the constraint expressed in subclause A.3.1
for the profile and level specified in the bitstream.

C4 Decoder conformance
A decoder conforming to this Recommendation | International Standard fulfils the following requirements.

A decoder claiming conformance to a specific profile and level shall be able decode successfully all conforming
bitstreams specified for decoder conformance in subclause C.3, provided that all sequence parameter sets and picture
parameters sets referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are
conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units), or by external means not
specified by this Recommendation | International Standard.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order
conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile and level, as specified by
subclause C.3 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test

ITU-T Rec. H.264 (05/2003) 221

(DUT). All pictures output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the
values of all samples that are output by the DUT for the corresponding picture shall be equal to the values of the samples
output by the HRD.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only
from the subset of values of SchedSelldx for which the bit rate and CPB size are restricted as specified in Annex A for
the specified profile and level, or with "interpolated" delivery schedules as specified below for which the bit rate and
CPB size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt minus! greater than 0, the
decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated" delivery
schedule specified as having peak bit rate r, CPB size c(r), and initial CPB removal delay (f(r) +r) as follows

o = (r - BitRate[SchedSelldx - 1]) + (BitRate[SchedSelldx] — BitRate[SchedSelldx - 1]), (C-17)
c(r)=a * CpbSize[SchedSelldx]+ (1 — o) * CpbSize[SchedSelldx-1], (C-18)

f(r)= o * initial cpb_removal delay[SchedSelldx] * BitRate[SchedSelldx] +
(1—oa) * initial cpb_removal delay[SchedSelldx - 1] * BitRate[SchedSelldx - 1] (C-19)

for any SchedSelldx > 0 and r such that BitRate[SchedSelldx - 1] <= r <= BitRate[SchedSelldx] such that r and c()

are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile and level.
NOTE - initial cpb_removal delay[SchedSelldx] can be different from one buffering period to another and have to be re-
calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time
of the first bit) of picture output is the same for both HRD and the DUT up to a fixed delay.

For output order decoder conformance, the HSS delivers the bitstream to the DUT "by demand" from the DUT, meaning
that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing. An
HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules specified in the
bitstream or by an "interpolated" schedule such that the bit rate and CPB size are restricted as specified in Annex A. The
order of pictures output shall be the same for both HRD and the DUT.

NOTE - This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest access unit.

For output order decoder conformance, the HRD CPB size is equal to CpbSize[SchedSelldx] for the selected schedule
and the DPB size is equal to MaxDpbSize. Removal time from the CPB for the HRD is equal to final bit arrival time and
decoding is immediate. The operation of the DPB of this HRD is described below.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. Each of the frame buffers may contain a decoded frame, a decoded
complementary field pair or a single (non-paired) decoded field that is marked as "used for reference" or is held for
future output (reordered pictures). At HRD initialization, the DPB fullness, measured in frames, is set to 0. The
following steps all happen instantaneously when an access unit is removed from the CPB, and in the order listed.

C.4.2 Decoding of gaps in frame_num and storage of ''non-existing' pictures

When applicable, gaps in frame num are detected by the decoding process and the necessary number of "non-existing"
frames are inferred in the order specified by the generation of values of UnusedShortTermFrameNum in Equation 7-10
and are marked as specified in subclause 8.2.5.2. Each "non-existing" frame is stored in the DPB as follows.

— When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process
specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store
the "non-existing" frame.

— The "non-existing" frame is stored in an empty frame buffer and is marked as "not needed for output", and
the DPB fullness is incremented by one.

C.4.3 Picture decoding

Primary coded picture n is decoded and is temporarily stored (not in the DPB).

C.4.4 Removal of pictures from the DPB before possible insertion of the current picture
The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows .

- If the decoded picture is an IDR picture the following applies.

- All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5.

222 ITU-T Rec. H.264 (05/2003)

- When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or FrameHeightInMbs
or max_dec_frame buffering derived from the active sequence parameter set is different from the value of
PicWidthInMbs or FrameHeightInMbs or max dec frame buffering derived from the sequence parameter set that
was active for the preceding sequence, respectively, no_output_of prior pics_flag is inferred to be equal to 1 by
the HRD, regardless of the actual value of no_output of prior pics_flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard
to changes in PicWidthInMbs or FrameHeightInMbs.

- When no_output_of prior pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are
emptied without output of the pictures they contain, and DPB fullness is set to 0.

- Otherwise (the decoded picture is not an IDR picture), the decoded reference picture marking process is invoked as
specified in subclause 8.2.5. Frame buffers containing a frame or a complementary field pair or a non-paired field
which are marked as "not needed for output" and "unused for reference" are emptied (without output), and the DPB
fullness is decremented by the number of frame buffers emptied.

When the current picture is an IDR picture and no_output of prior pics flag is not equal to 1 and is not inferred to be
equal to 1, or the current picture has memory management control operation equal to 5, all non-empty frame buffers in
the DPB are emptied by repeatedly invoking the “bumping” process specified in subclause C.4.5.3, and the DPB fullness
is set to 0.

C.4.5 Current decoded picture marking and storage

C.4.5.1 Storage and marking of a reference decoded picture into the DPB
When the current picture is a reference picture, it is stored in the DPB as follows.

- If the current decoded picture is the second field (in decoding order) of a complementary reference field pair,
and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first
field of the pair.

- Otherwise, the following operations are performed:

— When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process
specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store
the current decoded picture.

— The current decoded picture is stored in an empty frame buffer and is marked as "needed for output", and
the DPB fullness is incremented by one.

C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB

When the current picture is a non-reference picture, the following operations are performed.

— If the current decoded picture is the second field (in decoding order) of a complementary non-reference field pair
and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field
of the pair.

— Otherwise, the following operations are performed repeatedly until the current decoded picture has been cropped
and output or has been stored in the DPB:

— If'there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the following applies.

— If the current picture does not have a lower value of PicOrderCnt() than all pictures in the DPB that
are marked as "needed for output", the "bumping" process described in subclause C.4.5.3 is
performed.

— Otherwise (the current picture has a lower value of PicOrderCnt() than all pictures in the DPB that
are marked as "needed for output"), the current picture is cropped, using the cropping rectangle
specified in the sequence parameter set for the sequence and the cropped picture is output.

— Otherwise (there is an empty frame buffer, i.e., DPB fullness is less than DPB size) the current decoded
picture is stored in an empty frame buffer and is marked as "needed for output", and the DPB fullness is
incremented by one.

C.4.5.3 "Bumping" process

The "bumping" process is invoked in the following cases.

— There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and a empty frame buffer is needed for
storage of an inferred "non-existing" frame, as specified in subclause C.4.2.

— The current picture is an IDR picture and no_output_of prior pics flag is not equal to 1 and is not inferred to be
equal to 1, as specified in subclause C.4.4.

ITU-T Rec. H.264 (05/2003) 223

The current picture has memory management_control_operation equal to 5, as specified in subclause C.4.4.

There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for
storage of a decoded (non-IDR) reference picture, as specified in subclause C.4.5.1.

There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference
picture that is not the second field of a complementary non-reference field pair and there are pictures in the DPB
that are marked as "needed for output" that precede the current non-reference picture in output order, as specified in
subclause C.4.5.2, so an empty buffer is needed for storage of the current picture.

The "bumping" process consists of the following:

224

The picture or complementary reference field pair that is first for output is selected as follows.

— The frame buffer is selected that contains the picture having the smallest value of PicOrderCnt() of all pictures
in the DPB marked as "needed for output".

— If this frame buffer contains a complementary non-reference field pair with both fields marked as "needed for
output" and both fields have the same PicOrderCnt(), the first of these two fields in decoding order is
considered first for output.

— Otherwise, if this frame buffer contains a complementary reference field pair with both fields marked as
"needed for output" and both fields have the same PicOrderCnt(), the entire complementary reference field
pair is considered first for output.

— Otherwise, the picture in this frame buffer that has the smallest value of PicOrderCnt() is considered first for
output.

If a single picture is considered first for output, this picture is cropped, using the cropping rectangle specified in the
sequence parameter set for the sequence, the cropped picture is output, and the picture is marked as "not needed for
output".

Otherwise (a complementary reference field pair is considered first for output), the two fields of the complementary
reference field pair are both cropped, using the cropping rectangle specified in the sequence parameter set for the
sequence, the two fields of the complementary reference field pair are output together, and both fields of the
complementary reference field pair are marked as "not needed for output".

The frame buffer that included the picture or complementary reference field pair that was cropped and output is
checked, and when any of the following conditions is satisfied, the frame buffer is emptied and the DPB fullness is
decremented by 1.

— The frame buffer contains a non-reference non-paired field.
— The frame buffer contains a non-reference frame.

— The frame buffer contains a complementary non-reference field pair with both fields marked as "not needed for
output".

— The frame buffer contains a non-paired reference field marked as "unused for reference".
— The frame buffer contains a reference frame with both fields marked as "unused for reference".

— The frame buffer contains a complementary reference field pair with both fields marked as "unused for
reference" and "not needed for output".

ITU-T Rec. H.264 (05/2003)

Annex D

Supplemental enhancement information
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required
for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process
this information for output order conformance to this Recommendation | International Standard (see Annex C for the
specification of conformance). Some SEI message information is required to check bitstream conformance and for output
timing decoder conformance.

In Annex D, specification for presence of SEI messages are also satisfied when those messages (or some subset of them)
are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International Standard.
When present in the bitstream, SEI messages shall obey the syntax and semantics specified in subclauses 7.3.2.3 and
7.4.2.3 and this annex. When the content of an SEI message is conveyed for the application by some means other than
presence within the bitstream, the representation of the content of the SEI message is not required to use the same syntax
specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the
bitstream are counted.

ITU-T Rec. H.264 (05/2003) 225

D.1

226

SEI payload syntax

sei_payload(payloadType, payloadSize) {

Descriptor

if(payloadType ==0)

buffering period(payloadSize)

else if(payloadType==1)

pic_timing(payloadSize)

else if(payloadType ==2)

pan_scan_rect(payloadSize)

else if(payloadType ==3)

filler_payload(payloadSize)

else if(payloadType ==4)

user_data_registered itu t t35(payloadSize)

else if(payloadType==15)

user_data_unregistered(payloadSize)

else if(payloadType ==06)

recovery_point(payloadSize)

else if(payloadType ==7)

dec_ref pic_marking repetition(payloadSize)

else if(payloadType ==28)

spare_pic(payloadSize)

else if(payloadType ==9)

scene_info(payloadSize)

else if(payloadType == 10)

sub_seq_info(payloadSize)

else if(payloadType==11)

sub_seq layer characteristics(payloadSize)

else if(payloadType ==12)

sub_seq_characteristics(payloadSize)

else if(payloadType ==13)

full frame freeze(payloadSize)

else if(payloadType == 14)

full frame freeze release(payloadSize)

else if(payloadType==15)

full frame snapshot(payloadSize)

else if(payloadType==16)

progressive refinement_segment_start(payloadSize)

else if(payloadType ==17)

progressive_refinement _segment_end(payloadSize)

else if(payloadType == 18)

motion_constrained_slice group_set(payloadSize)

else

reserved_sei_message(payloadSize)

if('byte_aligned()) {

bit_equal _to one /* equal to 1 */

f(1)

while(!byte_aligned())

bit_equal to_zero /* equal to 0 */

f(1)

ITU-T Rec. H.264 (05/2003)

D.1.1

D.1.2

Buffering period SEI message syntax

buffering period(payloadSize) { C | Descriptor
seq_parameter_set_id 5 | ue(v)
if(NalHrdBpPresentFlag) {
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minus1; SchedSelldx++) {
initial_cpb_removal_delay[SchedSelldx] u(v)
initial_cpb_removal delay offset[SchedSelldx] 5 [uv)
}
}
if(VclHrdBpPresentFlag) {
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt _minusl; SchedSelldx++) {
initial cpb_removal_delay[SchedSelldx] 5 | uv)
initial cpb_removal delay offset] SchedSelldx] 5 | uv)
}
§
}
Picture timing SEI message syntax
pic_timing(payloadSize) { C | Descriptor
if(CpbDpbDelaysPresentFlag) {
cpb_removal_delay u(v)
dpb_output_delay u(v)
i
if(pic_struct present flag) {
pic_struct 5 [u4)
for(1=0; 1 <NumClockTS ;i++) {
clock_timestamp_flag] i | 5 [u)
if(clock timestamp flag[i]) {
ct_type 5 | u®)
nuit_field_based_flag 5 | u(l)
counting_type 5 | ud)
full_timestamp_flag 5 | u(l)
discontinuity flag 5 | u(l)
cnt_dropped_flag 5 | u(l)
n_frames 5 | u(®
if(full timestamp flag) {
seconds_value /* 0..59 */ 5 | u(6)
minutes_value /* 0..59 */ 5 | u®)
hours_value /* 0..23 */ u(5)
} else {
seconds_flag 5 [u)

if(seconds_flag) {

ITU-T Rec. H.264 (05/2003)

227

D.1.3

D.14

228

seconds_value /* range 0..59 */ u(6)
minutes_flag u(l)
if(minutes_flag) {
minutes_value /* 0..59 */ u(6)
hours_flag u(l)
if(hours_flag)
hours_value /* 0..23 */ 5 1 u®d
H
i
H
if(time_offset length>0)
time_offset 5 [iw)
i
H
H
H
Pan-scan rectangle SEI message syntax
pan_scan_rect(payloadSize) { Descriptor
pan_scan_rect_id ue(v)
pan_scan_rect_cancel_flag u(1)
if(!pan_scan rect cancel flag) {
pan_scan_cnt_minusl 5 | ue(v)
for(1=0;1<=pan_scan cnt minusl; i++) {
pan_scan_rect_left offset[i | 5 | se(v)
pan_scan_rect_right_offset[i | 5 | se(v)
pan_scan_rect_top_offset[i | 5 | se(v)
pan_scan_rect_bottom_offset[i | 5 | se(v)
§
pan_scan_rect_repetition_period 5 | ue(v)
H
i
Filler payload SEI message syntax
filler payload(payloadSize) { C | Descriptor
for(k = 0; k < payloadSize; k++)
ff_byte /* equal to OxFF */ 5 | f(8)

ITU-T Rec. H.264 (05/2003)

D.1.5

D.1.6

D.1.7

D.1.8

User data registered by ITU-T Recommendation T.35 SEI message syntax

user data_registered itu t t35(payloadSize) { C | Descriptor
itu_t t35 country_code 5 b(8)
if(itu_t t35 country code != OxFF)
i=1
else {
itu_t t35 country_code_extension_byte 5 b(8)
i=2
}
do {
itu_t _t35 payload_byte 5 b(8)
i++
}+ while(1 < payloadSize)
}
User data unregistered SEI message syntax
user data unregistered(payloadSize) { C | Descriptor
uuid_iso_iec_11578 5 u(128)
for(1= 16; i < payloadSize; i++)
user_data_payload_byte 5 b(8)
}
Recovery point SEI message syntax
recovery_point(payloadSize) { C | Descriptor
recovery_frame_cnt 5 | ue(v)
exact_match_flag 5 | u()
broken_link flag 5 |ul)
changing_slice_group_idc 5 |u®?)
H
Decoded reference picture marking repetition SEI message syntax
dec_ref pic_marking repetition(payloadSize) { C | Descriptor
original_idr_flag 5 Ju)
original frame num 5 | ue(v)
if(!'frame _mbs_only flag) {
original_field_pic_flag 5 Ju(l)
if(original field pic flag)
original_bottom _field flag 5 Ju(l)
}
dec ref pic_marking() 5

ITU-T Rec. H.264 (05/2003)

229

D.1.9

D.1.10

230

Spare picture SEI message syntax

spare_pic(payloadSize) { C | Descriptor
target_frame num 5 | ue(v)
spare_field_flag 5 1 u(l)
if(spare_field flag)
target_bottom_field_flag u(l)
num_spare_pics_minusl ue(v)
for(1=0; 1 <num_spare pics minusl + 1; i++) {
delta_spare frame num]i | 5 | ue(v)
if(spare_field flag)
spare_bottom_field flag[i] u(l)
spare_area_idc[1] ue(v)
if(spare_area idc[i] == 1)
for(j = 0; j < PicSizeInMapUnits; j++)
spare_unit_flag[i][] 5 | u(l)
else if(spare_area idc[i] == 2) {
mapUnitCnt = 0
for(j=0; mapUnitCnt < PicSizeInMapUnits; j++) {
zero_run_length[i][j] 5 | ue(v)
mapUnitCnt += zero_run_length[i][j]+1
H
H
}
h
Scene information SEI message syntax
scene_info(payloadSize) { C | Descriptor
scene_info_present flag 5 | u(l)
if(scene_info_present flag) {
scene_id ue(v)
scene_transition_type ue(v)
if(scene_transition_type >3)
second_scene_id 5 | ue(v)

ITU-T Rec. H.264 (05/2003)

D.1.11

D.1.12

D.1.13

Sub-sequence information SEI message syntax

sub_seq_info(payloadSize) { C | Descriptor
sub_seq layer num 5 ue(v)
sub_seq_id 5 | ue(v)
first_ref pic_flag 5 u(l)
leading_non_ref pic_flag 5 Ju(l)
last_pic_flag 5 u(l)
sub_seq frame num_flag 5 Ju(l)
if(sub_seq frame num flag)

sub_seq_frame num 5 | ue(v)
i

Sub-sequence layer characteristics SEI message syntax

sub_seq layer characteristics(payloadSize) { C | Descriptor
num_sub_seq_layers minusl 5 ue(v)
for(layer = 0; layer <= num_sub_seq_layers minusl; layer++) {
accurate_statistics_flag u(1)
average bit_rate u(16)
average frame_rate u(16)
i
H
Sub-sequence characteristics SEI message syntax
sub_seq_characteristics(payloadSize) { C | Descriptor
sub_seq_layer num 5 ue(v)
sub_seq id 5 ue(v)
duration_flag 5 u(l)
if(duration_flag)
sub_seq_duration 5 u(32)
average rate_flag 5 u(l)
if(average rate flag) {
accurate_statistics_flag u(l)
average bit rate u(16)
average frame rate u(16)
}
num_referenced_subseqs 5 | ue(v)
for(n =0; n <num_referenced subseqs; n++) {
ref_sub_seq_layer num ue(v)
ref _sub_seq_id ue(v)
ref_sub_seq_direction u(1)
}
i

ITU-T Rec. H.264 (05/2003)

231

D.1.14

D.1.15

D.1.16

D.1.17

D.1.18

D.1.19

232

Full-frame freeze SEI message syntax

full frame freeze(payloadSize) { Descriptor
full_frame freeze repetition_period ue(v)
H
Full-frame freeze release SEI message syntax
full frame freeze release(payloadSize) { Descriptor
i
Full-frame snapshot SEI message syntax
full frame snapshot(payloadSize) { Descriptor
snapshot_id ue(v)
H
Progressive refinement segment start SEI message syntax
progressive refinement segment_start(payloadSize) { Descriptor
progressive_refinement_id ue(v)
num_refinement_steps_minusl ue(v)
§
Progressive refinement segment end SEI message syntax
progressive refinement segment end(payloadSize) { Descriptor
progressive_refinement_id ue(v)
H
Motion-constrained slice group set SEI message syntax
motion_constrained slice group_set(payloadSize) { Descriptor
num_slice_groups_in_set_minusl ue(v)
for(1=0;1<=num slice groups in set minusl; i++)
slice_group_id[i] u(v)
exact_sample value_match_flag u(l)
pan_scan_rect_flag u(l)
if(pan_scan_rect flag)
pan_scan_rect_id ue(v)

ITU-T Rec. H.264 (05/2003)

D.1.20 Reserved SEI message syntax

reserved_sei_message(payloadSize) { C | Descriptor
for(i=0; 1 < payloadSize; i++)
reserved_sei_message payload_byte 5 | b(®)
i

D.2 SEI payload semantics

D.2.1 Buffering period SEI message semantics

When NalHrdBpPresentFlag or VclHrdBpPresentFlag are equal to 1, a buffering period SEI message can be associated
with any access unit in the bitstream, and a buffering period SEI message shall be associated with each IDR access unit
and with each access unit associated with a recovery point SEI message.

NOTE - For some applications, the frequent presence of a buffering period SEI message may be desirable.

A buffering period is specified as the set of access units between two instances of the buffering period SEI message in
decoding order.

seq_parameter_set_id specifies the sequence parameter set that contains the sequence HRD attributes. The value of
seq_parameter _set id shall be equal to the value of seq parameter set id in the picture parameter set referenced by the
primary coded picture associated with the buffering period SEI message. The value of seq_parameter set id shall be in
the range of 0 to 31, inclusive.

initial_cpb_removal delay[SchedSelldx] specifies the delay for the SchedSelldx-th CPB between the time of arrival
in the CPB of the first bit of the coded data associated with the access unit associated with the buffering period SEI
message and the time of removal from the CPB of the coded data associated with the same access unit, for the first
buffering period after HRD initialisation. The syntax element has a length in bits given by
initial cpb _removal delay length minusl + 1. It is in units of a 90 kHz clock.
initial cpb removal delay[SchedSelldx] shall not be equal to 0 and shall not exceed 90000 * (CpbSize[SchedSelldx]
+ BitRate[SchedSelldx]), the time-equivalent of the CPB size in 90 kHz clock units.

initial_cpb_removal_delay_offset[SchedSelldx] is used for the SchedSelldx-th CPB in combination with the
cpb_removal delay to specify the initial delivery time of coded access wunits to the CPB.
initial cpb _removal delay offset[SchedSelldx] is in units of a 90 kHz clock. The
initial cpb removal delay offset[SchedSelldx] syntax element is a fixed length code whose length in bits is given by
initial cpb removal delay length minusl + 1. This syntax element is not used by decoders and is needed only for the
delivery scheduler (HSS) specified in Annex C.

Over the entire coded video sequence, the sum of initial cpb removal delay[SchedSelldx] and
initial cpb removal delay offset[SchedSelldx] shall be constant for each value of SchedSelldx.

D.2.2 Picture timing SEI message semantics

When CpbDpbDelaysPresentFlag is equal to 1, a picture timing SEI Message shall be associated with every access unit
in the bitstream.

cpb_removal_delay specifies how many clock ticks (see subclause E.2.1) to wait after removal from the CPB of the
access unit associated with the most recent buffering period SEI message before removing from the buffer the access unit
data associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of
arrival of access unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a fixed length code

whose length in bits is given by cpb_removal delay length minusl + 1. The cpb_removal delay is the remainder of a
2(cpbiremovalidelayflengthiminus1 +1) counter.

The value of cpb_removal_delay for the first picture in the bitstream shall be equal to 0.

dpb_output_delay is used to compute the DPB output time of the picture. It specifies how many clock ticks to wait
after removal of an access unit from the CPB before the decoded picture can be output from the DPB (see subclause
C.2).

NOTE - A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or
"used for long-term reference".

NOTE - Only one dpb_output delay is specified for a decoded picture.

ITU-T Rec. H.264 (05/2003) 233

The size of the syntax element dpb output delay is given in bits by dpb_output delay length minusl +1. When
max_dec_frame buffering is equal to 0, dpb_output_delay shall be equal to 0.

The output time derived from the dpb_output delay of any picture that is output from an output timing conforming
decoder as specified in subclause C.2 shall precede the output time derived from the dpb_output_delay of all pictures in
any subsequent coded video sequence in decoding order.

The output time derived from the dpb_output delay of the second field, in decoding order, of a complementary non-
reference field pair shall exceed the output time derived from the dpb output delay of the first field of the same
complementary non-reference field pair.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCnt() as specified by subclauses C.4.1 to C.4.5, except that when the two fields of a complementary
reference field pair have the same value of PicOrderCnt(), the two fields have different output times.

For pictures that are not output by the "bumping" process of subclause C.4.5 because they precede, in decoding order, an
IDR picture with no_output of prior pics_flag equal to 1 or inferred to be equal to 1, the output times derived from
dpb_output _delay shall be increasing with increasing value of PicOrderCnt() relative to all pictures within the same
coded video sequence subsequent to any picture having a memory management_control operation equal to 5.

pic_struct indicates whether a picture should be displayed as a frame or one or more fields, according to Table D-1.
Frame doubling (pic_struct equal to 7) indicates that the frame should be displayed two times consecutively, and frame
tripling (pic_struct equal to 8) indicates that the frame should be displayed three times consecutively.

NOTE - Frame doubling can facilitate the display, for example, of 25p video on a 50p display and 29.97p video on a 59.94p

display. Using frame doubling and frame tripling in combination on every other frame can facilitate the display of 23.98p video on
a 59.94p display.

Table D-1 — Interpretation of pic_struct

Value Indicated display of picture Restrictions NumClockTS

0 frame field pic flag shall be 0 1

1 top field field pic flag shall be 1, 1
bottom field flag shall be 0

2 bottom field field pic flag shall be 1, 1
bottom field flag shall be 1

3 top field, bottom field, in that order field pic flag shall be 0 2

4 bottom field, top field, in that order field pic flag shall be 0 2

5 top field, bottom field, top field field pic_flag shall be 0 3

repeated, in that order

6 bottom field, top field, bottom field | field pic_flag shall be 0 3
repeated, in that order

7 frame doubling field pic flag shall be 0 2
fixed frame rate flag shall be 1

8 frame tripling field pic_flag shall be 0 3
fixed frame rate flag shall be 1

9..15 reserved

NumClockTS is determined by pic struct as specified in Table D-1. There are up to NumClockTS sets of clock
timestamp information for a picture, as specified by clock timestamp flag[i] for each set. The sets of clock timestamp
information apply to the field(s) or the frame(s) associated with the picture by pic_struct.

The contents of the clock timestamp syntax elements indicate a time of origin, capture, or alternative ideal display. This
indicated time is computed as

clockTimestamp = ((hH * 60 + mM) * 60 + sS) * time_scale +
nFrames * (num_units_in_tick * (1 + nuit_field based flag)) + tOffset, (D-1)

234 ITU-T Rec. H.264 (05/2003)

in units of clock ticks of a clock with clock frequency equal to time scale Hz, relative to some unspecified point in time
for which clockTimestamp is equal to 0. Output order and DPB output timing are not affected by the value of
clockTimestamp. When two or more frames with pic_struct equal to 0 are consecutive in output order and have equal
values of clockTimestamp, the indication is that the frames represent the same content and that the last such frame in
output order is the preferred representation.

NOTE - clockTimestamp time indications may aid display on devices with refresh rates other than those well-matched to DPB
output times.

clock_timestamp flag| i | equal to 1 indicates that a number of clock timestamp syntax elements are present and follow
immediately. clock timestamp flag[i] equal to O indicates that the associated clock timestamp syntax elements are not
present. When NumClockTS is greater than 1 and clock timestamp flag[i] is equal to 1 for more than one value of i,
the value of clockTimestamp shall be non-decreasing with increasing value of i.

ct_type indicates the scan type (interlaced or progressive) of the source material as follows:
Two fields of a coded frame may have different values of ct_type.

When clockTimestamp is equal for two fields of opposite parity that are consecutive in output order, both with ct_type
equal to 0 (progressive) or ct_type equal to 2 (unknown), the two fields are indicated to have come from the same
original progressive frame. Two consecutive fields in output order shall have different values of clockTimestamp when
the value of ct_type for either field is 1 (interlaced).

Table D-2 — Mapping of ct_type to source picture scan

Value | i clure sean
0 progressive
1 interlaced
2 unknown
3 reserved

nuit_field_based_flag: Used in calculating clockTimestamp, as specified in Equation D-1.

counting_type: Specifies the method of dropping values of the n_frames as specified in Table D-3.

Table D-3 — Definition of counting_type values

Value Interpretation

0 no dropping of n_frames count values and no use of
time offset

| no dropping of n_frames count values

2 dropping of individual zero values of n_frames count

3 dropping of individual MaxFPS-1 values of n_frames
count

4 dropping of the two lowest (value 0 and 1) n_frames

counts when seconds value is equal to0O and
minutes value is not an integer multiple of 10

5 dropping of unspecified individual n frames count
values
6 dropping of unspecified numbers of unspecified

n_frames count values

7.31 reserved

ITU-T Rec. H.264 (05/2003) 235

full_timestamp_flag equal to 1 specifies that the n_frames syntax element is followed by seconds value, minutes_value,
and hours value. full timestamp flag equal to O specifies that the n frames syntax element is followed by
seconds_flag.

discontinuity flag equal to 0 indicates that the difference between the current value of clockTimestamp and the value of
clockTimestamp computed from the previous clock timestamp in output order can be interpreted as the time difference
between the times of origin or capture of the associated frames or fields. discontinuity flag equal to 1 indicates that the
difference between the current value of clockTimestamp and the value of clockTimestamp computed from the previous
clock timestamp in output order should not be interpreted as the time difference between the times of origin or capture of
the associated frames or fields. When discontinuity flag is equal to 0, the value of clockTimestamp shall be greater than
or equal to all values of clockTimestamp present for the preceding picture in DPB output order.

cnt_dropped_flag specifies the skipping of one or more values of n_frames using the counting method specified by
counting_type.

n_frames specifies the value of nFrames used to compute clockTimestamp. n_frames shall be less than
MaxFPS = Ceil(time_scale + num_units_in_tick) (D-2)

NOTE — n_frames is a frame-based counter. For field-specific timing indications, time_offset should be used to indicate a distinct
clockTimestamp for each field.

When counting_type is equal to 2 and cnt_dropped flag is equal to 1, n_frames shall be equal to 1 and the value of
n_frames for the previous picture in output order shall not be equal to 0 unless discontinuity flag is equal to 1.
NOTE - When counting_type is equal to 2, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time scale equal to 25 and num_units_in_tick equal to 2 and
nuit_field based flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to 0 when counting (e.g.,
counting n_frames from 0 to 12, then incrementing seconds_value and counting n_frames from 1 to 12, then incrementing
seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 3 and cnt_dropped flag is equal to 1, n_frames shall be equal to 0 and the value of
n_frames for the previous picture in output order shall not be equal to MaxFPS — 1 unless discontinuity flag is equal
to 1.
NOTE - When counting_type is equal to 3, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time scale equal to 25 and num_units_in_tick equal to 2 and
nuit_field based flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to MaxFPS when
counting (e.g., counting n_frames from 0 to 12, then incrementing seconds value and counting n_frames from 0 to 11, then
incrementing seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 4 and cnt_dropped flag is equal to 1, n_frames shall be equal to 2 and the specified

value of sS shall be zero and the specified value of mM shall not be an integer multiple of ten and n_frames for the

previous picture in output order shall not be equal to 0 or 1 unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 4, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 30000+1001 frames per second with time scale equal to 60000 and num_units_in_tick equal
to 1 001 and nuit_field based flag equal to 1) can be reduced by occasionally skipping over the value n_frames equal to MaxFPS
when counting (e.g., counting n_frames from 0 to 29, then incrementing seconds_value and counting n_frames from 0 to 29, etc.,
until the seconds_value is zero and minutes_value is not an integer multiple of ten, then counting n_frames from 2 to 29, then
incrementing seconds_value and counting n_frames from 0 to 29, etc.). This counting method is well known in industry and is
often referred to as "NTSC drop-frame" counting.

When counting_type is equal to 5 or 6 and cnt_dropped _flag is equal to 1, n_frames shall not be equal to 1 plus the value
of n_frames for the previous picture in output order modulo MaxFPS unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 5 or 6, the need for increasingly large magnitudes of tOffset in Equation D-1 when using

fixed non-integer frame rates can be avoided by occasionally skipping over some values of n_frames when counting. The specific
values of n_frames that are skipped are not specified when counting_type is equal to 5 or 6.

seconds_flag equal to 1 specifies that seconds value and minutes flag are present when full timestamp flag is equal
to 0. seconds_flag equal to 0 specifies that seconds value and minutes_flag are not present.

seconds_value specifies the value of sS used to compute clockTimestamp. The value of seconds_value shall be in the
range of 0 to 59, inclusive. When seconds_value is not present, the previous seconds_value in decoding order shall be
used as sS to compute clockTimestamp.

minutes_flag equal to 1 specifies that minutes value and hours_flag are present when full timestamp_flag is equal to 0
and seconds_flag is equal to 1. minutes_flag equal to 0 specifies that minutes_value and hours_flag are not present.

minutes_value specifies the value of mM used to compute clockTimestamp. The value of minutes_value shall be in the
range of 0 to 59, inclusive. When minutes_value is not present, the previous minutes_value in decoding order shall be
used as mM to compute clockTimestamp.

236 ITU-T Rec. H.264 (05/2003)

hours_flag equal to 1 specifies that hours value is present when full timestamp flag is equal to 0 and seconds flag is
equal to 1 and minutes_flag is equal to 1.

hours_value specifies the value of hH used to compute clockTimestamp. The value of hours_value shall be in the range
of 0 to 23, inclusive. When hours_value is not present, the previous hours_value in decoding order shall be used as hH
to compute clockTimestamp.

time_offset specifies the value of tOffset used to compute clockTimestamp. The number of bits used to represent
time_offset shall be equal to time offset length. When time offset is not present, the value 0 shall be used as tOffset to
compute clockTimestamp.

D.2.3 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message syntax elements specify the coordinates of a rectangle relative to the cropping
rectangle of the sequence parameter set. Each coordinate of this rectangle is specified in units of one-sixteenth sample
spacing relative to the luma sampling grid.

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the pan-scan rectangle (for
example, to identify the rectangle as the area to be shown on a particular display device or as the area that contains a
particular actor in the scene). The value of pan_scan_rect_id shall be in the range of 0 to 2** — 1, inclusive.

Values of pan_scan_rect_id from 0 to 255 and from 512 to 2*'-1 may be used as determined by the application. Values
of pan_scan_rect_id from 256 to 511 and from 2*' to 2**-1 are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of pan_scan_rect_id in the range of 256 to 511 or in the range of 2°' to 2** - 1 shall ignore (remove
from the bitstream and discard) it.

pan_scan_rect_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of a previous pan-scan
rectangle SEI message. pan scan rect cancel flag equal to O indicates that the SEI message does not cancel the
persistence of a previous pan-scan rectangle SEI message and that pan-scan rectangle information follows.

pan_scan_cnt_minusl specifies the number of pan-scan rectangles that are present in the SEI message.
pan_scan_cnt_minus] shall be in the range of 0 to 2, inclusive. pan_scan_cnt _minusl equal to O indicates that a single
pan-scan rectangle is present that applies to all fields of the decoded picture. pan_scan cnt _minusl shall be equal to 0
when the current picture is a field. pan scan cnt minusl equal to 1 indicates that two pan-scan rectangles are present,
the first of which applies to the first field of the picture in output order and the second of which applies to the second
field of the picture in output order. pan_scan_cnt _minusl equal to 2 indicates that three pan-scan rectangles are present,
the first of which applies to the first field of the picture in output order, the second of which applies to the second field of
the picture in output order, and the third of which applies to a repetition of the first field as a third field in output order.

pan_scan_rect_left_offset[i], pan_scan_rect_right_offset[1], pan_scan_rect_top_offset|[i], and
pan_scan_rect_bottom_offset[i |, specify, as signed integer quantities in units of one-sixteenth sample spacing relative
to the luma sampling grid, the location of the pan-scan rectangle. The values of each of these four syntax elements shall
be in the range of -2*' to 2°' - 1, inclusive.

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma frame sampling grid, as
the area of the rectangle with coordinates as follows:

— If frame mbs only flag is equal to 1, the pan-scan rectangle has luma frame horizontal coordinates from
32 * frame _crop_left offset + pan_scan rect left offset{i] to32 * (8 * PicWidthinMbs —
frame crop right offset) + pan_scan rect right offsetfi] — 1 and with vertical coordinates from 32 *
frame crop top offset + pan scan rect top offset[1] to 32 * (8 * PicHeightInMbs — frame crop_bottom_offset)
+ pan_scan_rect_bottom offset[i] — 1, inclusive. In this case, the value of 32 * frame crop left offset +
pan_scan_rect left offset[i] shall be less than or equal to 32 * (8 * PicWidthInMbs — frame crop_right offset) +
pan_scan_rect right offset[i] — 1; and the value of 32 * frame crop top offset + pan scan rect top offset[i]
shall be less than or equal to 32 * (8 * PicHeightlnMbs — frame crop bottom offset) +
pan_scan_rect_bottom offset[i]— 1.

— Otherwise (frame_mbs_only flag is equal to 0), the pan-scan rectangle has luma frame horizontal coordinates from
32 * frame crop left offset + pan_scan rect left offset[i] to 32 * (8 * PicWidthiInMbs -
frame crop right offset) + pan_scan rect right offset{i] — 1 and with vertical coordinates from 64 *
frame crop top offset + pan scan rect top offset[i] to 64 * (4 * PicHeightInMbs — frame crop_bottom_offset)
+ pan_scan_rect bottom offset[i] — 1, inclusive. In this case, the value of 32 * frame crop left offset +
pan_scan_rect left offset[i] shall be less than or equal to 32 * (8 * PicWidthInMbs — frame crop right offset) +
pan_scan_rect right offset[i] — 1; and the value of 64 * frame crop top offset + pan scan rect top offset[i]
shall be less than or equal to 64 * (4 * PicHeightinMbs — frame crop bottom offset) +
pan_scan_rect_bottom offset[i]— 1.

ITU-T Rec. H.264 (05/2003) 237

When the pan-scan rectangular area includes samples outside of the cropping rectangle, the region outside of the
cropping rectangle may be filled with synthesized content (such as black video content or neutral grey video content) for
display.

pan_scan_rect_repetition_period indicates whether another pan-scan rectangle SEI message with the same value of
pan_scan_rect id shall be present in the bitstream and specifies the picture order count interval within which it will be
present. The value of pan scan rect repetition period shall be in the range of 0 to 16384, inclusive. When
pan_scan cnt minus] is greater than 0, pan_scan_rect repetition period shall not be greater than 1.

pan_scan_rect repetition period equal to O specifies that the pan-scan rectangle information applies to the current
decoded picture only.

pan_scan_rect_repetition_period equal to 1 specifies that the pan-scan rectangle information persists in output order until
any of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of
pan_scan_rect_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

pan_scan_rect repetition period equal to 0 or equal to 1 indicates that another pan-scan rectangle SEI message with the
same value of pan_scan_rect_id may or may not be present.

pan_scan_rect_repetition period greater than 1 specifies that the pan-scan rectangle information persists until any of the
following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of
pan_scan rect id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) +
pan_scan_rect repetition_period.

pan_scan_rect repetition period greater than 1 indicates that another pan-scan rectangle SEI message with the same
value of pan_scan_rect _id shall be present for a picture in an access unit that is output having PicOrderCnt() less than or
equal to PicOrderCnt(CurrPic) + pan_scan_rect_repetition period; unless a new coded video sequence begins without
output of such a picture.

D.2.4 Filler payload SEI message semantics
This message contains a series of payloadSize bytes of value 0xFF, which can be discarded.

ff_byte shall be a byte having the value OxFF.

D.2.5 User data registered by ITU-T Recommendation T.35 SEI message semantics

This message contains user data registered as specified by ITU-T Recommendation T.35, the contents of which are not
specified by this Recommendation | International Standard.

itu_t t35 country_code shall be a byte having a value specified as a country code by ITU-T Recommendation T.35
Annex A.

itu_t t35 country_code_extension_byte shall be a byte having a value specified as a country code by ITU-T
Recommendation T.35 Annex B.

itu_t_t35 payload_byte shall be a byte containing data registered as specified by ITU-T Recommendation T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of the itu_t t35 payload byte, in the format specified by the Administration that issued the terminal provider code.
Any remaining itu t t35 payload byte data shall be data having syntax and semantics as specified by the entity
identified by the ITU-T T.35 country code and terminal provider code.

D.2.6 User data unregistered SEI message semantics

This message contains unregistered user data identified by a UUID, the contents of which are not specified by this
Recommendation | International Standard.

uuid_iso_iec_11578 shall have a value specified as a UUID according to the procedures of ISO/IEC 11578:1996 Annex
A.

user_data_payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID
generator.

238 ITU-T Rec. H.264 (05/2003)

D.2.7 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the sequence.
When the decoding process is started with the access unit in decoding order associated with the recovery point SEI
message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are
indicated to be correct or approximately correct in content. Decoded pictures produced by random access at or before the
picture associated with the recovery point SEI message need not be correct in content until the indicated recovery point,
and the operation of the decoding process starting at the picture associated with the recovery point SEI message may
contain references to pictures not available in the decoded picture buffer.

In addition, by use of the broken link flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process
was begun at the location of a previous IDR access unit in decoding order.
NOTE — The broken_link flag can be used by encoders to indicate the location of a point after which the decoding process for the
decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the

pictures that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed during
the generation of the bitstream).

The recovery point is specified as a count in units of frame num increments subsequent to the frame num of the current
access unit at the position of the SEI message.
NOTE — When HRD information is present in the bitstream, a buffering period SEI message should be associated with the access

unit associated with the recovery point SEI message in order to establish initialisation of the HRD buffer model after a random
access.

recovery_frame_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output order
are indicated to be correct or approximately correct in content starting at the output order position of the reference picture
having the frame num equal to the frame num of the VCL NAL units for the current access unit incremented by
recovery frame cnt in modulo MaxFrameNum arithmetic. recovery frame cnt shall be in the range of 0 to
MaxFrameNum — 1, inclusive.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the access unit associated with the recovery point SEI message shall be an
exact match to the pictures that would be produced by starting the decoding process at the location of a previous IDR
access unit in the NAL unit stream. The value 0 indicates that the match need not be exact and the value 1 indicates that
the match shall be exact.

When decoding starts from the location of the recovery point SEI message, all references to not available reference
pictures shall be inferred as references to pictures containing only macroblocks coded using Intra macroblock prediction
modes and having sample values given by Y samples equal to 128, Cb samples equal to 128, and Cr samples equal to
128 (mid-level grey) for purposes of determining the conformance of the value of exact match flag.

NOTE — When performing random access, decoders should infer all references to not available reference pictures as references to

pictures containing only intra macroblocks and having sample values given by Y equal to 128, Cb equal to 128, and Cr equal to
128 (mid-level grey), regardless of the value of exact_match_flag.

When exact match flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding
process and is not specified by this Recommendation | International Standard.

broken_link flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the
recovery point SEI message and is assigned further semantics as follows.

- If broken link flag is equal to 1, pictures produced by starting the decoding process at the location of a previous
IDR access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the
access unit associated with the recovery point SEI message in decoding order should not be displayed until the
specified recovery point in output order.

- Otherwise (broken link flag is equal to 0), no indication is given regarding any potential presence of visual
artefacts.

Regardless of the value of the broken link flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.
NOTE — When a sub-sequence information SEI message is present in conjunction with a recovery point SEI message in which
broken_link flag is equal to 1 and when sub_seq layer num is equal to 0, sub_seq id should be different from the latest
sub_seq_id for sub_seq layer num equal to O that was decoded prior to the location of the recovery point SEI message. When
broken_link flag is equal to 0, the sub_seq_id in sub-sequence layer 0 should remain unchanged.

changing_slice_group_idc equal to 0 indicates that decoded pictures are correct or approximately correct in content at
and subsequent to the recovery point in output order when all macroblocks of the primary coded pictures are decoded
within the changing slice group period, i.e., the period between the access unit associated with the recovery point SEI

ITU-T Rec. H.264 (05/2003) 239

message (inclusive) and the specified recovery point (inclusive) in decoding order. changing slice group idc shall be
equal to 0 when num_slice groups minusl is equal to 0 in any primary coded picture within the changing slice group
period.

When changing_slice group idc is equal to 1 or 2, num_slice groups minus] shall be equal to 1 and the macroblock-to-
slice-group map type 3, 4, or 5 shall be applied in each primary coded picture in the changing slice group period.

changing slice group idc equal to 1 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 0 are used for inter prediction of any macroblock within slice group 0. In
addition, changing_slice group idc equal to 1 indicates that when all macroblocks in slice group 0 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 1 within the changing
slice group period is decoded.

changing slice group idc equal to 2 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 1 are used for inter prediction of any macroblock within slice group 1. In
addition, changing_slice group idc equal to 2 indicates that when all macroblocks in slice group 1 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 0 within the changing
slice group period is decoded.

changing slice group idc shall be in the range of 0 to 2, inclusive.

D.2.8 Decoded reference picture marking repetition SEI message semantics

The decoded reference picture marking repetition SEI message is used to repeat the decoded reference picture marking
syntax structure that was located in the slice header of an earlier picture in the sequence in decoding order.

original_idr_flag shall be equal to 1 when the decoded reference picture marking syntax structure occurred originally in
an IDR picture. original idr flag shall be equal to 0 when the repeated decoded reference picture marking syntax
structure did not occur in an IDR picture originally.

original_frame num shall be equal to the frame num of the picture where the repeated decoded reference picture
marking syntax structure originally occurred. The picture indicated by original frame num is the previous coded picture
having the specified value of frame num. The value of original frame num used to refer to a picture having a
memory_management_control operation equal to 5 shall be 0.

original_field pic_flag shall be equal to the field pic flag of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

original _bottom_field flag shall be equal to the bottom_field flag of the picture where the repeated decoded reference
picture marking syntax structure originally occurred.

dec ref pic_marking() shall contain a copy of the decoded reference picture marking syntax structure of the picture
whose frame num was original frame num. The nal unit type used for specification of the repeated
dec_ref pic_marking() syntax structure shall be the nal unit_type of the slice header(s) of the picture whose frame num
was original frame num (i.e., nal unit type as used in subclause 7.3.3.3 shall be considered equal to5 when
original idr flag is equal to 1 and shall not be considered equal to 5 when original idr flag is equal to 0).

D.2.9 Spare picture SEI message semantics

This SEI message indicates that certain slice group map units, called spare slice group map units, in one or more decoded
reference pictures resemble the co-located slice group map units in a specified decoded picture called the target picture.
A spare slice group map unit may be used to replace a co-located, incorrectly decoded slice group map unit, in the target
picture. A decoded picture containing spare slice group map units is called a spare picture.

For all spare pictures identified in a spare picture SEI message, the value of frame mbs_only flag shall be equal to the
value of frame _mbs_only flag of the target picture in the same SEI message. The spare pictures in the SEI message are
constrained as follows.

- Ifthe target picture is a decoded field, all spare pictures identified in the same SEI message shall be decoded fields.

- Otherwise (the target picture is a decoded frame), all spare pictures identified in the same SEI message shall be
decoded frames.

For all spare pictures identified in a spare picture SEI message, the values of pic_width in mbs minusl and
pic_height in map units minusl shall be equal to the values of pic width in mbs minusl and
pic_height in map_units_minusl, respectively, of the target picture in the same SEI message. The picture associated (as
specified in subclause 7.4.1.2.3) with this message shall appear after the target picture, in decoding order.

240 ITU-T Rec. H.264 (05/2003)

target_frame_num indicates the frame num of the target picture.

spare_field_flag equal to 0 indicates that the target picture and the spare pictures are decoded frames. spare field flag
equal to 1 indicates that the target picture and the spare pictures are decoded fields.

target_bottom_field_flag equal to 0 indicates that the target picture is a top field. target bottom_field flag equal to 1
indicates that the target picture is a bottom field.

A target picture is a decoded reference picture whose corresponding primary coded picture precedes the current picture,
in decoding order, and in which the values of frame num, field pic flag (when present) and bottom_field flag (when
present) are equal to target frame num, spare field flag and target bottom field flag, respectively.

num_spare_pics_minusl indicates the number of spare pictures for the specified target picture. The number of spare
pictures is equal to num_spare pics minusl + 1. The value of num_spare pics minusl shall be in the range of 0 to 15,
inclusive.

delta_spare frame_num]| i] is used to identify the spare picture that contains the i-th set of spare slice group map units,
hereafter called the i-th spare picture, as specified below. The value of delta spare frame num[i] shall be in the range
of 0 to MaxFrameNum - 1 - !spare_field flag, inclusive.

The frame num of the i-th spare picture, spareFrameNum][i], is derived as follows for all values of i from 0 to
num_spare_pics_minusl, inclusive:

candidateSpareFrameNum = target frame num - !spare field flag
for (1=0; 1 <=num_spare pics_minusl; i++) {
if(candidateSpareFrameNum < 0)
candidateSpareFrameNum = MaxFrameNum — 1
spareFrameNum| i | = candidateSpareFrameNum — delta_spare frame num[1i | (D-3)
if(spareFrameNum[i1]<0)
spareFrameNum|[i | = MaxFrameNum + spareFrameNum] i]
candidateSpareFrameNum = spareFrameNum[i | - Ispare field flag

}

spare_bottom_field flag| i | equal to O indicates that the i-th spare picture is a top field. spare_bottom field flag[i]
equal to 1 indicates that the i-th spare picture is a bottom field.

The 0-th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the target
picture, in decoding order, and in which the values of frame num, field pic flag (when present) and bottom field flag
(when present) are equal to spareFrameNum[0], spare_field flag and spare_bottom field flag[O], respectively. The i-
th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the (i- 1)-th spare
picture, in decoding order, and in which the values of frame num, field pic flag (when present) and bottom_field flag
(when present) are equal to spareFrameNum][i], spare_field flag and spare bottom_field flag[i], respectively.

spare_area_idc[i | indicates the method used to identify the spare slice group map units in the i-th spare picture.
spare_area_idc[i] shall be in the range of 0 to 2, inclusive. spare_area idc[i | equal to O indicates that all slice group
map units in the i-th spare picture are spare units. spare_area_idc[i] equal to 1 indicates that the value of the syntax
element spare unit flag[i][j] is used to identify the spare slice group map units. spare_area_idc[i | equal to 2 indicates
that the zero_run_length[i][j] syntax element is used to derive the values of spareUnitFlaginBoxOutOrder[i][j], as
described below.

spare_unit_flag[i][j] equal to 0 indicates that the j-th slice group map unit in raster scan order in the i-th spare picture
is a spare unit. spare_unit flag[i][j] equal to 1 indicates that the j-th slice group map unit in raster scan order in the i-th
spare picture is not a spare unit.

zero_run_length[i][j] is used to derive the values of spareUnitFlaginBoxOutOrder[i][j] when spare area idc[i] is
equal to 2. In this case, the spare slice group map units identified in spareUnitFlaginBoxOutOrder[i][j] appear in
counter-clockwise box-out order, as specified in subclause 8.2.2.4, for each spare picture.
spareUnitFlaginBoxOutOrder[i][j] equal to 0 indicates that the j-th slice group map unit in counter-clockwise box-out
order in the i-th spare picture is a spare unit. spareUnitFlaginBoxOutOrder[i][j] equal to 1 indicates that the j-th slice
group map unit in counter-clockwise box-out order in the i-th spare picture is not a spare unit.

When spare_area_idc[0] is equal to 2, spareUnitFlaginBoxOutOrder[0][j] is derived as follows:

for(j =0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k = 0; k <zero_run_length[0][loop]; k++)
spareUnitFlaginBoxOutOrder[0][j++]=0 (D-4)
spareUnitFlaginBoxOutOrder[0][j++] =1

}

ITU-T Rec. H.264 (05/2003) 241

When spare_area idc[i] is equal to 2 and the value of i is greater than 0, spareUnitFlaginBoxOutOrder[i][j] is derived
as follows:

for(j =0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k =0; k <zero run length[i][loop]; k++)
spareUnitFlaginBoxOutOrder[i [j] = spareUnitFlaginBoxOutOrder[i- 1][j++] (D-5)
spareUnitFlaginBoxOutOrder[i][j] = !spareUnitFlaginBoxOutOrder[i - 1][j++]

}

D.2.10 Scene information SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive pictures in output order.

NOTE - Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled
pictures were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For
example, a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene
transition. Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for
indexing the scenes of a coded sequence.

A scene information SEI message labels all pictures, in decoding order, from the primary coded picture to which the SEI
message is associated (inclusive), as specified in subclause 7.4.1.2.3, to the primary coded picture to which the next
scene information SEI message (if present) in decoding order is associated (exclusive) or (otherwise) to the last access
unit in the bitstream (inclusive). These pictures are herein referred to as the target pictures.

scene_info_present flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene info present flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target
pictures is less than 4, and the previous picture in output order is marked with a value of scene_transition_type less
than 4, and the value of scene id is the same as the value of scene id of the previous picture in output order, this
indicates that the source scene for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_transition_type of the target pictures is
greater than 3, and the previous picture in output order is marked with a value of scene transition type less than 4, and
the value of scene _id is the same as the value of scene_id of the previous picture in output order, this indicates that one
of the source scenes for the target pictures and the source scene for the previous picture (in output order) are considered
by the encoder to have been the same scene. When the value of scene id is not equal to the value of scene_id of the
previous picture in output order, this indicates that the target pictures and the previous picture (in output order) are
considered by the encoder to have been from different source scenes.

The value of scene_id shall be in the range of 0 to 2°*-1, inclusive. Values of scene_id in the range of 0 to 255, inclusive,
and in the range of 512 to 2°' — 1, inclusive, may be used as determined by the application. Values of scene id in the
range of 256 to 511, inclusive, and in the range of 2°' to 2** — 1, inclusive, are reserved for future use by ITU-T |
ISO/IEC. Decoders encountering a value of scene id in the range of 256 to 511, inclusive, or in the range of 2°'
to 2*2 - 1, inclusive, shall ignore (remove from the bitstream and discard) it.

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid
values of scene_transition_type are specified in Table D-4.

Table D-4 — scene_transition_type values.

Value Description

0 No transition

1 Fade to black

2 Fade from black

3 Unspecified transition from or to constant colour
4 Dissolve

5 Wipe

6 Unspecified mixture of two scenes

When scene_transition_type is greater than 3, the target pictures include contents both from the scene labelled by its
scene_id and the next scene, in output order, which is labelled by second scene id (see below). The term “the current
scene” is used to indicate the scene labelled by scene id. The term “the next scene” is used to indicate the scene labelled

242 ITU-T Rec. H.264 (05/2003)

by second scene_id. It is not required for any following picture, in output order, to be labelled with scene id equal to
second_scene_id of the current SEI message.

Scene transition types are specified as follows.

“No transition” specifies that the target pictures are not involved in a gradual scene transition.

NOTE - When two consecutive pictures in output order have scene_transition type equal to 0 and different values of scene_id, a
scene cut occurred between the two pictures.

“Fade to black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade to
black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the scene
gradually approach 128.

NOTE — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade to black",
the later one, in output order, is darker than the previous one.

“Fade from black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade
from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma samples of
the scene may gradually diverge from 128.

NOTE — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade from
black", the later one in output order is lighter than the previous one.

“Dissolve” indicates that the sample values of each target picture (before encoding) were generated by calculating a sum
of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The weight
of the current scene gradually decreases from full level to zero level, whereas the weight of the next scene gradually
increases from zero level to full level. When two pictures are labelled to belong to the same scene transition and their
scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is less than the
weight of the current scene for the previous one, and the weight of the next scene for the later one, in output order, is
greater than the weight of the next scene for the previous one.

"Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by copying co-
located sample values of a picture in the current scene and the remaining sample values of each target picture (before
encoding) were generated by copying co-located sample values of a picture in the next scene. When two pictures are
labelled to belong to the same scene transition and their scene_transition_type is "Wipe", the number of samples copied
from the next scene to the later picture in output order is greater than the number of samples copied from the next scene
to the previous picture.

second_scene_id identifies the next scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene_id shall not be equal to the value of scene id. The value of second scene id shall not be equal to
the value of scene_id in the previous picture in output order. When the next picture in output order is marked with a
value of scene_transition_type less than 4, and the value of second scene id is the same as the value of scene_id of the
next picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and
the source scene for the next picture (in output order) to have been the same scene. When the value of second scene id
is not equal to the value of scene_id or second scene id (if present) of the next picture in output order, this indicates that
the encoder considers the target pictures and the next picture (in output order) to have been from different source scenes.

When the value of scene_id of a picture is equal to the value of scene_id of the following picture in output order and the
value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two
pictures to have been from the same source scene. When the values of scene id, scene transition type and
second_scene_id (if present) of a picture are equal to the values of scene id, scene transition type and second scene id
(respectively) of the following picture in output order and the value of scene transition type is greater than 0, this
indicates that the encoder considers the two pictures to have been from the same source gradual scene transition.

The value of second_scene_id shall be in the range of 0 to 2**-1, inclusive. Values of second_scene _id in the range of 0
to 255, inclusive, and in the range of 512 to 2°'-1, inclusive, may be used as determined by the application. Values of
second_scene_id in the range of 256 to 511, inclusive, and in the range of 2°! to 2**-1, inclusive, are reserved for future
use by ITU-T | ISO/IEC. Decoders encountering a value of second scene_id in the range of 256 to 511, inclusive, or in
the range of 2°' to 2%*-1, inclusive, shall ignore (remove from the bitstream and discard) it.

D.2.11 Sub-sequence information SEI message semantics

The sub-sequence information SEI message is used to indicate the position of a picture in data dependency hierarchy that
consists of sub-sequence layers and sub-sequences.

A sub-sequence layer contains a subset of the coded pictures in a sequence. Sub-sequence layers are numbered with non-
negative integers. A layer having a larger layer number is a higher layer than a layer having a smaller layer number. The
layers are ordered hierarchically based on their dependency on each other so that any picture in a layer shall not be
predicted from any picture on any higher layer.

ITU-T Rec. H.264 (05/2003) 243

NOTE — In other words, any picture in layer 0 must not be predicted from any picture in layer 1 or above, pictures in layer 1 may
be predicted from layer 0, pictures in layer 2 may be predicted from layers 0 and 1, etc.

NOTE: The subjective quality is expected to increase along with the number of decoded layers.

A sub-sequence is a set of coded pictures within a sub-sequence layer. A picture shall reside in one sub-sequence layer
and in one sub-sequence only. Any picture in a sub-sequence shall not be predicted from any picture in another sub-
sequence in the same or in a higher sub-sequence layer. A sub-sequence in layer 0 can be decoded independently of any
picture that does not belong to the sub-sequence.

The sub-sequence information SEI message concerns the current access unit. The primary coded picture in the access
unit is herein referred to as the current picture.

The sub-sequence information SEI message shall not be present unless gaps in_frame num_value allowed flag in the
sequence parameter set referenced by the picture associated with the sub-sequence SEI message is equal to 1.

sub_seq_layer num specifies the sub-sequence layer number of the current picture. When sub seq layer num is
greater than 0, memory management control operations shall not be used in any slice header of the current picture.
When the current picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of
sub_seq layer num shall be equal to 0. For a non-paired reference field, the value of sub_seq layer num shall be equal
to 0. sub_seq layer num shall be in the range of 0 to 255, inclusive.

sub_seq_id identifies the sub-sequence within a layer. When the current picture resides in a sub-sequence whose first
picture in decoding order is an IDR picture, the value of sub_seq id shall be the same as the value of idr_pic_id of the
IDR picture. sub_seq_id shall be in the range of 0 to 65535, inclusive.

first_ref pic_flag equal to 1 specifies that the current picture is the first reference picture of the sub-sequence in
decoding order. When the current picture is not the first picture of the sub-sequence in decoding order, the
first_ref pic flag shall be equal to 0.

leading_non_ref pic_flag equal to 1 specifies that the current picture is a non-reference picture preceding any reference
picture in decoding order within the sub-sequence or that the sub-sequence contains no reference pictures. When the
current picture is a reference picture or the current picture is a non-reference picture succeeding at least one reference
picture in decoding order within the sub-sequence, the leading non_ref pic flag shall be equal to 0.

last_pic_flag equal to 1 indicates that the current picture is the last picture of the sub-sequence (in decoding order),
including all reference and non-reference pictures of the sub-sequence. When the current picture is not the last picture of
the sub-sequence (in decoding order), last pic_flag shall be equal to 0.

The current picture is assigned to a sub-sequence as follows.

- If one or more of the following conditions is true, the current picture is the first picture of a sub-sequence in
decoding order.

- no earlier picture in decoding order is labelled with the same values of sub_seq id and sub_seq layer num as
the current picture

- the value of leading non_ref pic flag is equal to 1 and the value of leading non_ref pic flag is equal to 0 in
the previous picture in decoding order having the same values of sub_seq id and sub_seq layer num as the
current picture

- the value of first ref pic flag is equal to 1 and the value of leading non ref pic flag is equal to O in the
previous picture in decoding order having the same values of sub_seq id and sub_seq layer num as the current
picture

- the value of last pic flag is equal to 1 in the previous picture in decoding order having the same values of
sub_seq id and sub_seq layer num as the current picture

- Otherwise, the current picture belongs to the same sub-sequence as the previous picture in decoding order having the
same values of sub_seq_id and sub_seq_layer num as the current picture.

sub_seq_frame num_flag equal to O specifies that sub_seq frame num is not present. sub_seq frame num flag equal
to 1 specifies that sub_seq_frame num is present.

sub_seq_frame_num shall be equal to 0 for the first reference picture of the sub-sequence and for any non-reference
picture preceding the first reference picture of the sub-sequence in decoding order. sub_seq frame num is further
constrained as follows.

- Ifthe current picture is not the second field of a complementary field pair, sub_seq frame num shall be incremented
by 1, in modulo MaxFrameNum operation, relative to the previous reference picture, in decoding order, that belongs
to the sub-sequence.

244 ITU-T Rec. H.264 (05/2003)

- Otherwise (the current picture is the second field of a complementary field pair), the value of sub_seq frame num
shall be the same as the value of sub_seq frame num for the first field of the complementary field pair.

sub_seq frame num shall be in the range of 0 to MaxFrameNum — 1, inclusive.

When the current picture is an IDR picture, it shall start a new sub-sequence in sub-sequence layer 0. Thus, the
sub_seq layer num shall be 0, the sub_seq_id shall be different from the previous sub-sequence in sub-sequence layer 0,
first_ref pic flag shall be 1, and leading_non_ref pic_flag shall be equal to 0.

When the sub-sequence information SEI message is present for both coded fields of a complementary field pair, the
values of sub_seq layer num, sub_seq id, leading non_ref pic flag and sub_seq frame num, when present, shall be
identical for both of these pictures.

When the sub-sequence information SEI message is present only for one coded field of a complementary field pair, the
values of sub_seq layer num, sub_seq id, leading non_ref pic flag and sub_seq frame num, when present, are also
applicable to the other coded field of the complementary field pair.

D.2.12 Sub-sequence layer characteristics SEI message semantics
The sub-sequence layer characteristics SEI message specifies the characteristics of sub-sequence layers.

num_sub_seq_layers_minusl plus 1 specifies the number of sub-sequence layers in the sequence.
num_sub_seq_layers_minusl shall be in the range of 0 to 255, inclusive.

A pair of average bit rate and average frame rate characterizes each sub-sequence layer. The first pair of
average bit rate and average frame rate specifies the characteristics of sub-sequence layer 0. When present, the second
pair specifies the characteristics of sub-sequence layers 0 and 1 jointly. Each pair in decoding order specifies the
characteristics for a range of sub-sequence layers from layer number O to the layer number specified by the layer loop
counter. The values are in effect from the point they are decoded until an update of the values is decoded.

accurate_statistics _flag equal to 1 indicates that the values of average bit rate and average frame rate are rounded
from statistically correct values. accurate statistics flag equal to O indicates that the average bit rate and the
average frame rate are estimates and may deviate somewhat from the correct values.

When accurate_statistics_flag is equal to 0, the quality of the approximation used in the computation of the values of
average bit rate and the average frame rate is chosen by the encoding process and is not specified by this
Recommendation | International Standard.

average bit rate indicates the average bit rate in units of 1000 bits per second. All NAL units in the range of sub-
sequence layers specified above are taken into account in the calculation. The average bit rate is derived according to the
access unit removal time specified in Annex C of the Recommendation | International Standard. In the following, bTotal
is the number of bits in all NAL units succeeding a sub-sequence layer characteristics SEI message (including the bits of
the NAL units of the current access unit) and preceding the next access unit (in decoding order) including a sub-sequence
layer characteristics SEI message (if present) or the end of the stream (otherwise). t; is the removal time (in seconds) of
the current access unit, and t, is the removal time (in seconds) of the latest access unit (in decoding order) before the next
sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

- If't; is not equal to t,, the following condition shall be true

average bit rate == Round(bTotal + ((t,—t;) * 1000))) (D-6)
- Otherwise (1, is equal to t,), the following condition shall be true

average bit rate == 0 (D-7)

average_frame_rate indicates the average frame rate in units of frames/(256 seconds). All NAL units in the range of
sub-sequence layers specified above are taken into account in the calculation. In the following, fTotal is the number of
frames, complementary field pairs and non-paired fields between the current picture (inclusive) and the next sub-
sequence layer characteristics SEI message (if present) or the end of the stream (otherwise). t; is the removal time (in
seconds) of the current access unit, and t, is the removal time (in seconds) of the latest access unit (in decoding order)
before the next sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

- Ift, is not equal to t,, the following condition shall be true

average frame rate == Round(fTotal * 256 + (t,—t;)) (D-8)

ITU-T Rec. H.264 (05/2003) 245

- Otherwise (t; is equal to t,), the following condition shall be true
average frame rate == 0 (D-9)

D.2.13 Sub-sequence characteristics SEI message semantics

The sub-sequence characteristics SEI message indicates the characteristics of a sub-sequence. It also indicates inter
prediction dependencies between sub-sequences. This message shall be contained in the first access unit in decoding
order of the sub-sequence to which the sub-sequence characteristics SEI message applies. This sub-sequence is herein
called the target sub-sequence.

sub_seq_layer num identifies the sub-sequence layer number of the target sub-sequence. sub_seq layer num shall be
in the range of 0 to 255, inclusive.

sub_seq_id identifies the target sub-sequence. sub_seq_id shall be in the range of 0 to 65535, inclusive.
duration_flag equal to 0 indicates that the duration of the target sub-sequence is not specified.
sub_seq_duration specifies the duration of the target sub-sequence in clock ticks of a 90-kHz clock.

average rate_flag equal to 0 indicates that the average bit rate and the average frame rate of the target sub-sequence are
unspecified.

accurate_statistics flag indicates how reliable the values of average bit rate and average frame rate are.
accurate_statistics _flag equal to 1, indicates that the average bit rate and the average frame rate are rounded from
statistically correct values. accurate statistics flag equal to 0 indicates that the average bit rate and the
average frame rate are estimates and may deviate from the statistically correct values.

average bit rate indicates the average bit rate in (1000 bits)/second of the target sub-sequence. All NAL units of the
target sub-sequence are taken into account in the calculation. The average bit rate is derived according to the access unit
removal time specified in subclause C.1.2. In the following, nB is the number of bits in all NAL units in the sub-
sequence. t; is the removal time (in seconds) of the first access unit of the sub-sequence (in decoding order), and t; is the
removal time (in seconds) of the last access unit of the sub-sequence (in decoding order).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

- If't; is not equal to t,, the following condition shall be true

average bit rate == Round(nB =+ ((t,—t;)* 1000)) (D-10)
- Otherwise (1, is equal to t,), the following condition shall be true

average bit rate == 0 (D-11)

average frame_rate indicates the average frame rate in units of frames/(256 seconds) of the target sub-sequence. All
NAL units of the target sub-sequence are taken into account in the calculation. The average frame rate is derived
according to the access unit removal time specified in subclause C.1.2. In the following, fC is the number of frames,
complementary field pairs and non-paired fields in the sub-sequence. t; is the removal time (in seconds) of the first
access unit of the sub-sequence (in decoding order), and t, is the removal time (in seconds) of the last access unit of the
sub-sequence (in decoding order).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

- Ift, is not equal to t,, the following condition shall be true

average frame rate == Round(fC *256 = (t,—1t;)) (D-12)
- Otherwise (t; is equal to t,), the following condition shall be true

average frame rate == (D-13)

num_referenced_subseqs specifies the number of sub-sequences that contain pictures that are used as reference pictures
for inter prediction in the pictures of the target sub-sequence. num_referenced subseqs shall be in the range of 0 to 255,
inclusive.

ref_sub_seq_layer num, ref sub_seq_id, and ref sub_seq_direction identify the sub-sequence that contains pictures
that are used as reference pictures for inter prediction in the pictures of the target sub-sequence. Depending on
ref sub_seq direction, the following applies.

246 ITU-T Rec. H.264 (05/2003)

- If ref sub seq direction is equal to 0, a set of candidate sub-sequences consists of the sub-sequences whose
sub_seq id is equal to ref sub seq id, which reside in the sub-sequence layer having sub _seq layer num equal to
ref sub seq layer num, and whose first picture in decoding order precedes the first picture of the target sub-
sequence in decoding order.

- Otherwise (ref sub seq direction is equal to 1), a set of candidate sub-sequences consists of the sub-sequences
whose sub_seq id is equal to ref sub seq id, which reside in the sub-sequence layer having sub_seq layer num
equal to ref sub_seq layer num, and whose first picture in decoding order succeeds the first picture of the target
sub-sequence in decoding order.

The sub-sequence used as a reference for the target sub-sequence is the sub-sequence among the set of candidate sub-
sequences whose first picture is the closest to the first picture of the target sub-sequence in decoding order.

D.2.14 Full-frame freeze SEI message semantics

The full-frame freeze SEI message indicates that the contents of the entire prior displayed video frame in output order
should be kept unchanged, without updating the display using the contents of the current decoded picture.

full_frame_freeze_repetition_period indicates whether another full-frame freeze SEI message shall be present in the
bitstream and specifies the picture order count interval within which another full-frame freeze SEI message or a full-
frame freeze release SEI message will be present. The value of full frame freeze repetition period shall be in the range
of 0 to 16 384, inclusive.

full frame freeze repetition period equal to O specifies that the full-frame freeze SEI message applies to the current
decoded picture only.

full frame freeze repetition period equal to 1 specifies that the full-frame freeze SEI message persists in output order
until any of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing full-frame freeze release SEI message is output having
PicOrderCnt() greater than PicOrderCnt(CurrPic).

full frame freeze repetition_ period greater than 1 specifies that the full-frame freeze SEI message persists until any one
of the following conditions are true.

— A new coded video sequence begins

— A picture in an access unit containing a full-frame freeze release SEI message or a full-frame freeze
release SEI message is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) +
full frame freeze repetition period.

full frame freeze repetition period greater than 1 indicates that another full-frame freeze SEI message or a full-frame
freeze release SEI message shall be present for a picture in an access unit that is output having PicOrderCnt() less than
or equal to PicOrderCnt(CurrPic) + full frame freeze repetition period; unless a new coded video sequence begins
without output of such a picture.

D.2.15 Full-frame freeze release SEI message semantics

The full-frame freeze release SEI message indicates that the update of the displayed video frame should resume, starting
with the contents of the current decoded picture and continuing for subsequent pictures in output order. The full-frame
freeze release SEI message cancels the effect of any full-frame freeze SEI message sent with pictures that precede the
current picture in output order.

D.2.16 Full-frame snapshot SEI message semantics

The full-frame snapshot SEI message indicates that the current frame is labelled for use as determined by the application
as a still-image snapshot of the video content.

snapshot_id specifies a snapshot identification number. snapshot_id shall be in the range of 0 to 2°* - 1, inclusive.

Values of snapshot_id in the range of 0 to 255, inclusive, and in the range of 512 to 2*'-1, inclusive, may be used as
determined by the application. Values of snapshot_id in the range of 256 to 511, inclusive, and in the range of 2°' to 2**-
1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of snapshot id in the range
of 256 to 511, inclusive, or in the range of 2°' to 2**-1, inclusive, shall ignore (remove from the bitstream and discard) it.

D.2.17 Progressive refinement segment start SEI message semantics

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures that
is labelled as the current picture followed by a sequence of one or more pictures of refinement of the quality of the
current picture, rather than as a representation of a continually moving scene.

ITU-T Rec. H.264 (05/2003) 247

The tagged set of consecutive coded pictures shall continue until one of the following conditions is true. When a
condition below becomes true, the next slice to be decoded does not belong to the tagged set of consecutive coded
pictures.

1. The next slice to be decoded belongs to an IDR picture.

2. num_refinement steps minusl is greater than 0 and the frame num of the next slice to be decoded is
(currFrameNum + num_refinement steps minusl + 1) % MaxFrameNum, where currFrameNum is the value of
frame_num of the picture in the access unit containing the SEI message.

3. num_refinement steps minusl is 0 and a progressive refinement segment end SEI message with the same
progressive refinement id as the one in this SEI message is decoded.

The decoding order of picture within the tagged set of consecutive pictures should be the same as their output order.
progressive_refinement id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 2*? - 1, inclusive.

Values of progressive_refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 2*' - 1, inclusive, may
be used as determined by the application. Values of progressive_refinement id in the range of 256 to 511, inclusive, and
in the range of 2°' to 2**-1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2*' to 2% - 1, inclusive, shall ignore
(remove from the bitstream and discard) it.

num_refinement_steps_minusl specifies the number of reference frames in the tagged set of consecutive coded
pictures as follows.

- Ifnum_refinement steps minusl is equal to 0, the number of reference frames in the tagged set of consecutive coded
pictures is unknown.

- Otherwise, the number of reference frames in the tagged set of consecutive coded pictures is equal to
num_refinement steps _minusl + 1.

num_refinement steps minus] shall be in the range of 0 to MaxFrameNum - 1, inclusive.

D.2.18 Progressive refinement segment end SEI message semantics

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has
been labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence
of one or more pictures of the refinement of the quality of the initial picture, and ending with the current picture.

progressive_refinement_id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 2* - 1, inclusive.

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment
previously started using a progressive refinement segment start SEI message with the same value of
progressive refinement id.

Values of progressive refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 2°' - 1, inclusive, may
be used as determined by the application. Values of progressive_refinement id in the range of 256 to 511, inclusive, and
in the range of 2°' to 2** - 1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2*' to 2*? - 1, inclusive, shall ignore
(remove from the bitstream and discard) it.

D.2.19 Motion-constrained slice group set SEI message semantics

This SEI message indicates that inter prediction over slice group boundaries is constrained as specified below. When
present, the message shall only appear where it is associated, as specified in subclause 7.4.1.2.3, with an IDR access unit.

The target picture set for this SEI message contains all consecutive primary coded pictures in decoding order starting
with the associated primary coded IDR picture (inclusive) and ending with the following primary coded IDR picture
(exclusive) or with the very last primary coded picture in the bitstream (inclusive) in decoding order when there is no
following primary coded IDR picture. The slice group set is a collection of one or more slice groups, identified by the
slice_group id[i] syntax element.

This SEI message indicates that, for each picture in the target picture set, the inter prediction process is constrained as
follows: No sample value outside the slice group set, and no sample value at a fractional sample position that is derived
using one or more sample values outside the slice group set is used to inter predict any sample within the slice group set.

num_slice_groups_in_set_minusl1 + 1 specifies the number of slice groups in the slice group set. The allowed range of
num_slice groups in_set minusl is 0 to num_ slice groups minusl, inclusive. The allowed range of
num_slice groups minusl is specified in Annex A.

248 ITU-T Rec. H.264 (05/2003)

slice_group_id[i | identifies the slice group(s) contained within the slice group set. The allowed range is from 0 to
num_slice groups in_set minusl, inclusive. The size of the slice group id[i] syntax element is
Ceil(Log2(num_slice groups minusl + 1)) bits.

exact_sample_value_match_flag equal to O indicates that, within the target picture set, when the macroblocks that do
not belong to the slice group set are not decoded, the value of each sample in the slice group set need not be exactly the
same as the value of the same sample when all the macroblocks are decoded. exact sample value match flag equal to |
indicates that, within the target picture set, when the macroblocks that do not belong to the slice group set are not
decoded, the value of each sample in the slice group set shall be exactly the same as the value of the same sample when
all the macroblocks in the target picture set are decoded.

Note - When disable_deblocking_filter idc is equal to 2 in all slices in the target picture set, exact _sample value match flag
should be 1.

pan_scan_rect_flag equal to 0 specifies that pan_scan rect id is not present. pan_scan_rect flag equal to 1 specifies
that pan_scan_rect_id is present.

pan_scan_rect_id indicates that the specified slice group set covers at least the pan-scan rectangle identified by
pan_scan_rect id within the target picture set.

Note - Multiple motion_constrained_slice_group_set SEI messages may be associated with the same IDR picture. Consequently,
more than one slice group set may be active within a target picture set.

Note - The size, shape, and location of the slice groups in the slice group set may change within the target picture set.

D.2.20 Reserved SEI message semantics

This message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. Encoders conforming
to this Recommendation | International Standard shall not send reserved SEI messages until and unless the use of such
messages has been specified by ITU-T | ISO/IEC. Decoders conforming to this
Recommendation | International Standard that encounter reserved SEI messages shall discard their content without effect
on the decoding process, except as specified in future Recommendations | International Standards specified by ITU-T |
ISO/IEC.

reserved_sei_message payload byte is a byte reserved for future use by ITU-T | ISO/IEC.

ITU-T Rec. H.264 (05/2003) 249

Annex E

Video usability information
(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming
decoders are not required to process this information for output order conformance to this
Recommendation | International Standard (see Annex C for the specification of conformance). Some VUI parameters are
required to check bitstream conformance and for output timing decoder conformance.

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International
Standard. When present in the bitstream, VUI parameters shall follow the syntax and semantics specified in subclauses
7.3.2.1 and 7.4.2.1 and this annex. When the content of VUI parameters is conveyed for the application by some means
other than presence within the bitstream, the representation of the content of the VUI parameters is not required to use
the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually
present in the bitstream are counted.

250 ITU-T Rec. H.264 (05/2003)

E.1

E.1.1

VUI syntax

VUI parameters syntax

vui_parameters() { Descriptor
aspect_ratio_info_present_flag 0 | ul
if(aspect_ratio_info_present flag) {
aspect_ratio_idc 0 | u®
if(aspect_ratio_idc == Extended SAR) {
sar_width 0 | u(l6)
sar_height 0 | u(l6)
H
H
overscan_info_present_flag 0 | u)
if(overscan_info_present flag)
overscan_appropriate_flag 0 | u)
video_signal type present flag 0 | u)
if(video_signal type present flag) {
video format 0 |u@3
video_full range_ flag 0 | ul)
colour_description_present_flag 0 | u)
if(colour_description_present flag) {
colour_primaries u(8)
transfer_characteristics u(8)
matrix_coefficients 0 | u®
H
H
chroma_loc_info_present flag 0 | ul)
if(chroma_loc_info_present flag) {
chroma_sample loc_type top_field 0 | ue(v)
chroma_sample loc_type bottom_field 0 | ue(v)
H
timing_info_present flag 0 |ul
if(timing_info_present flag) {
num_units_in_tick u(32)
time_scale u(32)
fixed_frame_rate_flag 0 |ul
H
nal_hrd_parameters_present_flag 0 |ul
if(nal_hrd parameters_present flag)
hrd_parameters()
vel_hrd_parameters_present_flag 0 | u)
if(vel _hrd parameters_present flag)
hrd parameters()
if(nal_hrd parameters present flag || vcl hrd parameters present flag)
low_delay hrd_flag 0 | ul)
pic_struct_present_flag u(l)
bitstream_restriction_flag u(1)
if(bitstream_restriction_flag) {

ITU-T Rec. H.264 (05/2003)

251

motion_vectors_over_pic_boundaries_flag 0 | ul)
max_bytes per_pic_denom 0 | ue(v)
max_bits_per mb_denom 0 | ue(v)
log2_max_mv_length_horizontal 0 | ue(v)
log2 max_mv_length_vertical 0 | ue(v)
num_reorder_frames 0 | ue(v)
max_dec_frame_buffering 0 | ue(v)
H
H
E.1.2 HRD parameters syntax
hrd_parameters() { C | Descriptor
cpb_cnt_minusl 0 | ue(v)
bit_rate_scale 0 |u4)
cpb_size_scale 0 |u#4
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minus1; SchedSelldx++) {
bit_rate value minusl| SchedSelldx] 0 | ue(v)
cpb_size value_minusl[SchedSelldx | 0 | ue(v)
cbr_flag| SchedSelldx] 0 |u)
H
initial_cpb_removal delay_length_minusl 0 |u®)
cpb_removal_delay_length _minusl 0 |u®)
dpb_output_delay_length minus1 0 |u®)
time_offset_length 0 |u®)
H

E.2 VUI semantics

E.2.1 VUI parameters semantics

aspect_ratio_info_present_flag equal to 1 specifies that aspect ratio_idc is present. aspect ratio_info_present flag
equal to 0 specifies that aspect_ratio_idc is not present.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E-1 shows the meaning of the
code. When aspect ratio idc indicates Extended SAR, the sample aspect ratio is represented by sar width and
sar_height. When the aspect ratio idc syntax element is not present, aspect ratio_idc value shall be inferred to be equal
to 0.

252 ITU-T Rec. H.264 (05/2003)

Table E-1 — Meaning of sample aspect ratio indicator

aspect_ratio_idc | Sample aspect ratio (informative)
Examples of use
0 Unspecified
1 1:1 1280x720 16:9 frame without overscan
(“square™) 1920x1080 16:9 frame without overscan (cropped from 1920x1088)

640x480 4:3 frame without overscan

2 12:11 720x576 4:3 frame with horizontal overscan
352x288 4:3 frame without overscan

3 10:11 720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without overscan

4 16:11 720x576 16:9 frame with horizontal overscan
540x576 4:3 frame with horizontal overscan

5 40:33 720x480 16:9 frame with horizontal overscan
540x480 4:3 frame with horizontal overscan

6 24:11 352x576 4:3 frame without overscan
540x576 16:9 frame with horizontal overscan

7 20:11 352x480 4:3 frame without overscan
480x480 16:9 frame with horizontal overscan

8 32:11 352x576 16:9 frame without overscan

9 80:33 352x480 16:9 frame without overscan

10 18:11 480x576 4:3 frame with horizontal overscan

11 15:11 480x480 4:3 frame with horizontal overscan

12 64:33 540x576 16:9 frame with horizontal overscan

13 160:99 540x480 16:9 frame with horizontal overscan

14..254 Reserved
255 Extended SAR

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units).
sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width).

sar_width and sar_height shall be relatively prime or equal to 0. When aspect ratio_idc is equal to 0 or sar_width is
equal to 0 or sar_height is equal to 0, the sample aspect ratio shall be considered unspecified by this Recommendation |
International Standard.

overscan_info_present flag equal to1 specifies that the overscan appropriate flag is present. When
overscan_info_present flag is equal to 0 or is not present, the preferred display method for the video signal is
unspecified.

overscan_appropriate_flag equal to 1 indicates that the cropped decoded pictures output are suitable for display using
overscan. overscan_appropriate_flag equal to O indicates that the cropped decoded pictures output contain visually
important information in the entire region out to the edges of the cropping rectangle of the picture, such that the cropped
decoded pictures output should not be displayed using overscan. Instead, they should be displayed using either an exact
match between the display area and the cropping rectangle, or using underscan.
NOTE - For example, overscan_appropriate flag equal to 1 might be used for entertainment television programming, or for a live
view of people in a videoconference, and overscan_appropriate _flag equal to 0 might be used for computer screen capture or
security camera content.

video_signal type present flag equal to1l specifies that video format, video full range flag and
colour_description_present flag are present. video signal type present flag equal to 0, specify that video format,
video_full range flag and colour description_present flag are not present.

video_format indicates the representation of the pictures as specified in Table E-2, before being coded in accordance
with this Recommendation | International Standard. When the video format syntax element is not present, video format
value shall be inferred to be equal to 5.

ITU-T Rec. H.264 (05/2003) 253

Table E-2 — Meaning of video_format

video_format | Meaning

0 Component

PAL

NTSC

SECAM

MAC

Unspecified video format

Reserved

NN || |WIN|—

Reserved

video_full range flag indicates the black level and range of the luma and chroma signals as derived from E’y, E’pg, and
E’pr analogue component signals, as follows.

- Ifvideo full range flag is equal to 0,

Y =Round(219 * E’y + 16) (E-1)
Cb = Round(224 * E’pg + 128) (E-2)
Cr =Round(224 * E’pg + 128) (E-3)

- Otherwise (video full range flag is equal to 1),

Y = Round(255 * E’y) (E-4)
Cb = Round(255 * E’pg + 128) (E-5)
Cr = Round(255 * E’pg + 128) (E-6)

When the video full range flag syntax element is not present, video_full range flag value shall be inferred to be equal
to 0.

colour_description_present_flag equal to1 specifies that colour primaries, transfer characteristics and
matrix_coefficients are present. colour description present flag equal to O specifies that colour primaries,
transfer_characteristics and matrix_coefficients are not present.

colour_primaries indicates the chromaticity coordinates of the source primaries as specified in Table E-3 in terms of the
CIE 1931 definition of x and y as specified by ISO/CIE 10527.

254 ITU-T Rec. H.264 (05/2003)

Table E-3 — Colour primaries

Value Primaries
0 Reserved
1 ITU-R Recommendation BT.709
primary X y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290
2 Unspecified
Image characteristics are unknown or as determined by the
application.
3 Reserved
ITU-R Recommendation BT.470-2 System M
primary X y
green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316
5 ITU-R Recommendation BT.470-2 System B, G
primary X y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.3127 0.3290
6 Society of Motion Picture and Television Engineers 170M
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
7 Society of Motion Picture and Television Engineers 240M (1987)
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
8 Generic film (colour filters using Illuminant C)
primary X y
green 0.243 0.692 (Wratten 58)
blue 0.145 0.049 (Wratten 47)
red 0.681 0.319 (Wratten 25)
white C 0.310 0.316
9-255 Reserved

When the colour primaries syntax element is not present, the value of colour primaries shall be inferred to be equal to 2
(the chromaticity is unspecified or is determined by the application).

transfer_characteristics indicates the opto-electronic transfer characteristic of the source picture as specified in
Table E-4 as a function of a linear optical intensity input L. with an analogue range of 0 to 1.

ITU-T Rec. H.264 (05/2003) 255

Table E-4 — Transfer characteristics

Value Transfer Characteristic

0 Reserved

1 ITU-R Recommendation BT.709
V =1.099 L0945 -0.099 for 1 >=L,>=0.018
V=4500L, for 0.018 > L,

2 Unspecified
Image characteristics are unknown or are determined by the
application.

3 Reserved

ITU-R Recommendation BT.470-2 System M
Assumed display gamma 2.2

5 ITU-R Recommendation BT.470-2 System B, G
Assumed display gamma 2.8

6 Society of Motion Picture and Television Engineers 170M
V =1.099 L.045-0.099 for 1 >=L,>=0.018
V =4.500 L, for 0.018 > L,
7 Society of Motion Picture and Television Engineers 240M (1987)
V=11115L945 . 0.1115 for L>=0.0228
V=40L, for 0.0228 > L,
8 Linear transfer characteristics
V=L,
9 Logarithmic transfer characteristic (100:1 range)
V=10-LoglO(L.)+2 for1 >=L1L.>=0.01
V=0.0 for 0.01 > L,
10 Logarithmic transfer characteristic (316.22777:1 range)
V=1.0-LoglO(L.)+2.5 for 1 >=L,>=0.0031622777
V=0.0 for 0.0031622777 > L,
11..255 Reserved

When the transfer characteristics syntax element is not present, the value of transfer characteristics shall be inferred to
be equal to 2 (the transfer characteristics are unspecified or are determined by the application).

matrix_coefficients describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and
red primaries, as specified in Table E-5.

Using the following definitions:
E’g, E’G, and E’ are analogue with values in the range of O to 1.

White is specified as having E’r equal to 1, E’ equal to 1, and E’5 equal to 1.

Then:
Ev=Kp *Er+(1-Kr—Kp) *E’c+Kg *E’p (E-7)
Epp=05*(Es—Ev)+(1-Kg) (E-8)
Epr=05*(ER-Ev)+(1-Kg) (E-9)

NOTE - Then E’y is analogue with values in the range of 0 to 1, E’pg and E’pg are analogue with values in the range of -0.5 to 0.5,
and white is equivalently given by E’y =1, E’pg =0, E’pg = 0.

256 ITU-T Rec. H.264 (05/2003)

Table E-5 — Matrix coefficients

Value Matrix

0 Reserved

1 ITU-R Recommendation BT.709
Kr =0.2126; Kz =0.0722

2 Unspecified
Image characteristics are unknown or are determined by the
application.

3 Reserved

Federal Communications Commission
KR :030, KB =0.11

5 ITU-R Recommendation BT.470-2 System B, G:
Kr=0.299; Ky =0.114

6 Society of Motion Picture and Television Engineers 170M
Kr=0.299; Ky =0.114

7 Society of Motion Picture and Television Engineers 240M (1987)
Kr=0.212; Kg = 0.087

8-255 Reserved

When the matrix_coefficients syntax element is not present, the value of matrix_coefficients shall be inferred to be equal
to 2.

chroma_loc_info_present_flag equal to 1 specifies that chroma sample loc type top field and
chroma_sample loc_type bottom field are present. chroma loc_info present flag equal to O specifies that
chroma sample loc type top field and chroma sample loc type bottom field are not present.

chroma_sample loc_type top field and chroma_sample loc _type bottom field specify the location of chroma
samples for the top field and the bottom field as shown in Figure E-1. The value of chroma _sample loc type top field
and chroma sample loc type bottom field shall be in the range of 0 to5, inclusive. When the
chroma sample loc type top field and chroma sample loc type bottom field are not present, the values of
chroma sample loc type top field and chroma sample loc type bottom field shall be inferred to be equal to 0.

NOTE - When coding progressive source material, chroma_sample loc_type top_field and
chroma_sample loc_type bottom_field should have the same value.

ITU-T Rec. H.264 (05/2003) 257

20X 20X K0X £0X
OV oV oV OV
KAO BADO QADO KAQO

ZO0X K0X 820X &£0X
oV oV oV oV
RAL KALO BAO BAQ

KOX KO0X 20X &£20X
oV oV oV OV
KALD KALO QBAO BAO

KO0X K0X 20X &£0X
oV oV oV oV
RAL KALO BAO BAQ

Interpretation of symbols:

Luma sample position indications:
>< = Luma sample top field E] = Luma sample bottom field

Chroma sample position indications,
where gray fill indicates a bottom field sample type
and no fill indicates a top field sample type:

O =Chroma sample type 2 O = Chroma sample type 3

O = Chroma sample type 0O v = Chroma sample type 1
<> = Chroma sample type 4 A = Chroma sample type 5

Figure E-1 — Location of chroma samples for top and bottom fields as a function of
chroma_sample_loc_type top_field and chroma_sample loc_type bottom_field

timing_info_present_flag equal to 1 specifies that num units in_tick, time scale and fixed frame rate flag are present
in the bitstream. timing info present flag equal to 0 specifies that num units in tick, time scale and
fixed frame rate flag are not present in the bitstream.

num_units_in_tick is the number of time units of a clock operating at the frequency time scale Hz that corresponds to
one increment (called a clock tick) of a clock tick counter. num_units_in_tick shall be greater than 0. A clock tick is the
minimum interval of time that can be represented in the coded data. For example, when the clock frequency of a video
signal is 30000 +~ 1001 Hz, time scale may be 30 000 and num units_in_tick may be 1001. See Equation C-1.

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures
time using a 27 MHz clock has a time_scale of 27 000 000. time_scale shall be greater than 0.

fixed_frame_rate flag equal to 1 indicates that the temporal distance between the HRD output times of any two
consecutive pictures in output order is constrained as follows. fixed frame rate flag equal to O indicates that no such
constraints apply to the temporal distance between the HRD output times of any two consecutive pictures in output order.

When fixed frame rate flag is equal to 1, for all n where n indicates the n-th picture in output order and picture n is not
the last picture in the bitstream in output order, the value of Atg 4,5(1) is specified by

At gop(n) = Aty gop(1) + DeltaTfiDivisor (E-10)

258 ITU-T Rec. H.264 (05/2003)

where At,qo(n) is specified in Equation C-13 and DeltaTfiDivisor is specified by Table E-6 based on the value of
pic_struct present flag, field pic flag, and pic_struct for picture n. Entries marked "-" in Table E-6 indicate a lack of
dependence of DeltaTfiDivisor on the corresponding syntax element.

When fixed_frame_rate_flag is equal to 1, the value computed for At 4,,(n) shall be the same for all n > 0 and shall be
equal to num_units_in_tick + time_scale.

Table E-6 — Divisor for computation of Atg gp,(n)

pic_struct_present_flag | field_pic_flag | pic_struct | DeltaTfiDivisor
0 1 - 1
1 - 1 1
1 - 2 1
0 0 - 2
1 - 0 2
1 - 3 2
1 - 4 2
1 - 5 3
1 - 6 3
1 - 7 4
1 - 8 6

nal_hrd_parameters_present_flag equal to 1 specifies that NAL HRD parameters (pertaining to Type II bitstream
conformance) are present. nal hrd parameters present flag equal to O specifies that NAL HRD parameters are not
present.

NOTE — When nal hrd parameters present flag is equal to 0, the conformance of the bitstream cannot be verified without
provision of the NAL HRD parameters, including the NAL sequence HRD parameter information and all buffering period and
picture timing SEI messages, by some means not specified in this Recommendation | International Standard

When nal_hrd parameters_present flag is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable NalHrdBpPresentFlag is derived as follows.
- If any of the following is true, the value of NalHrdBpPresentFlag shall be set equal to 1.

— nal _hrd parameters present flag is present in the bitstream and is equal to 1

— the need for presence of buffering periods for NAL HRD operation to be present in the bitstream in buffering
period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

- Otherwise, the value of NalHrdBpPresentFlag shall be set equal to 0.

vel_hrd_parameters_present_flag equal to 1 specifies that VCL HRD parameters (pertaining to all bitstream
conformance) are present. vcl hrd parameters present flag equal to O specifies that VCL HRD parameters are not
present.

NOTE — When vcl hrd parameters_present flag is equal to 0, the conformance of the bitstream cannot be verified without
provision of the VCL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in
this Recommendation | International Standard

When vel _hrd parameters present flag is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable VclHrdBpPresentFlag is derived as follows.
- Ifany of the following is true, the value of VclHrdBpPresentFlag shall be set equal to 1.

— vcl_hrd parameters present flag is present in the bitstream and is equal to 1

— the need for presence of buffering periods for VCL HRD operation to be present in the bitstream in buffering
period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

- Otherwise, the value of VclHrdBpPresentFlag shall be set equal to 0.

ITU-T Rec. H.264 (05/2003) 259

The variable CpbDpbDelaysPresentFlag is derived as follows.
- If any of the following is true, the value of CpbDpbDelaysPresentFlag shall be set equal to 1.

— nal_hrd parameters present flag is present in the bitstream and is equal to 1
— vcl_hrd parameters present flag is present in the bitstream and is equal to 1

— the need for presence of CPB and DPB output delays to be present in the bitstream in picture timing SEI
messages is determined by the application, by some means not specified in this Recommendation | International
Standard.

- Otherwise, the value of CpbDpbDelaysPresentFlag shall be set equal to 0.

low_delay_hrd _flag specifies the HRD operational mode as specified in Annex C. When fixed frame rate flag is
equal to 1, low_delay hrd flag shall be equal to 0.

NOTE - When low_delay hrd flag is equal to 1, "big pictures" that violate the nominal CPB removal times due to the number of
bits used by an access unit are permitted. It is expected, but not required, that such "big pictures" occur only occasionally.

pic_struct_present_flag equal to 1 specifies that picture timing SEI messages (subclause D.2.2) are present that include
the pic_struct syntax element. pic_struct present flag equal to O specifies that the pic_struct syntax element is not
present in picture timing SEI messages.

bitstream_restriction_flag equal to 1, specifies that the following sequence bitstream restriction parameters are
present. bitstream_restriction_flag equal to 0, specifies that the following sequence bitstream restriction parameters are
not present.

motion_vectors_over_pic_boundaries_flag equal to 0 indicates that no sample outside the picture boundaries and no
sample at a fractional sample position whose value is derived using one or more samples outside the picture boundaries
is used to inter predict any sample. motion_vectors _over pic_boundaries flag equal to 1 indicates that one or more
samples outside picture boundaries may be used in inter prediction. When the motion_vectors_over pic_boundaries flag
syntax element is not present, motion_vectors_over pic_boundaries_flag value shall be inferred to be equal to 1.

max_bytes_per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units
associated with any coded picture in the sequence.

The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of
bytes of VCL NAL unit data (i.e., the total of the NumBytesInNALunit variables for the VCL NAL units) for the picture.
The value of max_bytes per pic_denom shall be in the range of 0 to 16, inclusive.

Depending on max_bytes per pic_denom the following applies.
- If max_bytes per pic_denom is equal to 0, no limits are indicated.

- Otherwise (max_bytes per pic_denom is not equal to 0), no coded picture shall be represented in the sequence by
more than the following number of bytes.

(PicSizeInMbs * 256 * ChromaFormatFactor) + max_bytes per pic_denom (E-11)

When the max_bytes per pic_denom syntax element is not present, the value of max bytes per pic_denom shall be
inferred to be equal to 2.

max_bits_per_mb_denom indicates the maximum number of coded bits of macroblock layer() data for any
macroblock in any picture of the sequence. The value of max bits per mb_denom shall be in the range of 0 to 16,
inclusive.

Depending on max_bits_per mb_denom the following applies.
- Ifmax bits per mb denom is equal to 0, no limit is specified.

- Otherwise (max_bits_per mb_denom is not equal to 0), no coded macroblock layer() shall be represented in the
bitstream by more than the following number of bits.

(2048 * ChromaFormatFactor + 128) + max_bits_per mb_denom (E-12)

Depending on entropy coding_mode_flag, the bits of macroblock layer() data are counted as follows.

- Ifentropy coding mode flag is equal to 0, the number of bits of macroblock layer() data is given by the number of
bits in the macroblock layer() syntax structure for a macroblock.

260 ITU-T Rec. H.264 (05/2003)

- Otherwise (entropy coding mode flag is equal to 1), the number of bits of macroblock layer() data for a
macroblock is given by the number of times read bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock layer() associated with the macroblock.

When the max_bits_per mb_denom is not present, the value of max_bits per mb_denom shall be inferred to be equal
to 1.

log2_ max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a
decoded horizontal and vertical motion vector component, respectively, in ¥ luma sample units, for all pictures in the
sequence. A value of n asserts that no value of a motion vector component shall exceed the range from -2" to 2"-1,
inclusive, in units of % luma sample displacement. The value of log2 max mv length horizontal shall be in the range
of 0 to 16, inclusive. The value of log2 max mv length vertical shall be in the range of 0 to 16, inclusive. When
log2 max mv_length horizontal is not present, the values of log2 max mv length horizontal and
log2 max_mv_length vertical shall be inferred to be equal to 16.

NOTE - The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by profile
and level limits as specified in Annex A.

num_reorder_frames indicates the maximum number of frames, complementary field pairs, or non-paired fields that
precede any frame, complementary field pair, or non-paired field in the sequence in decoding order and follow it in
output order. The value of num_reorder frames shall be in the range of 0 to max_dec frame buffering, inclusive. When
the num_reorder frames syntax element is not present, the value of num_reorder frames value shall be inferred to be
equal to max_dec frame buffering.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame
buffers. The sequence shall not require a decoded picture buffer with size of more than
Max(1, max_dec frame buffering) frame buffers to enable the output of decoded pictures at the output times specified
by dpb_output_delay of the picture timing SEI messages. The value of max_dec_frame buffering shall be in the range of
num_ref frames to MaxDpbSize (as specified in subclause A.3.1), inclusive. When the max dec frame buffering
syntax element is not present, the value of max dec frame buffering shall be inferred to be equal to MaxDpbSize.

E.2.2 HRD parameters semantics

cpb_cnt_minusl plus 1 specifies the number of alternative CPB specifications in the bitstream. The value of
cpb_cnt_minus] shall be in the range of 0 to 31, inclusive. When low_delay hrd flag is equal to 1, cpb_cnt minusl
shall be equal to 0. When cpb_cnt_minus]1 is not present, it shall be inferred to be equal to 0.

bit_rate scale (together with bit rate value minusl[SchedSelldx]) specifies the maximum input bit rate of the
SchedSelldx-th CPB.

cpb_size_scale (together with cpb_size value minusl| SchedSelldx]) specifies the CPB size of the SchedSelldx-th
CPB.

bit_rate_value_minus1[SchedSelldx | (together with bit rate scale) specifies the maximum input bit rate for the
SchedSelldx-th CPB. bit_rate value minusl[SchedSelldx] shall be in the range of 0 to 2**-2, inclusive. For any
SchedSelldx > 0, bit rate value_minusl[SchedSelldx] shall be greater than bit_rate value _minus1[SchedSelldx - 1].
The bit rate in bits per second is given by

BitRate[SchedSelldx] = (bit_rate_value_minus1[SchedSelldx]+ 1) * 2(¢*bit-rate_scale) (E-13)

When the bit rate value minusl[SchedSelldx | syntax element is not present, BitRate[SchedSelldx] shall be inferred
to be equal to 1000 * MaxBR for VCL HRD parameters.

When the bit rate value minusl[SchedSelldx | syntax element is not present, BitRate[SchedSelldx] shall be inferred
to be equal to 1200 * MaxBR for NAL HRD parameters.

cpb_size_value minusl| SchedSelldx | is used together with cpb_size scale to specify the SchedSelldx-th CPB size.
cpb_size value minusl[SchedSelldx] shall be in the range of 0 to 2*? - 2, inclusive. For any SchedSelldx greater than
0, cpb_size value minus1[SchedSelldx] shall be less than or equal to cpb_size value minusl[SchedSelldx -1].

The CPB size in bits is given by
CpbSize[SchedSelldx] = (cpb_size value minusl[SchedSelldx]+ 1) * 24+ cpb-size_scale) (E-14)

When the cpb_size value minusl[SchedSelldx] syntax element is not present, CpbSize[SchedSelldx] shall be
inferred to be equal to 1000 * MaxCPB for VCL HRD parameters.

When the cpb_size value minusl[SchedSelldx] syntax element is not present, CpbSize[SchedSelldx] shall be
inferred to be equal to 1200 * MaxCPB for NAL HRD parameters.

ITU-T Rec. H.264 (05/2003) 261

For VCL HRD parameters, there shall be at least one value of SchedSelldx for which BitRate[SchedSelldx | <=
1000*MaxBR and CpbSize[SchedSelldx] <= 1000 * MaxCPB (as specified in subclause A.3.1).

For NAL HRD parameters, there shall be at least one value of SchedSelldx for which CpbSize[SchedSelldx] <=
1200*MaxCPB and BitRate[SchedSelldx] <= 1200*MaxBR.

cbr_flag[SchedSelldx | equal to 0 specifies that to decode this bitstream by the HRD using the SchedSelldx-th CPB
specification, the hypothetical stream delivery scheduler (HSS) operates in an intermittent bit rate mode.
cbr_flag[SchedSelldx | equal to 1 specifies that the HSS operates in a constant bit rate (CBR) mode. When the
cbr_flag[SchedSelldx | syntax element is not present, the value of cbr_flag shall be inferred to be equal to 0.

initial_cpb_removal_delay length_minusl1 specifies the length in bits of the initial cpb_removal delay[SchedSelldx]
and initial cpb_removal delay offset] SchedSelldx] syntax elements of the buffering period SEI message. The length
of initial cpb removal delay[SchedSelldx] and of initial cpb_removal delay offset[SchedSelldx] is
initial_cpb_removal delay length minusl + 1. When the initial cpb_removal delay length minusl syntax element is
present in more than one hrd parameters() syntax structure within the VUI parameters syntax structure, the value of the
initial cpb removal delay length minusl parameters shall be equal in both hrd parameters() syntax structures. When
the initial cpb _removal delay length minusl syntax element is not present, it shall be inferred to be equal to 23.

cpb_removal_delay length_minusl1 specifies the length in bits of the cpb_removal delay syntax element. The length
of the cpb_removal delay syntax element of the picture timing SEI message is cpb_removal delay length minusl + 1.
When the cpb removal delay length minusl syntax element is present in more than one hrd parameters() syntax
structure within the VUI parameters syntax structure, the value of the cpb_removal delay length minusl parameters
shall be equal in both hrd_parameters() syntax structures. When the cpb_removal delay length minusl syntax element
is not present, it shall be inferred to be equal to 23.

dpb_output_delay_length_minusl1 specifies the length in bits of the dpb_output_delay syntax element. The length of
the dpb_output_delay syntax element of the picture timing SEI message is dpb_output delay length minusl + 1. When
the dpb_output_delay length minusl syntax element is present in more than one hrd parameters() syntax structure
within the VUI parameters syntax structure, the value of the dpb_output delay length minusl parameters shall be equal
in both hrd parameters() syntax structures. When the dpb_output delay length minusl syntax element is not present, it
shall be inferred to be equal to 23.

time_offset_length greater than 0 specifies the length in bits of the time offset syntax element. time offset length equal
to 0 specifies that the time_offset syntax element is not present. When the time offset length syntax element is present
in more than one hrd parameters() syntax structure within the VUI parameters syntax structure, the value of the
time_offset length parameters shall be equal in both hrd parameters() syntax structures. When the time_offset length
syntax element is not present, it shall be inferred to be equal to 24.

262 ITU-T Rec. H.264 (05/2003)

Series A
Series B
Series C
Series D
Series E
Series F

Series G
Series H
Series 1

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure, Internet protocol aspects and Next Generation Networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2004

	ITU-T Rec. H.264 (05/2003) Advanced video coding for generic audiovisual services
	Summary
	Source
	FOREWORD
	CONTENTS
	Foreword
	0 Introduction
	0.1 Prologue
	0.2 Purpose
	0.3 Applications
	0.4 Profiles and levels
	0.5 Overview of the design characteristics
	0.6 How to read this specification

	1 Scope
	2 Normative references
	3 Definitions
	4 Abbreviations
	5 Conventions
	5.1 Arithmetic operators
	5.2 Logical operators
	5.3 Relational operators
	5.4 Bit-wise operators
	5.5 Assignment operators
	5.6 Range notation
	5.7 Mathematical functions
	5.8 Variables, syntax elements, and tables
	5.9 Text description of logical operations
	5.10 Processes

	6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
	6.1 Bitstream formats
	6.2 Source, decoded, and output picture formats
	6.3 Spatial subdivision of pictures and slices
	6.4 Inverse scanning processes and derivation processes for neighbours

	7 Syntax and semantics
	7.1 Method of describing syntax in tabular form
	7.2 Specification of syntax functions, categories, and descriptors
	7.3 Syntax in tabular form
	7.4 Semantics

	8 Decoding process
	8.1 NAL unit decoding process
	8.2 Slice decoding process
	8.3 Intra prediction process
	8.4 Inter prediction process
	8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process
	8.6 Decoding process for P macroblocks in SP slices or SI macroblocks
	8.7 Deblocking filter process

	9 Parsing process
	9.1 Parsing process for Exp-Golomb codes
	9.2 CAVLC parsing process for transform coefficient levels
	9.3 CABAC parsing process for slice data

	Annex A - Profiles and levels
	A.1 Requirements on video decoder capability
	A.2 Profiles
	A.3 Levels
	Annex B - Byte stream format
	B.1 Byte stream NAL unit syntax and semantics
	B.2 Byte stream NAL unit decoding process
	B.3 Decoder byte-alignment recovery (informative)
	Annex C - Hypothetical reference decoder
	C.1 Operation of coded picture buffer (CPB)
	C.2 Operation of the decoded picture buffer (DPB)
	C.3 Bitstream conformance
	C.4 Decoder conformance
	Annex D - Supplemental enhancement information
	D.1 SEI payload syntax
	D.2 SEI payload semantics
	Annex E - Video usability information
	E.1 VUI syntax
	E.2 VUI semantics

